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S1.1 Details on polarization singularities in monochromatic paraxial fields 
 
Polarization singularities in monochromatic paraxial vector fields either require only one or more 
parameters of the polarization ellipse (e.g., azimuthal angle, ellipticity angle) to be singular or are not 
topologically protected. The sets of points in 2D for which the polarization azimuth is undefined forms C-
points, and the sets of points for which the polarization ellipticity angle is undefined forms L-lines (22). At 
these C-points and L-lines, the full transverse polarization can still be well-defined; these singular positions 
are not complete polarization singularities. At C-points, light can be perfectly circularly polarized since 
circular polarization has an undefined azimuth angle. Similarly, along a L-line, light can be perfectly linearly 
polarized since linear polarization has an undefined ellipticity angle. Such C-points and L-lines are common 
in random complex paraxial vector fields (22, 30, 31,). In the main paper, the scalar correspondence of 
speckle fields has been analyzed in detail. As for phase singularities in speckle patterns, small perturbations 
in the field (e.g., by the addition of stray plane waves) do not destroy C-points and L-lines, but only displace 
them. Note that this protection is also guaranteed in 3D nonparaxial fields, where C-points and L-lines turn 
into C-lines and L-lines, respectively. (The fact that L-lines do not turn into surfaces is described in detail in 
(20) and is based on the fact that for nonparaxial fields 2 conditions need to be fulfilled to ensure an 
undefined ellipticity angle.).  
For V-points and dark C-points, the intensity is zero and the polarization is hence not defined. However, 
the field in the immediate vicinity of the singularity is polarized in a certain basis (linear and circular, 
respectively) and will split into multiple bright C-points for, e.g., any elliptically polarized perturbation (8, 
56). They are hence not topologically protected. 

 
S1.2 Degree of a function and winding number 
 

Figure S1: Winding number and topological charge. a, Considering a closed path (not self-intersecting or 
crossing a singularity) on the ሺ𝑥,𝑦ሻ plane (green curves in left panel), we can map the complex field value 
of each point on this path to a point in the ሺ𝐸ℜ,𝐸ℑሻ plane (right panels). The number of times the created 
closed curve winds around the origin in that plane corresponds to the winding number w, which is the sum 
of the topological charges of the zero points inside the closed path in the ሺ𝑥,𝑦ሻ plane. 
The winding number represents the total number of times a closed curve rotates around a point. It is a 
signed quantity, positive for counter-clockwise rotation, negative for clockwise rotation. The curve can 
have any shape but must be smooth and not crossing through the point of interest or other singular points. 
In this paper, the curve lies in the ሺ𝐸ℜ,𝐸ℑሻ plane, with 𝐸ℜ and 𝐸ℑ being the real and imaginary part of the 
field, and the point of interest is the origin. (Figure S1 left panel). The curve is created by choosing a closed 
path in the xy plane of the modelled field on a 2D screen (Figure S1 left panel) and plotting the field value 



at each position of the curve in the ሺ𝐸ℜ,𝐸ℑሻ plane (Figure S1 right panel). The closed path in the xy plane 
is hence not allowed to go through a singularity, as it would correspond to the curve crossing the origin in 
the ሺ𝐸ℜ,𝐸ℑሻ plane. The winding number is then calculated by 

𝑤 ൌ
1

2π
ර

 𝐸ℜ d𝐸ℑ െ 𝐸ℑ d𝐸ℜ
𝐸ℜ

ଶ ൅ 𝐸ℑ
ଶ  

 

୔
 

(S1) 

 

Intuitively, this equation integrates over a change in polar angle 𝜃 ൌ arctan ቀ
ாℑ
ாℜ
ቁ. As the loop is closed, 

the overall rotation angle will be a multiple of 2𝜋 so that the field returns to the starting complex value. 
Under continuous deformation this number is constant because it can be only changed when the loop 
crosses the singularity point which is not allowed by definition. The winding number is hence a topological 
invariant under continuous deformations and/or perturbations of the field as long as the curve does not 
cross a singularity. Formally, this means that for sufficiently small perturbations the winding number is an 
integer constant.  
The field of differential topology provides an immediate generalization for higher dimensions. The winding 
number is defined for 1D paths in 2D plane ℝଶ, while the degree is valid for the more general case ℝ௡(36). 
To understand how the generalization works we notice that in the case of the winding number, can see 
the path 𝑃 as a smooth function (diffeomorphism) from one circumference to another. The first 
circumference is identified by a parameter 𝑠 in the range ሾ0,2𝜋ሿ which is used to define the closed path 𝑃 
in the parametric form 𝑃ሺ𝑠ሻ, such that 𝑃ሺ0ሻ ൌ 𝑃ሺ2𝜋ሻ. The second circumference is simply the polar angle 
(which we assume to be always well defined as discussed earlier) also in the range ሾ0,2𝜋ሿ. Then we can 
identify a function 𝑓: 𝑠 → 𝜃 and the winding number is simply how many times this function wraps around 
in 𝜃, with the sign identifying the direction. Practically, this can be achieved with the integral in equation 
(22) or by taking a regular value 𝜃଴ (i.e., any value for which 𝑓′ is not zero) and finding all the values 
ሼ𝑠ଵ, 𝑠ଶ, … ሽ which map to it, so that 𝑓ሺ𝑠௜ሻ ൌ 𝜃଴; at each 𝑠௜ the function can have either positive derivative 
(counter-clockwise motion) or negative derivative (clockwise motion), and the difference of the number 
of points for which it is clockwise and the ones for which it is counter-clockwise is the winding number. 
 
Importantly, the points 0 and 2𝜋 have been glued together in both ranges, so that the topology is the non-
trivial one of a circumference, also called a 1-sphere. An n-sphere 𝑆௡ in differential topology is defined as 
the set of points in a 𝑛 ൅ 1 dimensional space which have a distance equal to 1 from the origin. For 𝑛 ൌ 1 
it is a circumference in the plane, for 𝑛 ൌ 2 is a spherical surface in the space and so on in higher 
dimensions. The degree in higher dimensions (in our case we use the case 𝑛 ൌ 3 for a 3-sphere that defines 
our topological invariant in 4D) is defined similarly to the winding number: starting from the function 
𝑓: 𝑆௡ → 𝑆௡ we consider a regular value 𝑝 in the co-domain and the points ሼ𝑠ଵ, 𝑠ଶ, … ሽ which map to it. The 
derivative is now replaced by the local Jacobian which can be inverting (negative determinant) or non-
inverting (positive determinant). The number of points with non-inverting Jacobian minus the number of 
points with inverting Jacobian is the degree.  
The Jacobian is intimately related to this topological invariant: we use here the Jacobian of the function 
between n-spheres, which depends on the Jacobian of the fields (in the 𝑛 ൅ 1 space). 

 
Calculating the topological degree by integrating over the 3D hypersphere in 4D 
space 
 
The charge of the singularity is indeed a topological invariant, which can be either determined by 𝑚ସ஽ ൌ
signሺdet(𝑱̿)) at the singularity position as described in the main paper or computed with an integral over 
a three-dimensional hypersphere, that wraps around the singularity in 4D space: 



The topological charge is simply defined as the degree of the function 𝑬:ℝସ → ℝସ from ሺ𝑥,𝑦, 𝑧, 𝜆ሻ to 

൫𝐸୶ℜ,𝐸୶ℑ,𝐸୷ℜ,𝐸୷ℑ൯ evaluated on a closed surface S around a zero. The surface must not intersect any 

other zero. Therefore, we can normalize 𝑬 by dividing by its norm: 𝑬෡ ൌ
𝑬

|𝑬|
. 

We now consider the surface S and its image Γ෠ through the function 𝑬෡ (Figure S2). Due to the normalization 

of 𝑬෡, the image Γ෠ lies on a 𝑆ଷ unit hypersphere. More intuitively, normalizing is equivalent to radially 

project point by point the closed manifold Γ on the unit hypersphere Γ෠. If Γ෠ wraps around the origin n-
times, its “surface” corresponds to 𝑛 ∗ 2 𝜋ଶ and the degree 𝐷 ൌ 𝑛. The number of wrappings can be 

evaluated integrating a differential of 𝑬෡ and dividing by the surface area 2 𝜋ଶ (similar to the 2D integral in 
Equation S1). We will derive and evaluate this integral over the 3D hypersphere numerically, which will 

lead as expected to the topological charge identical to 𝑚ଶ஽ ൌ signሺdet(𝑱̿)), i.e. D=-1 for the singularity 
presented in the main paper: 
 
The integral can be done meshing S, which is accomplished establishing a 3-dimensional coordinates 
system on it. For instance, if S is itself a hypersphere, this can be achieved simply with hyperspherical 
coordinates that naturally generalize spherical coordinates. If not, then a simple diffeomorphism can be 
used to apply hyperspherical coordinates to S. The differentials along each of the coordinates (let’s call 
them 𝜶,𝜷,𝜸) are mapped by 𝑬 to 𝑑 ఈ𝚪,𝑑 ఉ𝚪,𝑑 ఊ𝚪. Differentials in higher dimensional spaces can be 

represented more easily using exterior algebra. Specifically, using the exterior product (also known as 
wedge product) we can write the expression 𝑑 ఈ𝚪 ∧ 𝑑 ఉ𝚪 ∧ 𝑑 ఊ𝚪 that fully preserves the information about 

size and orientation of this 3D differential in a 4D space.  

Let us now project this differential radially on the unit hypersphere Γ෠. This is equivalent to finding the 
“hyper solid” angle subtended by the differential 𝑑 ఈ𝚪 ∧ 𝑑 ఉ𝚪 ∧ 𝑑 ఊ𝚪. Let us call this differential angle 𝑑ଷΩ. 

Evaluating the topological degree is then accomplished by completing the integral on all Γ of the solid 

angle and then dividing by the surface of the unit hypersphere Γ෠ (which is 2 𝜋ଶ): 
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The last step consists in calculating 𝑑ଷΩ. This can be accomplished by performing an additional exterior 

product with the unit vector 𝚪෠ ൌ
𝚪

|𝚪|
 obtaining 𝚪෠  ∧ 𝑑 ఈ𝚪 ∧ 𝑑 ఉ𝚪 ∧ 𝑑 ఊ𝚪 which, as well known from exterior 

algebra, represents a parallelotope having as edges the four vectors. Since Γ෠ is a unit vector, the volume 
of this parallelotope is equivalent to the surface of its shadow projected on the sphere with radius |𝚪|. To 

find the value on the unit sphere 𝚪෠  we need to further normalize dividing by |𝚪|ଷ. The final differential is 
then: 

 

𝚪 ∧ 𝑑 ఈ𝚪 ∧ 𝑑 ఉ𝚪 ∧ 𝑑 ఊ𝚪
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(S3) 

The volume of this normalized differential is therefore identical to 𝑑ଷΩ. We can calculate this volume using 
the determinant of the associated Gram matrix: 
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Where each row of the matrix represents each vector of the exterior product, written in terms of entries 
in the 4D codomain space (for simplicity we used 1, 2, 3, 4 to name the dimensions instead of 
𝐸୶ℜ,𝐸୶ℑ,𝐸୷ℜ,𝐸୷ℑ). 

We finally get: 
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Performing this integral numerically leads as expected to the topological charge identical to 𝑚ଶ஽ ൌ
signሺdet(𝑱̿)), i.e. D=-1 for the singularity presented in the main paper. 
 
Note that this is the direct generalization of the 2D case: 
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Which is the well-known expression for the winding number shown in Eq. S1. It is useful to represent this 
mathematical procedure graphically for this last simpler case (Figure S2). 

 

Figure S2: Graphical representation of the mathematical procedure to acquire the winding number  
 
 
 



S1.3 Singular value decomposition of the Jacobian 

 
As described in the main paper, the Jacobian can be used to describe the field near the singularity. For the 
simplest case of a Laguerre-Gaussian beams (with rotational index m≠0), the Jacobian is the unity matrix 
(Equation 2), describing a field that is rotationally symmetric in intensity. (Figure S3a). In a more general 
case, however, the field can be elongated in a certain direction, changing the intensity distribution and the 
density of the equiphase lines (Figure S3d). The information about the field can be immediately read out 
of the Jacobian, which can be decomposed into three simple transformations acting on the Laguerre-
Gaussian beam profile, using Single Value Decomposition (SVD, Figure S3). Using the SVD, the Jacobian can 
be written as: 

𝑱 ൌ 𝑼∑𝑽∗ (S7) 

 
where 𝑉 corresponds to an initial rotation, ∑ to a scaling along the coordination axis and U to another 
rotation.  

 
Figure S3: Singular value decomposition. The Jacobian 𝑱̿ describes the field around the singularity 
position. In case of a diagonal unitary Jacobian the field has the shape of an ordinary Laguerre gaussian 
beam (a). For more general cases, the Jacobian can be decomposed into three simple transformations 
through Singular Value Decomposition i.e., an initial rotation 𝑉 (b), a diagonal scaling matrix ∑ that scales 
the profile along the coordination axis (c) and a final rotation matrix 𝑈 (d). 
 
The SVD can be used to express the Jacobian by the parameters of the polarization ellipse, namely, the 
global phase 𝜙 at the major axis (angle from 0 to 2π), the gradient a along major axis (real positive), the 
gradient 𝑏 along minor axis (real, sign is topological charge) and the angle 𝜃 of major axis (angle from 0 to 
2π). Then one can write: 

𝑽∗ ൌ ൬
cos𝜙 sin𝜙
െ sin𝜙 cos𝜙൰ ; 𝚺 ൌ ቀ𝑎 0

0 𝑏
ቁ ; 𝐔 ൌ ቀcos 𝜃 െ sin𝜃

sin𝜃 cos𝜃
ቁ (S8) 

and hence 

𝐌 ൌ ൬
𝑎 cos𝜃 cos𝜙 ൅ 𝑏 sin𝜃 sin𝜙 𝑎 cos𝜃 sin𝜙 െ 𝑏 sin𝜃 cos𝜙
𝑎 sin𝜃 cos𝜙 െ 𝑏 cos𝜃 sin𝜙 𝑎 sin𝜃 sin𝜙 ൅ 𝑏 cos𝜃 cos𝜙൰ 

(S9) 

 
 
 



S1.4 Stationary points in the field and the role of the determinant of the 

Jacobian 
 

In addition to the phase singularities in the 2D spackle pattern case discussed, it has been pointed out 
[Michael Berry, private communication, 4th July 2022, Erice, Italy] that other special points in the field (such 
as saddle points in the phase) are also relevant to describe the evolution of singularities when the field is 
perturbed. 

Following a more careful analysis, we noticed that the following points all lie on the yellow lines in 
Figure 2D formed by the points where det 𝐽 ൌ 0: 

 Stationary points (maxima, non-singular minima and saddle points) in intensity 

 Stationary points (maxima, minima and saddle points) in the phase 

 Stationary points (maxima, minima and saddle points) in the real and imaginary parts of the field 

This can be shown mathematically as follows: any real 2X2 matrix 𝐽 with det 𝐽 ൌ 0 can be written in 
the following form parametrized by 3 real parameters 𝐴,𝐵,𝜃: 

𝐽 ൌ ቀ𝐴 cos𝜃 𝐵 cos 𝜃
𝐴 sin𝜃 𝐵 sin𝜃

ቁ ൌ ቀcos𝜃
sin𝜃

ቁ ሺ𝐴 𝐵ሻ (S10) 

 

This implies that for any small displacement in the 𝑥𝑦 plane, the corresponding offset in the complex 

plane is 𝛿ሺcos 𝜃 ൅ 𝑖 sin𝜃ሻ ൌ 𝛿𝑒௜ఏ with 𝛿 some real constant, meaning a complex value in the direction 𝜃. 
If 𝜃 is 0 or 𝜋/2 the point is a stationary point for the imaginary and the real part respectively. Considering 

now the value of the field in the considered point as 𝐶𝑒௜థ, if 𝜙 and 𝜃 are parallel directions, then the point 
is a stationary point in the phase. If they are orthogonal, then the point is a stationary point in the intensity. 

 

S2 Complete polarization singularity details  
 

S2.1 Proof that all polarizations exist around the singularity in the 3D space 
(dx,dy,dz) at the design wavelength (𝚫𝝀 ൌ 𝟎) 

Using the inverse function argument in the main paper it is trivial to show that in 4D a neighborhood of 
the singularity all the polarizations and phases exists. However, we can also prove that in the 3D space 
(without changing the wavelength) all polarizations exist. Let us define the input space U formed by vectors 

𝑢 ൌ ሺΔ𝑥,Δ𝑦,Δ𝑧,Δ𝜆ሻ் and the output space V formed by vectors 𝑣 ൌ ൫𝐸௫ℜ,𝐸௫ℑ,𝐸௬ℜ,𝐸௬ℑ൯
்

 

The Jacobian 𝐽 is full rank since its determinant is non-zero, so spanning around dx, dy, dz gives three 
linearly independent vectors in the V space. It is always possible to combine linearly these three vectors 
to obtain a v vector with the last two elements set to 0. This implies that we can always find a point in 
the 3D space such that the polarization is horizontal. The same argument holds of course for vertical 
polarization. 

For any other arbitrary desired polarization, we can choose a vector 𝑣 which represents that 
polarization and has all entries different from zero (using the phase degree of freedom). Then, we can 
always construct a full-rank matrix 𝑊 such that 𝑊𝑣 is horizontally polarized (i.e., its last two entries are 
zero). Physically, 𝑊 could for instance represent a waveplate without losses. Mathematically, a possible 
construction is: 
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⎝

⎜
⎛
𝐸௫ℜ 0 𝐸௬ℜ 0

0 𝐸௫ℑ 0 𝐸௬ℑ
െ𝐸௬ℜ 0 𝐸௫ℜ 0

0 െ𝐸௬ℑ 0 𝐸௫ℑ⎠

⎟
⎞
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It is easy to verify that the last two entries of 𝑊𝑣 vanish, and the matrix is full rank because the 

determinant is ൫𝐸௫ℜ
ଶ ൅ 𝐸௬ℜ

ଶ ൯൫𝐸௫ℑ
ଶ ൅ 𝐸௬ℑ

ଶ ൯ which is greater than zero because no entry is zero. 

Let us then consider the matrix 𝑊𝐽: we can apply the same argument as above and find a point u in 
the U space such that the 𝑊𝐽𝑢 is horizontally polarized, which means that 𝑊ିଵ𝑊𝐽𝑢 ൌ 𝐽𝑢 is the desired 
polarization. We then conclude that for any desired arbitrary polarization we can find a point in space with 
that polarization. However, the phase cannot be controlled: only accessing the full 4D U space it is possible 
to find all the polarizations and phases. 

This method works because both matrices 𝐽 and 𝑊 have full rank. W has full rank because it has no 
losses, and therefore the product 𝑊𝐽 has full rank because the determinant of 𝑊𝐽 is the product of 
determinants which are both non-zero. 

S2.2 Polarization distribution around the singularity 

As shown in Figure b in the main paper, one can find all polarizations twice on a surface of equal intensity 
around the singularity. Figure S4 shows the relation between the z position on this surface (a) and the 
position on the Poincare sphere (b). Figure S4 shows that one can indeed find all polarizations around the 
singularity, as the Poincare sphere is fully covered when mapping the simulated polarization states of an 
ellipsoid of constant intensity around the singularity onto the Poincare sphere. 

Figure S4. 3D space mapping to Poincare sphere. a, Schematic of an surface around the singularity 
position (star at the origin) of equal intensity. xy-planes located at different z positions are marked in 
different colors, assuming the singularity is positioned at (x,y,z,𝜆)=(0,0,0,𝜆଴). b, Poincare sphere for z larger 
and smaller than zero. It shows that each point on the Poincare sphere is crossed twice when the 
polarization states on the surface in a) are mapped onto the Poincare sphere. c, Simulated polarization on 
ellipsoid surface (axis lx= ly= 0.3𝜇𝑚, lz= 10 𝜇𝑚) of equal intensity plotted on the Poincare sphere. 

 
 
 
 
 



 
S2.3 Paraxiality of the system 

In paraxial or weakly-focused optics, the longitudinal field can be ignored to an excellent degree of 

approximation(1). Our system is firmly in the paraxial regime with a focusing NA of only 0.08.  

We would further like to point out that it is always possible to arbitrarily approach the paraxial 

configuration for any non-paraxial system adding achromatic lenses, as the topological singularity is 

invariant to this transformation (as long as the system does not crop the beam reducing its etendue). This 

can be seen easiest in the ray picture: As described in the paper the metasurface acts as a spatially varying 

waveplate that converts the impinging linearly polarized light into different polarizations (Figure 2C), with 

the characteristic that each point of the field right after the metasurface has a different polarization except 

for one counterpart of equal polarization but opposite sign. This leads to destructive interference at the 

focal position of the lens, since these two polarization states have the same optical path length to the focal 

position. The metasurface additionally controls the dispersion behavior so that this destructive 

interference is achieved at one wavelength only. When adding an additional achromatic thin lens 

concentric with the metasurface-lens system, each pair of opposite polarization state will still have the 

same (overall increased or decreased) optical path length, leading to destructive interference at the focal 

position. As the lens is achromatic, the overall chromatic dispersion won’t be changed, hence ensuring the 

existence of the singularity in 4D space.  

 
S3 Metasurface design and simulation details 
S3.1 Change of basis between Equations 4 and 6 

Starting from Equation 4 in the main paper 
 

𝒅𝑬 ൌ

⎝

⎛

𝐸୶ℜ
𝐸୶ℑ
𝐸୷ℜ
𝐸୷ℑ⎠

⎞ ൌ 𝑱̿൮

𝑑𝑥
𝑑𝑦
𝑑𝑧
𝑑𝜆

൲ ൌ 𝐽଴ ൮

1 0 0 𝐽ଵସ
0 1 0 𝐽ଶସ
0 0 1 𝐽ଷସ
𝐽ସଵ 𝐽ସଶ 𝐽ସଷ 𝐽ସସ

൲൮

𝑑𝑥
𝑑𝑦
𝑑𝑧
0

൲=𝐽଴ ൮

𝑑𝑥
𝑑𝑦
𝑑𝑧
0

൲ 

 

 

 

we can express the field as a Jones vector 

|𝒅𝝍⟩ ൌ ൬
𝐸୶ℜ ൅ 𝑖𝐸୶ℑ
𝐸୷ℜ ൅ 𝑖𝐸୷ℑ

൰ ൌ 𝐽଴ ቀ
𝑑𝑥 ൅ 𝑖𝑑𝑦

𝑑𝑧
ቁ ൌ 𝐽଴ ቂሺ𝑑𝑥 ൅ 𝑖𝑑𝑦ሻ ቀ1

0
ቁ ൅ 𝑑𝑧 ቀ0

1
ቁቃ 

                                 
                                ൌ 𝐽଴ሾሺ𝑑𝑥 ൅ 𝑖𝑑𝑦ሻ|𝑯⟩ ൅ 𝑑𝑧|𝑽⟩ሿ  

 

 
(S12) 

 
 
 
 
 
 
 
 



S3.2 Metasurface design 
 
The goal of the system composed by the metasurface and the lens is to create a focused beam of light 
hosting the complete polarization singularity at its focal point. The key idea is to use the Green’s function 
approach to compute the contribution of each region of the metasurface to the electric field in the focal 
point of the lens and in its neighborhood. This can be done analytically using a few assumptions about the 
system, which are satisfied by the experimental system. First, we will use the paraxial approximation to 
describe the beam after the lens. Second, all the focusing is performed by the lens, while the metasurface 
simply implements the required phase and polarization profile. It is possible to show that using a lossless 
metasurfaces based on rectangular pillars it is always possible to obtain a desired transmitted polarization 
and phase (represented by a Jones vector) given an input polarization and phase (40). In short, this is 
because any polarization can be converted to another by a proper wave plate, and an additional global 
delay can control the phase. In practice, the coverage is usually slightly lower than 100%, but this does not 
affect the formation of the singularity thanks to the fact that it is topologically protected. 
At the focal point of the lens, we can deduce that the electric field is given by the integral of all the fields 
contributions over the metasurface area. To ensure that the field is zero, we design the metasurface to 
produce pairs of polarizations with opposite signs (phase shift of 𝜋), so that all contributions sum to zero 
at the focal point (Fig S4A). Away from the focal point, the sum is not vanishing because of the additional 
phase delays introduced by the offset in the position. This idea is used routinely in other applications 
requiring 3D holography, including the generation of deexcitation beams for superresolution STED (57) 
and is summarized here. 

 An offset dx with respect to the focal point is equivalent to a phase advance of the left side of the 
metasurface and a phase delay on the right side (or vice versa), Fig S4B. 

 An offset dy with respect to the focal point is equivalent to a phase advance of the top side of the 
metasurface and a phase delay on the bottom side (or vice versa) , Fig S4C. 

 An offset dz is equivalent to a certain phase delay (or advance) in the center of the metasurface 
and a smaller phase delay (or advance) on the rim of the metasurface. Normalizing all fields with 
the average phase (which can always be done without affecting the continuity of the fields), this 
is equivalent to a phase advance at the center of the metasurface and a phase delay on the rim 
(or vice versa), Fig S4D. 

Because the target polarization and phase around the singularity is |𝝍⟩ ൌ ሺ𝑑𝑥 ൅ 𝑖𝑑𝑦ሻ|𝑯⟩ ൅ 𝑑𝑧|𝑽⟩ this is 
equivalent to mapping the vertical polarization at the center (𝑟 ൌ 0) and at the rim (𝑟 ൌ 𝑟଴) of the 

metasurface, and the horizontal polarization in a circle at 𝑟 ൌ √0.5𝑟଴. This factor is chosen to ensure that 

the rim region (𝑟 ൐ √0.5𝑟଴) has the same area of the center region (𝑟 ൏ √0.5𝑟଴) to balance the sum to 0 
at the focal point. Additionally, an OAM-like azimuthal phase profile has to be imparted on the horizontal 
polarization. 
These considerations provide the ansatz that the mapping can be performed in a one-to-one manner from 
the metasurface to the region of space around the focal point (Fig S4E), choosing the desired Jones vector 
to be: 
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where 𝑟, 𝜃 are the polar coordinates on the metasurface,  𝑟଴ is the radius of the metasurface, 𝜙଴ is a global 
phase factor and 𝜀 is a small correction to the exponent. The ansatz is then validated by the simulations, 
which show that the desired profile is obtained around the focal point 
To ensure the correct behavior with the wavelength, several free parameters were used: 

 The input polarization 

 The correction 𝜀 

 The global phase. 
 
 

 
 
Figure S5: Design of the phase and polarization profile. A, at the focal point the intensity of light is zero 
because polarizations cancel each other in pair. B-D, offsets in the 3D space are equivalent to additional 
phase gradients on the metasurface. E, mapping from the metasurface to the fields around the singularity.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 



S3.3 Metasurface library simulation and metasurface implementation 
 
The design principle of using rotated rectangular pillars to fully control phase and polarization of light is 
described in (40). The metasurface library is composed of rectangular pillars of height 𝐿௭ ൌ 600𝑛𝑚 and 
varying length and width and is depicted in Figure S6. The unit cell size was chosen to be 𝑈௫ ൌ 𝑈௬ ൌ
420𝑛𝑚. The phase delay of the meta atom was simulated using the RCWA-software Reticolo (55), 
assuming 𝑛ௌ௜ைమ ൌ 1.46 and 𝑛்௜ைమ ൌ 2.4.  

 

Figure S6: Metasurface pillar library. a, Depiction of a unit cell design. A rectangular TiO2 pillar (nTiO2 = 2.4 
of varying length and width but constant height Lz= 600nm is placed in the center of a unit cell of dimension 
Ux=420nm, Uy=420nm. The horizontally polarized light (Ex) impinges from the side of the SiO2 substrate 
(nSiO2 = 1.46, simulated as semi-infinite). b, Direction dependent phase delay for a single wavelength 
(600nm) vs Pillar dimension Ly. c, Direction dependent phase delay for a single wavelength (600nm) vs 
Pillar dimension Lx.  

 

 Figure S7: Metasurface implementation and global phase. Schematic of the metasurface 
implementation, sampling every 25th pillar. a, metasurface used for the experiment with global phase 
𝜙௚௟௢௕௔௟ ൌ െ0.25𝜋. b, same phase profile implementation, but with global phase 𝜙௚௟௢௕௔௟ ൌ 0.75𝜋, that 

implements the same polarization, but changes the selection of pillars.  

A B C 

a) b) Ex Ey Ex Ey 



Figure S8. Influence of the global phase on the Jacobian. Global phase against the Jacobian determinant 
at the position of the singularity, showing that the global phase can control the wavelength confinement 
and can be used to ensure |det(J)|>0. 

 

 
 

S3.4 Simulation of the electric field  
The field around the singularity is simulated using a green function integral:  
 

𝑬ሺ𝑥௦ ,𝑦௦, 𝑧௦, 𝜆௦ሻ~ම𝑑𝑥 𝑑𝑦 𝑑𝑧
ெௌ

𝐓𝐌𝐒ሺ𝑥,𝑦, 𝑧, 𝜆ሻ e
ି୧
ଶ஠
ఒೞ
ට௫మା௬మା௙೗೐೙ೞ

మ

ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ 𝑒
୧
ଶ஠
ఒೞ
ටሺ௫ି௫ೞሻమାሺ௬ି௬ೞሻమା௭ೞ

మ

ᇣᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇥ 

 
(S14) 

 
where 𝑓௟௘௡௦ ൌ 3.1mm is the focal length of the asphere and T୑ୗ corresponds to the complex transmission 
right after the metasurface sampled with nanostructures from the library described in S3.2. Note that the 
Green’s function is approximated by discarding the inverse square of the radius decay, which has negligible 
variation. To reduce computation time, the metasurface was assumed to be ten times smaller than the 
true size. However, this does not change the resulting normalized field distribution, and it was verified 
using different scaling values and always obtaining the same results. As the metasurface and the aspheric 
lens are placed close together, the diffraction effects from the metasurface edges are neglected. To 
simulate the effect of a perturbation shadowing part of the metasurface, the corresponding part of the 
metasurfaces transmission profile is set to zero.  
As the phase profile of the sampled metasurface does not perfectly match the ideal phase profile (Figure 
2c), the singularity will not be placed perfectly at the design position ሺ𝑥଴,𝑦଴, 𝑧଴, 𝜆଴ሻ ൌ
ሺ0,0,3.1𝑚𝑚, 600𝑛𝑚ሻ, but will be slightly displaced in 4D space even in the simulation. We hence use a 
root finding algorithm to find the singularity. Specifically, we use the iterative Newton Raphson algorithm 
following:  

𝑢௡ାଵ ൌ 𝑢௡ െ 𝑓ሺ𝑢௡ሻ ∗ 𝐽ିଵሺ𝑢௡ሻ 

Aspheric lens Green function 



with 𝑢௡ ൌ ሺ𝑥௡,𝑦௡, 𝑧௡, 𝜆௡ሻ being the position in 4D space for the nth step, 𝑓ሺ𝑢௡ሻ being the complex field 
value at position 𝑢௡ and 𝐽ିଵሺ𝑢௡ሻ being the inverted Jacobian at position 𝑢௡. Starting from different 
positions around the design position, we see a convergence to the singularity that is indeed shifted in the 
4D space (Figure S10).  
This algorithm also ensures that the simulated singularity is a first order and not a higher order zero in four 
dimensions. Choosing the starting position u0 randomly around the found singularity, we can observe its 
convergence behaviour (Figure S9). While this algorithm converges for first order zeros, it would not 
converge for higher order zeros as 𝐽ିଵ diverges in at least one entry the closer the walker gets to higher 
order zeros. When divergence occurs, the sequence of points jumps chaotically instead of converging, and 
it is worth mentioning that the Newton’s fractal is related to the convergence/divergence pattern of this 
algorithm. 

Figure S9. Finding the singularity using the Newton Raphson algorithm. The paths converge to the true 
singularity position. 
 

Figure S10. Validation of singularities in 4D: The Newton Raphson algorithm. Simulations show a 
singularity in space and wavelength with trajectories (white) of the Newton-Raphson method.  
 
 
 
 
 
 

W
av

el
en

gt
h

 [
n

m
] 



 
Figure S11. Validation of complete polarization singularities: Calculating the Jacobian. a, normalized field 
around the singularity in 4D. b, corresponding Jacobian determinant in 4D showing that the singularity is 

positioned in a region of negative Jacobian hence 𝑚ସ஽ ൌ  sign ቀdet൫𝑱̿൯ቁ ൌ െ1. c, corresponding sign of 

the Jacobian determinant. 
   
 

a) 

b) 

c) 



S4 Metasurface fabrication details 
To ensure that light can only pass through the metasurface and is blocked otherwise, the metasurface is 
fabricated into an open aperture of an Aluminum mask. The steps for the mask fabrication are summarized 
in Supplementary Figure S12. To define the position of the hole and the alignment markers, LOR3A and 
S1813 resist were spin coated on a glass substrate, exposed with optical lithography (maskless aligner) and 
developed with MF319. 150nm of Al were then deposited in a vacuum E-beam Evaporator and the resist 
was removed using Remover PG at 80 C. The same procedure was repeated using 50nm of gold to make 
the alignment markers visible in the electron beam lithography for the following metasurface writing. The 
diameter of the gold mask hole was chosen to be larger than the metasurface as it would further increase 
the resist height close to the mask boundary due to capillary forces and hence complicate the metasurface 
fabrication.  
 
Supplementary Figure S13 depicts the subsequent metasurface fabrication in the center of the mask 
opening. 600nm of ZEP resist were spin coated onto the mask, exposed with electron beam lithography, 
and developed with cold o-xylene. TiO2 was deposited via ALD on the patterned resist, and the excess 
oxide was etched back using a fluorine based RIE recipe. The resist was removed in Remover PG at 80 C. 
The sample was rinsed in acetone, IPA, and cleaned using oxygen plasma. 
 

 
 
Figure S12. Aluminium and gold mask fabrication. a, Spin coating optical lithography resist. b, Optical 
lithography exposure and development freeing everything but alignment markers and the final hole of the 
mask. c, Al deposition using Vacuum E-beam Evaporator and lift-off in remover PG. d, Spin coating optical 
lithography resist, optical lithography exposure and development freeing everything but alignment 
markers and a region larger than the initial hole in the Al mask. e, Gold deposition using Vacuum E-beam 
Evaporator and lift-off in remover PG. 



Figure S13. Metasurface fabrication. a, Spin coating e-beam resist. b, e-beam exposure and development. 
c, TiO2 deposition using ALD. d, RIE etch back. e, Resist removal and final cleaning. 

 
Figure S14. SEM images of the fabricated metasurface. a, Different regions of the metasurface. Images 
taken under an 40° angle. Scale bar 1𝜇𝑚. b, Different regions of the metasurface (top view). Scale bar 
1𝜇𝑚. 

 
 
 
 
 
 
 
 
 

a 
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S5 Measurement details 
 

 
Figure S15. Measurement setup. a, Setup for intensity measurements. A collimated laser beam of 
adjustable wavelength is generated by a supercontinuum laser with a reconfigurable bandpass filter of 5 
nm bandwidth and then passing through a horizontal polarizer and a glass substrate (to exclude effects 
from the glass substrate holding the perturbation gold disk in b)) before passing through the metasurface 
(500𝜇𝑚). Light impinging outside of the metasurface area is blocked by a Al/Au mask. An aspheric lens of 
f=3.1mm (NA 0.08) is then used to focus the light and create the singularity. The singularity is then imaged 
with a microscope formed by an 100x objective (Nikon, NA=0.9), an imaging lens of f=15cm and a sCMOS 
camera (color sensor, pixel size 6.5𝜇mx6.5𝜇m, dynamic range 21500:1) A motorized stage is used to move 
the objective along the z-direction. The metasurface, the glass substrate and the focusing lens are 
positioned on 3-axis stages with micrometer heads to enable precise positioning. b, Setup for perturbation 
measurements. The setup is identical to a) except that this time a gold disk on the glass substrate is moved 
in front of the metasurface to block part of the metasurface. c, Setup for polarization measurements. 
Measurement setup is identical to a), except that a quarter-waveplate (mounted on a motorized rotation 
stage) and a horizontal polarizer is added into the infinity space between the objective and the imaging 
lens.  
 
 
 
 



S5.1 Intensity measurement and data analysis  
 

S5.1.1 Intensity measurement and data analysis 
A detailed setup description can be found in Figure S15 a. As the camera captures slices of the field in the 
xy plane, additional sweeps in wavelength and z position were performed in order to capture the field 
around the singularity in the 4D space (x,y,z,𝜆). The resolution of the sweep is: ሺΔx,Δy,Δz, Δλ)=(0.17𝜇m, 
0.17𝜇m,2𝜇m,2𝑛𝑚). Subsequently, the laser was turned off, 1000 background images were captured and 
the pixel-wise average was subtracted from the captured images to compensate for stray light from the 
room directly hitting the sCMOS. To compensate for laser power differences between different 
wavelengths, the captured images were normalized by the total pixel count (the area of capture is chosen 
large enough to capture all light passing from the laser through the system (Figure S15)). One remaining 
source of error is the finite bandwidth of the laser (5nm), that is larger than the wavelength steps of the 
measurement and hence increase the intensity at the singularity position.   
 
Finding the singularity position in four dimensions: 
To find the position of the singularity in the four-dimensional space, we loop through the positions in z 
and wavelength and search in each xy slice for the minimum intensity inside the circle of light (Figure S16 
a). Due to the circular shape of the field surrounding the singularity, a weighted average of the image 
(excluding pixels smaller than the maximum pixel of the background image) gives a first estimate of the 
singularity position (Figure S16b). The minimum and its position can then be found by reducing the area 
of interest to an area inside of the light ball around the estimated position (Figure S16c). A repeating 
reduction in area of interest and updating of the estimation point then converges to the position of 
interest. The singularity position is determined by iterating these procedures for all position in z and 
wavelength, searching for the position 𝑣 ൌ ሺx଴, y଴, z଴,𝜆଴) where the intensity of the point of interest 
within the circle of light is minimized.  

 
Figure S16. Finding the singularity. a, xy slice captured by the sCMOS camera, normalized by the total 
pixel count to compensate for wavelength dependent power changes. b, First reduced area of interest 
centred at the weighted average position. c, Reduced area of interest. The minimum field value is taken 
from this picture. 
 
xy confinement (Figure 3c): The xy slice is plotted at z ൌ z଴ and λ ൌ λ଴ using the dB scale with 𝐼ௗ஻ ൌ
10 logଵ଴ሺ𝐼/𝐼௠௔௫ሻ, where 𝐼 is the intensity of the xy slice and 𝐼௠௔௫  is the maximum intensity value in the 
four dimensional space of the captured data (after compensation for laser power difference between 
different wavelength). The dB scale is chosen, to better represent the range of fields close to the 
singularity. 
 
z𝜆 confinement (Figure 3d). For each position in z and wavelength, the corresponding xy-slice is processed 
like Figure 3c) and the intensity of the minimal point within the circle of light is plotted. 
 



xyz confinement (Figure 3e). The data was represented in dB, with 𝐼௠௔௫  being the maximum value in the 
whole four-dimensional dataset. 
 
 

S5.2 Perturbation measurement and data analysis 
 
To experimentally demonstrate the perturbation protection of the singularity, we insert an opaque gold 
disk of diameter of 110 𝜇𝑚 in front of the metasurface, blocking part of the light from passing through. 
Due to the way the metasurface converts light into different polarizations over different areas of the 
metasurface, this corresponds to subtracting a polarized field in comparison to the unperturbed 
singularity. A detailed setup description can be found in Figure S15b. As the glass substrate holding the 
gold disk perturbation was added already in the unperturbed measurement (the gold mask was pushed 
out of the metasurface area), we can ensure that the perturbation effects are not caused by the glass 
substrate. The data analysis is described in S5.1. 
 

S5.3 Polarization measurement and data analysis 
 
To analyze the polarization of the field around the singularity, we follow the mechanism described in (48). 
Adding a quarter waveplate and a horizontal polarizer to the infinity space between the objective and the 
imaging lens, one can retrieve the full Stokes vector at each pixel in the xy slice by rotating the quarter 
waveplate and capturing images at multiple angles 𝜃 (example measurement shown in Figure S17 left 
side):  
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Where 𝜃௡ାଵ െ 𝜃௡ ൌ 180°/𝑁 . The Stokes parameters then are determined by 

 
 

𝑆଴ ൌ 𝐴 െ 𝐶,   𝑆ଵ ൌ 2𝐶,    𝑆ଶ ൌ 2𝐷,   𝑆ଷ ൌ 𝐵 
 

(S16) 

 
This procedure is repeated in a z region of േ10𝜇𝑚 around the singularity (stepsize 4𝜇𝑚). Figure 3G in the 
main paper is created by evaluating the stokes vector on an elliptical surface of constant intensity around 
the singularity position with 𝜆 ൌ 𝜆଴ and polar plotting the corresponding polarization ellipse at position 
(𝜌,𝜙) with  

 

ρ ൌ atan2൫ሺx െ xୡୣ୬୲୰ୣሻ, ሺy െ yୡୣ୬୲୰ୣሻ൯,ϕ ൌ |atan ሺ
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, where ሺ𝑥ୡୣ୬୲୰ୣ,𝑦ୡୣ୬୲୰ୣሻ is the singularity position. Each pixelated data ring of each xy slice (Figure S18b) 

is projected onto a perfect ring of radius 𝑅 ൌ
∑ ඥሺ௫೔ሻమାሺ௬೔ሻమ
ಿ
೔

ே
  for representation reasons.  

 
Figures S17 and S18 show other representations of the measured polarizations. Figure S15b shows a 
comparison between the experimental and simulated stokes vectors in the xy plane at z ൌ z଴ and  λ ൌ λ଴, 
showing a good agreement. S18c,d show that the measured polarization states around the singularity 
cover the entire Poincare sphere, with an uneven distribution of datapoints due to the finite pixel size of 
the sCMOS camera (Figure S18 a,b). 
 

 
Figure S17. Stokes vector extraction. a, The intensity changes of a pixel depending on the rotation angle 
of the quarter waveplate (QWP) with respect to the horizontal polarizer. It can be used to extract the 
Stokes vector following the algorithm described in (48). b, Simulated (top) vs. experimental (bottom) 
stokes vector components. Scale bar 2um.  

 
Figure S18. Simulated and experimental polarization plotted on Poincare sphere. a, Schematic of an 
surface around the singularity position (star in the origin) of equal intensity. xy-planes located at different 
z positions are marked in different colors, assuming the singularity is positioned at (x,y,z,𝜆)=(0,0,0, 𝜆଴). 
Stars mark different z positions for later comparison. b, Comparison of the number of datapoints available 
for different positions on the ellipsoid spheres for simulation (left) and experimental (right). The stars 
connect the position on the ellipsoid with the number of datapoints. While for the simulation the number 
of points on the ellipsoid is the same for each z position, the experimental data varies in datapoints due 
to the finite pixel size of the sCMOS camera. c, Due to the way the polarization is distributed on the 



ellipsoid (see Figure S4), many datapoints are available for S1=-1 (as positioned on ellipsoid at z=0), but 
only few datapoints are available for S1=1 (positioned on pole of ellipsoid at z=േzmax) causing a discrepancy 
of available datapoints between the left and right side of the Poincare sphere.  Blue and red dots 
correspond to z>0 and z<0, respectively. d, Same as for c), with increased ellipsoid size. Different colors 
correspond to different z positions on the ellipsoid, showing that indeed different z positions on the 
ellipsoid correspond to different positions on the S1 axis on the Poincare sphere. 
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