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ABSTRACT: Differentiable models enable the efficient computation of parameter
gradients for continuous functions, greatly expediting the optimization of high-
dimensional systems. This makes them an asset for the design of nanostructured
metasurfaces. The adjoint variable method (AVM) is the workhorse for photonic
gradient computation but can be challenging to implement with the finite
difference time domain (FDTD) electromagnetic simulation method for certain
optimization problems. Automatic differentiation (AD) platforms remove the need
for manual constructions while retaining favorable computational scaling, but high
memory consumption limits their application to small systems. Here, we introduce
a method of gradient calculation based on the direct differentiation of the FDTD
update equations by leveraging the time-reversible nature of Maxwell’s equations.
We support open and closed systems by recording the time-dependent fields at
lossy boundaries and playing them back during the time-reversed FDTD
simulation. The method is generally applicable without the high memory consumption of AD by eliminating redundant memory
operations performed at each time step. We demonstrate this architecture in a 3D FDTD simulation. Its computational cost is
comparable to the adjoint method, and it reduces memory requirements by 98% compared to an equivalent AD calculation for
calculating a 900-element gradient vector. The differentiable simulator is applied to design two systems: a color sorter with
frequency-domain behavior and a resonant nanostructure array with time-domain behavior. This approach to differentiate grid-based
simulators is applicable to a broad range of physics simulators, thereby broadening the scope of inverse design topology optimization
across fields.
KEYWORDS: automatic differentiation, metasurface inverse design, topology optimization, electromagnetic simulation,
adjoint variable method

■ INTRODUCTION
Nanostructured surfaces have been utilized to sense and
manipulate numerous degrees of freedom of light. Metalenses,
for instance, control the transmitted wavefront through an
intricately structured surface to achieve diffraction-limited and
aberration-corrected focusing.1,2 Modern lithography enables
the creation of features far smaller than the wavelength of
visible light, resulting in a vast range of possible nanostructures.
Identifying high-performing devices that can be fabricated
within equipment constraints from this vast set of possible
structures is essential. The two main approaches to address this
challenge are forward design and inverse design.

Forward design involves constructing a large device from
simpler components that have well-defined behavior. In flat
optics, these components are discrete subwavelength nano-
structures called meta-atoms. Each meta-atom in a “library”
(i.e., a collection) consists of elementary shapes and has its
optical behavior (e.g., transmitted phase delay) individually
modeled with electromagnetic simulation techniques such as
finite difference time domain (FDTD)3 and finite element
models (FEM). In a second step, these meta-atoms are
assembled into a macroscopic optic based on a precalculated
spatial distribution. For example, when designing a lens, meta-

atoms are arranged to induce a hyperbolic phase profile.
Forward design can systematically generate large nanophotonic
devices for applications with requirements that can be met by a
library of meta-atoms with a limited number of degrees of
freedom.

However, inverse design is required for applications without
a well-defined desired spatial parameter distribution or those
demanding wider-ranging behaviors. One example is designing
different behaviors over a band of wavelengths, which requires
control over the chromatic dispersion of the nanostructures
and coverage of a much larger structure parameter space.2,4,5

Inverse design techniques such as topology optimization treat
this as an optimization problem over a high-dimensional
parameter space; i.e., they maximize or minimize an objective
function that describes the desired behavior. There are several
techniques available for photonic inverse design;6,7 most high-
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dimensional optimization problems employ gradient descent
directly onto the design parameters or train neural network
generators8,9 to discover high-performing solutions. Beyond
simple gradient descent, the information in these gradients can
be incorporated with deep learning-based algorithms to attain
globally optimal devices.10−12 In gradient-based approaches,
the most computationally intensive step is the calculation of
the gradient of the objective function itself. Finite difference
approximations can achieve this, but their computational
complexity scales poorly with respect to the number of degrees
of freedom (at least one objective function call per degree of
freedom). A physics-informed neural network for approximat-
ing forward simulation and gradients can provide excellent
computational scaling but may trade off accuracy and
generalizability.13

The adjoint variable method (AVM), also known as
sensitivity analysis, is the most widely used and computation-
ally efficient technique to optimize systems with many degrees
of freedom: AVM calculates all gradients simultaneously at the
computational cost of just two objective function calls (i.e., two
electromagnetic simulations in the photonics case). For the
commonly encountered case in photonics where the objective
function is written in terms of frequency-domain complex-
valued fields and the tunable parameters are dielectric
permittivity distributions, AVM takes a simple form that can
be easily implemented in existing FDTD suites.14−16 However,
in situations that differ from the above case, such as systems
with time-domain objective functions, time-varying materials,
or tunable parameters that are associated with multiple pixels
(e.g., characteristic dimensions17,18 or the rotation angle of a
structure), the AVM requires the derivation of complicated
operators that often have no closed form.

Automatic differentiation (AD) is another efficient techni-
que for gradient calculation and thereby topology optimiza-
tion.18−22 AD-based electromagnetic simulators based on
rigorous coupled wave analysis18,20 and finite difference
frequency domain (FDFD)23,24 are in the public domain. In
its most common form, reverse mode (RM), AD maintains a
record of all mathematical operations undertaken during a
calculation and computes the exact numerical gradients using
the chain rule. Therefore, the user does not need to perform
analytical derivatives.21 However, application of AD to iterative
grid-based simulation methods (e.g., FDTD) is limited to small
problems or large computer clusters due to the memory
requirements of saving all intermediate values at every iteration
time step and pixel position, along with every mathematical
operation involved.

In this article, we introduce an alternative method to AVM
and AD for obtaining arbitrary objective function gradients in
FDTD: direct differentiation (DD) of the FDTD update steps.
That is, we analytically differentiate the FDTD update
equations and propagate the objective function gradients in a
manner akin to an FDTD simulation running in reverse. This
technique maintains the efficient computational complexity
scaling of AVM and AD where the gradient calculation time is
independent of the number of tunable parameters, has orders
of magnitude less memory complexity compared to AD, and
provides a systematic approach to accumulating parameter
gradients. Our method is generalizable to many time- and
frequency-domain objective functions and optimization
parameters. Our method provides�without changes�opti-
mization gradients for objective functions including time-
domain field components and broadband responses. In these

cases, our method is advantageous to the AVM, as it does not
require the (mathematically challenging and sometimes
impossible) derivation of closed-form adjoint formulations.
For frequency-domain objective functions defined in a narrow
frequency band, the AVM reduces to its computationally
efficient form (see AVM for frequency-domain objectives),
allowing a more straightforward implementation using existing
simulation tools.

Instead of storing intermediate parameter (field) values at
each time step, we perform backpropagation by running the
FDTD simulation backward, starting with the final system state
and time-stepping in reverse toward the initial conditions.
Since the backpropagation chain rule calculation proceeds in
this same reverse direction, the intermediate parameter values
are calculated precisely when they are needed at each time
step. This reverse simulation approach can also be separately
applied in AVM adjoint simulations to remove the need for
checkpointing.25,26 We then apply our architecture to design
two devices: one that uses a frequency-domain objective
function and another device with an objective function defined
in the time domain.

■ METHODS
Overview of FDTD. FDTD is a grid-based time-stepping

method for solving partial differential equations. When applied
to Maxwell’s equations and electromagnetism, it is used to
simulate light−matter interactions in the time domain. FDTD
is highly generalizable and well-suited for systems with multiple
frequencies, time-varying properties, and nonlinear materials
and can be integrated into multiphysics simulations. The
electric and magnetic fields E and H are updated iteratively and
alternately over a discretized simulation volume on the Yee
grid, typically until the excitation fields are absorbed or escape
the simulation volume. The space (∇) and time ( )t
derivatives in Maxwell’s eqs (eqs 1 and 2 for the lossless
case) are first order and estimated using centered finite
difference approximations. JE is the electric current density that
typically acts as the input source for the simulation. μ is the
permeability, and ϵ is the permittivity.

E
H
t

× =
(1)

H
E

J
t E× = +

(2)

For accuracy, FDTD requires a large number of spatial pixels
and iteration time steps. The spatial pixel size is typically
chosen to be significantly smaller than the wavelength of
interest λ (on the order of λ/10).27 This directly constrains the
maximum time step through the Courant stability condition,
which requires that the ratio between the time step cΔt and
smallest spatial step Δx is smaller than 1

3
for the three-

dimensional (3D) case with cubic pixels. The simulation then
must be run for a sufficient time to let the excitation fields
traverse the simulation volume or decay, which takes many
calculation steps in the presence of resonances. The FDTD
discretization and update equations used in this study are
detailed in the Supporting Information.

The time and memory costs of gradient calculations for
optimization problems are broadly characterized by their
scaling with respect to the number of independent input
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(Ninput) and dependent output (Noutput) parameters. Most
optimization problems have a large Ninput due to the number of
tunable parameters or fitting parameters and a small Noutput for
the objective function (in most cases, Noutput = 1). It is thus
ideal for a gradient calculation algorithm to have a time and
memory cost that scales favorably with Ninput, preferably
independent of it. Two such algorithms are the AVM and AD.
Overview of AVM. Sensitivity analysis in electromagnetism

has its roots in the optimal design of dynamic mechanical
systems28,29 and was applied to design waveguide structures in
the late 1990s.30,31 While AVM was formulated for simulators
that solve systems of equations captured by large system
matrices like FEM simulations, Chung et al. demonstrated that
AVM could also be applied to FDTD, which does not use
system matrices and is defined on a structured Yee grid.32−34

In this case, the AVM is employed to calculate the gradient
dG
dp

of an objective function G = ∫ Ω∫ 0
Tg[E(x,t),H(x,t)]dt d3x

that is defined over a volume Ω and simulation time T, with
respect to a vector of tunable parameters p. The derivation of
AVM is described in the literature;32−36 here, we will only
summarize the implementation and associated challenges. The
first step of AVM is to solve the forward problem in the time
domain: that is, to solve Maxwell’s equations for a nominal
geometry and store the field results E(x,t),H(x,t) for the
simulation time T, and for all positions that are either used in
the objective function or associated with the tunable
parameters p (e.g., pixels over which a shape derivative is
desired). Although this may consume a large amount of
memory, especially when there are many time steps or grid
positions for which g is nonzero, this memory consumption
can be alleviated by checkpointing,25 where a smaller subset of
time-steps are stored, and the simulation is run from these
stored checkpoints to the required time step. The integrand
g[E(x,t),H(x,t)] is differentiated analytically to obtain ∂g/
∂E(x,t),∂g/∂H(x,t), which are time-dependent vector-valued
functions evaluated using the time-varying stored field values
from the forward simulation. These derivatives are then used as
current sources for the adjoint simulation over the same
geometry to get the adjoint electric and magnetic fields
EA(x,t),HA(x,t) with the modified Maxwell equations37 in eqs 3
and 4, with the initial conditions being EA(x,τ = 0) = 0, HA(x,τ
= 0) = 0 in terms of the reverse time τ = T − t.

E x

H x
H x

T t

T t
t

g
T t

( , )

( , )
( , )

A

A

×

= +
(3)

H x
E x

E x
T t

T t
t

g
T t

( , )
( , )

( , )
A

A
× = +

(4)

The integrand derivatives ,
E x H x

g g
( , )

1
( , )

thus play the

role of time-varying electric and magnetic current density
sources, respectively.

The final step of the AVM is the combination of the forward
and adjoint fields E,H,EA,HA to obtain the gradient dG/dp.
Equation 5 shows the gradient element for the i-th tunable
parameter pi.
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(5)

In FDTD, RE and RH are operators that must be derived
manually for each specific system geometry, boundary
condition, and tunable parameter. ∂RE,H/∂pi can be well
approximated for photonic shape optimization.37−40 However,
for arbitrary optimizations, RE and RH may not have an analytic
form and require careful mapping onto the FDTD results (see
refs 36, 38, and 41 and the Supporting Information).
AVM for Frequency-Domain Objectives. When the

objective function G = ∫ Ω∫ Δωg[E (x,ω),H (x,ω),E* (x,ω),H*
(x,ω)]dω d3 x is only written in terms of the electromagnetic
fields in the frequency domain [i.e., the complex fields
E(x,ω),H(x,ω) and their complex conjugates E*(x,ω),H*-
(x,ω)] over a frequency bandwidth Δω of positive frequencies,
and when the parameter vector p represents the dielectric
permittivities or permeabilities over a subset of pixels, the
adjoint system reduces to a much simpler form that can also be
derived by exploiting Lorentz reciprocity symmetry between
time-harmonic current sources and their fields.14

E x

H x

H x

T t

T t
t

Re
g

i T t

( , )

( , )

2
( , )

exp( ( ))d

A

A

×

=

+
(6)

H x

E x

E x

T t

T t
t

Re
g

i T t

( , )

( , )

2
( , )

exp( ( ))d

A

A

×

=

+
(7)

Furthermore, the objective function gradient with respect to
the permittivity ϵi at grid point i at position xi simplifies to

E x E xG Red
d

1
( , ) ( , )d

i

A
i i

2= · *
(8)

Such conditions are well-suited for nanophotonic inverse
design, in which dielectric distributions are designed to achieve
specific optical functions at well-defined frequencies and
frequency bands7,14−16 and is therefore the form that is
broadly employed. From an implementation point of view, the
source terms in eqs 6 and 7 have a straightforward
interpretation: for every discretized frequency ω ∈ Δω of
interest, one has to place a point electric dipole with an
amplitude of ∂g/∂E and a point magnetic dipole with an
amplitude of −(1/μ)∂g/∂H at every position x ∈ Ω.15 Because
the dipole sources are time-harmonic, one does not need to
record the full time-domain field during the forward
simulation�it suffices to accumulate the frequency-domain
complex fields at the intended dipole source positions and
frequencies of interest.42,43 This greatly reduces the memory
requirements compared to those of the adjoint procedure for a
time-domain objective function. The full derivation of AVM
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for frequency-domain objectives is included in the Supporting
Information.

If the objective function or optimization parameters do not
fall in this category, then the full AVM described in eq 5 must
be used, which requires deep knowledge of its implementation
and significant mathematical manipulation, limiting its
application to specialists.

■ METHODS
Overview of Reverse Mode Automatic Differentia-

tion. Although AD has two modes of operation, forward and
reverse mode, it is largely synonymous with the latter since the
RM AD computational cost scales linearly with Noutput and is
independent of Ninput. Conversely, the forward mode computa-
tional cost is independent of Noutput but scales linearly with
Ninput. Therefore, we focus on RM AD here. An intuitive
explanation of RM AD’s operation and scaling behavior is
detailed in the Supporting Information.

RM AD relies on the computation tree, also known as a tape
or Wengert list.44 It contains all mathematical operations
involved from the inputs to the outputs. Each node in the tree
represents an intermediate elementary operation with a well-
defined derivative associated with its own input and output.
There are two passes in RM AD. The forward pass traverses
the computational tree from the inputs to the outputs, storing
all of the intermediate values obtained. The backward pass,
also known as backpropagation, performs the chain rule for
differentiation from the outputs back toward the inputs,
drawing upon the stored intermediate values. Backpropagation
is the foundation of modern machine learning, as it provides
the objective function gradients with respect to many tunable
parameters (e.g., weights and biases in neural networks) for
iterative model training and refinement.

Consider the computation tree corresponding to an
optimization calculation with an embedded FDTD calculation
(Figure 1a). For ease of reading, from now on, we concatenate
the electromagnetic fields E,H to F. The calculation proceeds
from a parameter vector p, which can be the vector of pixel fill
factors, to the electromagnetic fields over the NV spatial pixels
at zero time F(0), through NT time step updates to the
electromagnetic fields F(T) at the end time T and finally to the
objective function value G. The FDTD tree is simultaneously
wide (due to the number of spatial pixels) and deep (due to
the number of iteration time steps). During the forward pass,
every mathematical operation and intermediate field value are
stored at a considerable memory cost. This memory
consumption peaks just after the objective value is computed.
During backpropagation, the AD platform computes the
derivative of the objective function G with respect to every
intermediate parameter. This process proceeds in a reverse
order from the objective value back toward the structure vector
at the root of the tree and, importantly, draws upon the stored
operations and intermediate field values in reverse order as
well.

This layer-by-layer depiction of FDTD is a simplification but
is valid even for objective functions that do not just depend on
the fields at the final time step F (T). In particular, to extract
spectrally resolved properties from FDTD, one explicitly
accumulates partial sums of the discrete Fourier transform
during the time-stepping updates.43 Thus, F can capture not
only the electromagnetic fields over the simulation volume but
also partial Fourier transform sums, and it is valid to write the
FDTD as a cascaded set of layers (each layer being associated
with one time step) with the same update equations between
each layer.

Figure 1. Comparison between conventional reverse mode automatic differentiation (AD) and direct differentiation (DD). Both gradient
calculation methods, which involve differentiating through FDTD update equations, are applied to the simulation of a structure (parameterized by
vector p) in a simulation volume comprising NV pixels and NT time steps. In both cases, the desired output is the objective function gradient with
respect to structure vector dG/dp. This is a simplified depiction: generally, the objective function is dependent on the fields at multiple time steps
and the parameter vector affects field behavior across multiple time steps. (a) Conventional reverse mode AD has two steps: the forward pass and
backpropagation. During the forward pass, all the electromagnetic field values F need to be stored (double box outline) for every space-time
position so that they can be reused during the backpropagation process, leading to substantial memory consumption. (b) For direct differentiation,
only the fields at one time step must be stored. During backpropagation, a reverse simulation is run simultaneously to provide the necessary field
values in the order required in backpropagation.
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Memory Challenges in FDTD Gradient Calculations.
Table 1 displays the time and memory scaling behavior for

various methods of gradient calculation applied to an FDTD
system with Ninput tunable parameters, Noutput objective
functions, NV pixels, NT time steps, and Nf frequency points.
Scaling behaviors that are favorable for high-dimensional
inverse design (with its large Ninput, NV, NT, small Noutput) are
labeled with asterisks (*). The scaling derivations are detailed
in the Supporting Information. The simplest gradient
calculation, finite differences, exhibits poor time complexity
as it scales linearly with Ninput but uses very little memory as it
only needs to store the electromagnetic field values at the
current time step. Forward mode AD45 has favorable memory
scaling that is independent of the number of time steps.
However, it also suffers from poor Ninput time complexity. RM
AD has favorable time complexity independent of Ninput, but it
has unfavorable memory complexity due to the large number
of space-time pixels NVNT for which the field values must be
stored during the forward pass. For example, we find that a
small NV = 252 × 180 × 180 pixels) 3D FDTD simulation
based on the FDTD framework by Hughes et al.45 running on
RM AD consumes 196 MB of memory per time step when
using the open-source AD tool Autograd.46 Nanophotonic
FDTD simulations typically run beyond 1000 time steps,
quickly raising memory needs into hundreds of gigabytes.

Summarizing, the adjoint method yields favorable time and
memory complexity but requires significant mathematical
manipulation for nonstandard objective functions, as discussed
earlier. Reverse mode automatic differentiation can be
generally deployed by nonspecialists but requires access to
the simulation source code at runtime (for knowledge of every
mathematical operation) and is restricted to small problem
sizes. In the following, we present direct differentiation, which
offers simplified deployment and reasonable memory use.
Description of Direct Differentiation Operation. The

structure of the FDTD computational tree motivates two key
changes that can substantially reduce the memory cost of a
gradient calculation relative to the RM AD architecture,
forming the core of our direct differentiation (DD) platform
(Figure 1b). First, the mathematical operations that update the
field F (t), 1 ≤ t ≤ NT from one time step to the next are the
same at every time step. Similarly, the back-propagation
operations that propagate the parameter gradients from dG/

dF(t) to dG/dF(t − 1/2) using the chain rule are time-
independent. Instead of storing an individual copy of the
update equations (and backpropagation operations) for every
time step, it suffices to store them once. This leads to a factor
of NT reduction in memory usage for storing the information
encoded in the computation tree.

Second, we observe that Maxwell’s equations are time-
reversible47 and that backpropagation during gradient calcu-
lation proceeds backward from the objective function. The
time-reversibility of Maxwell’s equations (not to be confused
with time inversion symmetry t → −t) arises from the
conservation of information during time evolution. This
implies that the FDTD update equations can be rearranged
to time step fields in reverse, computing ( )F t 1

2
from F(t).

Although FDTD on a finite domain does not conserve
information due to the presence of lossy boundary conditions
such as perfectly matched layers (PMLs), local information
loss at boundaries can be prevented, as described below.

In DD, instead of storing all electromagnetic fields during
the forward pass, we only store the fields at the final time step
F(T), reducing the peak memory required during the forward
pass to that of a regular FDTD simulation. During back-
propagation, we run a time-reversed simulation of the same
FDTD domain [using F(T) as the initial conditions] in parallel
with the chain rule gradient calculations, beginning at the final
time step t = T and proceeding backward in time. This time-
reversed simulation supplies the required field values to the
chain rule calculations at every time step. Specifically, after a
time-reversed simulation from F(t) to F(t − 1/2), we can use
F(t − 1/2) to calculate

( )
F

F

t

t

( )
1
2

and find
( )F

G

t

d

d 1
2

using the

chain rule
( ) ( ) ( )F F

F

F F

G

t

G
t

t

t

G

t

d

d

d
d ( )

( )
1
2

1
2

1
2

= + . The
( )F

G

t 1
2

term arises from the functional form of the objective function
and changes for different simulations, though it can be
performed using conventional RM AD if the objective function
G is a complex functional of the field. This method of
generating the intermediate fields on-demand accounts for the
bulk of the memory saving in DD relative to RM AD. The
explicit equations for FDTD time stepping, time reversal, and
gradient propagation for nondispersive media are detailed in
the Supporting Information. These time-reversal techniques
can be generalized to dispersive media using techniques that
parameterize frequency-dependent behavior using local varia-
bles that are updated at each time step, such as the recursive
convolution method.3

I n o rde r t o imp l emen t DD , th e ana l y t i c a l
, , ,

E x H x
E x

p
H x

p
g

t
g

t
t t

( , ) ( , )
( , ) ( , ) derivatives must be known as

a function of the fields at each time step. This is similar to
AVM, which requires the analytical form of the objective
function gradients ,

E x H x
g

t
g

t( , ) ( , )
and the operator derivatives

,R
p

R
p

E H

to be known.

Handling Lossy Boundaries with a Recording Layer.
In an infinitely large or periodically continued system, the
information content is conserved under the evolution dictated
by Maxwell’s equations. It is possible to start at the final system
configuration and perform reverse time-stepping to perfectly
re-attain the initial conditions. However, electromagnetic
simulations are finite and use idealizations to capture the

Table 1. Time and Memory Scaling Complexities for
Gradient Calculation Modes in FDTD Simulationsa

gradient calculation
mode time complexity memory complexity

finite difference O(NinputNVNTNf) O(NinputNVNf)*
adjoint variable
method

O(NoutputNVNTNf)* O(NinputNVNf)*

forward mode AD O(NinputNVNTNf) O(NinputNVNf)*
reverse mode AD O(NoutputNVNTNf)* O(NoutputNVNTNf)
direct differentiation O(NoutputNVNTNf)* O(NoutputNVNf +

NTNV∂NV)*
aAsterisks (*) indicate favorable scaling for high-dimensional inverse
design relative to the other gradient calculation modes. Ninput and
Noutput represent the numbers of input and output parameters,
respectively. NV is the number of spatial pixels, NT is the number of
time steps, and Nf is the number of frequency points. ∂NV is the
number of pixels on the recording layer at the spatial boundary of the
simulation.
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essential behavior without an unnecessary computational cost.
After the light−matter interaction of interest, the source fields
are absorbed by infinitely lossy boundary conditions such as
PMLs, which serve as an approximation of fields exiting free
space. At first glance, such an “empty” final configuration
cannot be time-reversed, as the field information incident at
these infinitely lossy boundaries is lost when the field
amplitude decreases below machine precision. To address
this issue, we introduce a single-pixel-thick recording layer at
the surface of these infinitely lossy boundaries to capture the
escaping time-dependent field. We therefore encode the
system’s 3D spatial initial state in the two-dimensional
simulation boundary and one time dimension. During the
time-reversal simulation, we replay these recorded fields as
field sources from the recording layers. Full details of the
recording layer implementation are found in the Supporting
Information. Noninfinitely lossy dispersive or absorptive media
do not need a recording layer as long as the field amplitude
remains larger than the machine precision.

Table 1 exhibits the time and memory complexity of DD,
demonstrating that it has the same time complexity as RM AD
and AVM but substantially less memory consumption than RM
AD. In the limit of large NT, the peak memory usage of DD
calculations scales linearly with the number of simulation time

steps. This memory consumption arises from the storage
operation of the recording boundary. Since the number of field
positions associated with the recording boundary ∂NV scales
with the surface area of the simulation volume, the additional
memory consumption per time step scales with the square of
the simulation box side length, instead of the cube as in
conventional RM AD. The memory saving relative to RM AD
thus becomes more pronounced for larger simulation volumes.

While undergoing peer review, we identified a patent
application that describes a similar approach to propagating
adjoint gradients through an FDTD system by exploiting time
reversal; however, we did not find a related scientific
publication.48

■ RESULTS
Validation of the Approach in 3D FDTD and

Performance. We validate the DD approach by differ-
entiating a 3D FDTD and evaluating its gradient calculation
accuracy, runtime, and memory scaling. Without loss of
generality, we choose a 3D simulation region of 252 × 180 ×
180 pixels and spatial pixel size Δx = Δy = Δz = 13.75 nm
(Figure 2a, size 6.5λ × 4.7λ × 4.7λ, λ = 532 nm). The structure
under test is a 30 × 30 = 900 square pillar array (660 nm tall)
on the y−z plane. Each of the 900 pillars has an individual real-

Figure 2. Implementation of 3D differentiable FDTD for direct differentiation: (a) 3D FDTD simulation geometry: the 252 × 180 × 180 pixel
domain (6.5λ × 4.7λ × 4.7λ) is partitioned into a glass volume (blue) and air volume (yellow). A single mode plane wave with a central wavelength
λ = 532 nm (yellow plane) is generated inside the glass medium. It is incident onto a design medium filled with pillars (gray volume) of
permittivities ϵr(y,z), and the zeroth order phase ϕ of the transmitted field is recorded (orange plane). The simulation volume is surrounded by a
total-field-scattered-field (TFSF) boundary and perfectly matched layers. (b) Validation of the computed gradients d

d r
from DD against that of

finite difference calculations, for different pillar positions on the y−z plane. (c) Conventional reverse mode AD and DD do not have significant
runtime differences when they are run on the same single-core Python platform. A speedup is obtained when DD is run on a compiled platform (C
++), also on a single core, which has comparable runtime scaling with the adjoint variable method (AVM) run on a commercial FDTD suite
(Lumerical FDTD, Ansys Inc.). (d) DD yields a 98% reduction in peak memory consumption per time step compared to conventional reverse
mode AD, when run on the same single core Python platform. AVM on a commercial FDTD simulation uses less memory, as far fewer field
locations need to be stored. The runtime and memory scaling with respect to the number of FDTD time steps are obtained by linear regression.
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valued relative permittivity (normalized to the permittivity of
free space ϵ0), and the 30 × 30 element matrix of the relative
permittivities ϵr(x) serves as the structure vector of tunable
parameters. The pillars are positioned on a glass substrate (n =
1.44) in the y−z plane and are surrounded by air (n = 1). The
source field is a plane wave located within the glass substrate
(vacuum wavelength λ = 532 nm, z-polarized, x-propagating).
The objective function is the frequency-domain phase ϕ =
arg∑ΩE of the complex electric field averaged over a 149 ×
149 pixel monitor plane located 770 nm above the 900 pillars,
which corresponds to the zeroth-order transmitted phase of
the nanostructures. The objective function gradient is thus

x
d

d ( )r
. The source plane, nanostructures, and monitor plane are

surrounded by total field scattered field boundaries,49 which
are in turn surrounded by PMLs on all sides. The recording
boundary is coincident with the PML boundaries. We validated
the accuracy of the FDTD simulation against a commercial
FDTD suite (Lumerical FDTD, Ansys Inc.); details of this
comparison are in the Supporting Information.

We validate the gradients obtained through the DD
approach using 900 single-sided finite difference calculations
for a structure with random permittivity (Figure 2b) and find
that the root-mean-squared absolute difference of the objective
function gradient is negligible.

Although DD performs an additional time-reversal simu-
lation during backpropagation compared to RM AD, runtime
comparisons on a single CPU core using the same platform
(Python) as a function of the number of FDTD time steps
shows similar scaling (Figure 2c), 19 and 13 s/time steps for
DD and RM AD, respectively. In terms of peak memory
consumption, DD achieves a 98% memory usage reduction
from 196 to 3.5 MB/time step when compared to RM AD
(Figure 2d). We demonstrate further gradient calculation
speedup with similar peak memory consumption by
implementing DD on a compiled language (C++) instead of

an interpreted language (Python), even for single CPU core
computations (1.4 s/time step and 3.6 MB/time step). This 2-
order-of-magnitude improvement in memory consumption in
moving from RM AD to DD is consistent with the number of
pixels along one spatial dimension of the 3D simulation
volume.

We further compare the time and memory scaling of these
differentiable platforms to AVM (run on a commercially
optimized FDTD-Ansys Lumerical on a single CPU core) and
derive the adjoint equations for the total field phase objective
function using the Lorentz reciprocity approach in the
Supporting Information. The adjoint system is an array of
dipoles at each of the phase measurement monitor pixels, each

with a complex amplitude of E

E

( )
2

*

| |
. The objective function

derivative
x

d
d ( )r

for pixels with volume ΔV is obtained from the

electric fields there from the forward simulation E(x) and the
adjoint simulation EA(x)

x
x xV E E

d
d ( )

Im ( ) ( )A= [ ]
(9)

To reduce the required 149 × 149 = 22,201 dipole sources
at the monitor plane, which would take several hours for the
software just to set up the simulation, we downsampled the
dipole source array to a 30 × 30 array. AVM achieves quicker
runtime scaling by a factor of 2.3 (0.6 s/time step vs 1.4 s/time
step) of the C++ implementation of DD (Figure 2c) and less
memory consumption (4 kB/time step vs 3.6 MB/time step,
Figure 2d). AVM for frequency-domain objective functions
does not need to store values for each time step and can
accumulate partial sums, thus using very little additional
memory with incremental time steps.
Application to the Inverse Design of Nanophotonic

Devices. With the performance and accuracy of DD
established for FDTD, we deploy the direct differentiation

Figure 3. Design and performance of a simple color sorter using frequency-domain optimization: (a) schematic of color sorting function: incident
illumination comprising a mixture of 488 and 633 nm wavelengths is spatially split into two distinct regions by a compact 30 × 60 array of pillars.
The permittivity distribution over the pillar array is determined by inverse-design using the 3D direct differentiable FDTD. (b) Optimized binary
titanium dioxide distribution over the 30 × 60 pillar array. (c) Intensity distribution |Ex|2 + |Ey|2 + |Ez|2 at the monitor plane placed 50 pixels (687.5
nm) above the pillar array under two illumination wavelengths, showing how the different wavelengths are deflected to two different regions. The
intensity profiles are individually normalized to the maximum intensity on each plane.
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model to inverse design multifunctional nanophotonic devices.
We do this for two systems: one with a frequency-domain
behavior and another with a time-domain behavior. While
time-domain optical behavior can be equivalently represented
in the frequency-domain, it can capture dynamics across a wide
frequency range without employing a large number of discrete
frequency points.50

For frequency-domain optimization, we aim to design an
isolated passive structure that sorts incident illumination at two
different wavelengths, λ1 = 488 nm and λ2 = 633 nm, into two
distinct spatial regions, i.e., it could act as a meta-optical color
sorter that redirects incident light to different photodetector
pixels placed close to the device.51 The desired behavior of the
device is illustrated in Figure 3a: x-directed, z-polarized
illumination is incident on a glass substrate on which a
compact 30 × 60 pixel array of pillars lies in the y−z plane. The
tunable parameters are the dielectric permittivities of the
pixelated pillar array, and the objective function to be
maximized for each wavelength is the overlap integral of the
transmitted electric field profile with a target Gaussian field
profile. We chose the target field profiles to ensure that 488
and 633 nm light are deflected in opposite z-directions,
allowing the device to act as a near-field color sorter for these
two wavelengths when evaluated in a plane placed 688 nm (50
pixels) above the pillars. The total system objective function to
be maximized is the minimum of the two individual
wavelength objective functions (see above), which ensures
that the performance of the device at the two wavelengths
remains comparable. We compute the objective function
gradient with respect to the dielectric permittivity in the

pixelated pillar array using the DD FDTD simulator and
perform gradient descent optimization at a fixed learning rate.
We apply a binarization term in the second half of the
optimization to push the permittivities to the upper and lower
bounds, which correspond to titanium dioxide and air,
respectively. The optimized titanium dioxide profile is plotted
in Figure 3b. Due to the proximity of the target plane to the
top of the pillar array (around one wavelength away), the
optimized permittivity profile reflects the left/right partitioning
of the target plane. The transmitted intensity profiles for both
wavelengths are plotted in Figure 3c, which demonstrates that
the incident illumination is sorted into two spatial regions
based on the wavelength. The optimization details are
described in the Supporting Information.

To demonstrate that DD can be straightforwardly extended
to objective functions beyond the conventional frequency
domain AVM, we performed a time-domain optimization. We
designed an array of resonators that impose a group delay on
an incident pulse. Nanostructures with spatially variant group
delays are frequently employed in meta-optics to engineer
behavior over a frequency band, such as achromatic metal-
enses, which focus light within a given frequency range to a
single focal point.52 Such nanostructures are designed through
dispersion engineering, in which the transmission phase is
designed to have a specific dependence on the illumination
frequency, a process that typically entails the simulation of a
nanostructure behavior over a dense set of frequencies,
followed by polynomial regression on the transmitted spectral
phase profile.2,5,53 A linear phase dependence in the spectral
phase represents a group delay on the pulse envelope, enabling

Figure 4. Design and performance of a resonator array using time-domain optimization. A unit cell resonator within a periodic array can be
inversely designed based on the time-domain profile of its transmitted field. (a) Schematic of the system to be optimized. z-polarized light with a
central wavelength of 532 nm is incident on a block of dimensions 880 × 300 × 300 nm (44 × 15 × 15 pixels) with periodic boundary conditions
in the transverse plane. The objective function to be maximized is the transmitted field across the transverse plane, integrated over a subset of time
steps. (b) Rendering of the unit cell optimized design, where the red solid blocks represent pixels filled with titanium dioxide. (c) Time-domain
variation of the z-polarized field placed 500 nm from the array surface, averaged over the transverse plane, for the situation with and without the
optimized structure on the same normalized axis scale. The subset of time steps used for objective function maximization is shaded and is displaced
39 fs from the envelope peak of the nominal field without the structure. (d) Phase and (e) transmission intensity profiles of the optimized design
were based on Fourier transformation of the transmitted fields. The group delay (GD) and group delay dispersion (GDD) values over a 100 THz
bandwidth is obtained by fitting the phase to a quadratic polynomial.
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such behavior to be engineered more directly in the time
domain. To our knowledge, such time-domain group delay
topology optimization has only been done in the context of
metasurfaces by Yasuda and Nishiwaki.54 To simulate an array
of nanostructures, we replace the TFSF and PML boundary
conditions in the transverse y−z directions with periodic
boundary conditions (Figure 4a). Since these periodic
boundary conditions are not lossy, they do not require
recording layers. We define a time-domain objective function
written in terms of the average z-polarized transmitted electric
field across the transverse cross-section, which corresponds to
the on-axis far-field projection of the transmitted fields. The
objective value to be maximized is the average electric field for
time steps delayed between 37.4 and 39.9 fs from the peak of
the nominal field without any nanostructure present (Figure 4c
shaded area), and the tunable parameters are the dielectric
permittivities for a 880 × 300 × 300 nm block (44 × 15 × 15 =
9900 pixels, 20 nm pixel size) in the periodic unit cell. This
temporal delay is chosen to be substantially larger than the 4.1
fs that obtained by a uniform slab of titanium dioxide (n =
2.404) of the same thickness. The total simulation domain is
2560 × 500 × 500 nm (128 × 25 × 25 pixels). The
illumination source used is a pulse with central wavelength of
532 nm and a 13 fs full-width-at-half-maximum of the field
amplitude envelope. The objective function gradients are used
to update the pixel permittivities in the latent space using a
fixed step size, with 3D Gaussian blurring performed
periodically to eliminate isolated pixels. Optimization details
are given in the Supporting Information, and the optimized
structure is visualized in Figure 4b. The optimized structure
successfully delays the incident pulse (Figure 4c), and the
frequency-domain phase and amplitude profiles of the
structure are plotted in Figure 4d,e, respectively. The phase
exhibits the desired linear decrease over a 100 THz bandwidth
with an estimated group delay of 39.7 fs and a group delay
dispersion of 1.25 fs2. The transmission intensity profile
indicates the existence of several resonances in the frequency
band that are responsible for the large group delay.

The inverse design framework presented here is an initial
proof of concept and can be augmented using other topology
optimization tactics such as the incorporation of fabrication
tolerances and level-set representations for curved struc-
tures.7,9,55,56 These modifications will remove features that
are difficult to fabricate using conventional lithography
techniques, such as the small L-shaped island in the lower
center region of Figure 3b.

■ CONCLUSIONS
The DD FDTD architecture enables nanophotonic devices to
be modeled differentiably at a substantially lower memory cost
compared to conventional RM AD. This potentially allows
these computations to be performed rapidly and in parallel on
a single graphics processing unit (GPU) instead of dedicated
large-memory enterprise computing clusters. The DD
architecture can be more generally applied to any grid-like
simulator that can be reverse time-stepped, such as quantum
mechanical wave functions in space, low Reynolds number
fluid dynamics, and dissipationless solid mechanics. DD paves
the way for the creation of differentiable simulators
incorporating multiple coupled physical influences and
performing high-dimensional optimization over the control
parameters governing these dynamics.
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