
Supplementary material: Time-reversal

differentiation of FDTD for photonic inverse

design

Rui Jie Tang,∗,†,‖ Soon Wei Daniel Lim,∗,‡,‖ Marcus Ossiander,‡,¶ Xinghui Yin,§

and Federico Capasso‡

†University of Toronto, 27 King’s College Circle, Toronto, Ontario M5S 1A1, Canada

‡Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard

University, Cambridge, MA 02138, USA

¶Institute of Experimental Physics, Graz University of Technology, 8010 Graz, Austria

§LIGO – Massachusetts Institute of Technology, Cambridge, MA 02139, USA

‖Contributed equally to this work

E-mail: ruijie.tang@mail.utoronto.ca; lim982@g.harvard.edu

Number of Supplementary pages: 34

Number of Supplementary figures: 3

Number of Supplementary tables: 0

S1

ruijie.tang@mail.utoronto.ca
lim982@g.harvard.edu

Contents

1 Residual operators in AVM S3

2 AVM for frequency-domain objectives S4

3 Reverse mode automatic differentiation S7

4 Time and memory scaling derivations for gradient calculation methods S10

4.1 Complexity of one FDTD simulation . S10

4.2 Finite Difference performance scaling . S11

4.3 Forward Mode Automatic Differentiation performance scaling S12

4.4 Reverse Mode Automatic Differentiation performance scaling S12

4.5 Adjoint variable method performance scaling S13

4.6 Direct Differentiation performance scaling S13

5 Direct Differentiation Key Equations S14

5.1 FDTD forward update equations . S14

5.2 FDTD reverse update equations . S17

5.3 Gradient calculation . S19

6 Recording layer implementation S22

7 Validation against commercial FDTD software suite S24

8 Adjoint method derivation for field phase S25

9 Design of color sorter S28

10 Design of resonator array for imposing group delay S31

References S34

S2

1 Residual operators in AVM

Consider the second order vector wave equations for the electric and magnetic fields (Equa-

tions S1-S2), which can be obtained by combining Maxwell’s equations:

∇× 1

µ
∇×E + ε

∂2E

∂t2
= −∂JE

∂t
(S1)

∇× 1

ε
∇×H + µ

∂2H

∂t2
= ∇× JE

ε
(S2)

The fields and spatial derivatives in the vector wave equations can be discretized sepa-

rately using the Galerkin method to obtain the matrix equation in Equation S3, where the

electric or magnetic fields at each node position are the rows in the field matrix u = {E,H},

M and K are the system matrices for the dynamics and geometry of the system, and F is

a matrix of field inputs at each node position. Generally, M,K and F are different for the

two vector wave equations.

M(p, t)ü(t) +K(p, t)u(t) = F (t) (S3)

The discretized residual matrix is R(u, t,p) = M(p, t)ü(t) + K(p, t)u(t) − F (t), which

is zero if u(t) is a solution to the system of linear equations. The residual matrix deriva-

tive ∂R(u,t,p)
∂pi

with respect to the tunable parameter pi is thus given by the system matrix

derivatives ∂M(p,t)
∂pi

, ∂K(p,t)
∂pi

:

∂R(u, t,p)

∂pi
=
∂M(p, t)

∂pi
ü(t) +

∂K(p, t)

∂pi
u(t)− ∂F (t)

∂pi
(S4)

The residual operator derivatives ∂RE/∂pi and ∂RH/∂pi should thus operate on the

forward fields E,H in the same way that the discretized residual matrices ∂RE(E, t,p)/∂pi

and ∂RH(H, t,p)/∂pi (for the electric and magnetic vector wave equation discretizations,

respectively) act on the field values E,H at each discretized point in space and time.

S3

2 AVM for frequency-domain objectives

When the objective function G =
∫

Ω

∫
∆ω
g[E(x, ω),H(x, ω),E∗(x, ω),H∗(x, ω)]dωd3x is

only written in terms of frequency-domain electromagnetic fields (i.e., complex fields and

their complex conjugates E(x, ω),H(x, ω),E∗(x, ω),H∗(x, ω)) over a bandwidth ∆ω, and

when the parameter vector p represents the dielectric permittivities or permeabilities over

a subset of pixels, AVM reduces to a much simpler form. Such conditions are well-suited

for nanophotonic inverse design, in which dielectric distributions are designed to achieve

specific optical functions at well-defined frequencies and frequency bands.1–4 The integrand

derivatives are:

∂g

∂E(x, t)
=

∫
∆ω

[
∂g

∂E(x, ω)
· ∂E(x, ω)

∂E(x, t)
+

∂g

∂E∗(x, ω)
· ∂E

∗(x, ω)

∂E(x, t)

]
dω (S5)

∂g

∂H(x, t)
=

∫
∆ω

[
∂g

∂H(x, ω)
· ∂H(x, ω)

∂H(x, t)
+

∂g

∂H∗(x, ω)
· ∂H

∗(x, ω)

∂H(x, t)

]
dω (S6)

Since the frequency-domain fields are Fourier transforms of the time-domain fields in the

FDTD simulation, the field derivatives can be written:

E(x, ω) =

∫
T

E(x, t) exp(iωt)dt⇒ ∂E(x, ω)

∂E(x, t)
= I exp(iωt) (S7)

H(x, ω) =

∫
T

H(x, t) exp(iωt)dt⇒ ∂H(x, ω)

∂H(x, t)
= I exp(iωt) (S8)

E∗(x, ω) =

∫
T

E(x, t) exp(−iωt)dt⇒ ∂E∗(x, ω)

∂E(x, t)
= I exp(−iωt) (S9)

H∗(x, ω) =

∫
T

H(x, t) exp(−iωt)dt⇒ ∂H∗(x, ω)

∂H(x, t)
= I exp(−iωt) (S10)

I is the identity matrix. Furthermore, since f is real-valued, by the Wirtinger derivative,

∂g

∂E(x, ω)
=

[
∂g

∂E∗(x, ω)

]∗
(S11)

∂g

∂H(x, ω)
=

[
∂g

∂H∗(x, ω)

]∗
(S12)

S4

The adjoint system becomes:

∇×EA(x, t) = µ(x, t)
∂HA(x, t)

∂t
+ 2Re

∫
∆ω

∂g

∂H(x, ω)
exp(iωt)dω (S13)

∇×HA(x, t) = −ε(x, t)∂E
A(x, t)

∂t
+ 2Re

∫
∆ω

∂g

∂E(x, ω)
exp(iωt)dω (S14)

Switching to the backward time τ = T − t, the adjoint system with forward solving

becomes:

The adjoint system becomes:

∇×EA(x, T − t) = −µ(x, T − t)∂H
A(x, T − t)
∂t

+ 2Re

∫
∆ω

∂g

∂H(x, ω)
exp(iω(T − t))dω

(S15)

∇×HA(x, T − t) = ε(x, T − t)∂E
A(x, T − t)
∂t

+ 2Re

∫
∆ω

∂g

∂E(x, ω)
exp(iω(T − t))dω

(S16)

The source terms are time-harmonic and have a straightforward interpretation: one has

to place a point electric dipole of amplitude proportional to ∂g/∂E and a point magnetic

dipole of amplitude proportional to −(1/µ)∂g/∂H at every x ∈ Ω, for every discretized

frequency ω ∈ ∆ω of interest.3 Importantly, since the dipole sources are time-harmonic, one

only needs the complex dipole amplitudes to determine the source behavior for all time during

the adjoint simulation. This means that one does not to explicitly record the time-domain

field values during the forward simulation – it will suffice to monitor the frequency-domain

fields by accumulating partial Fourier sums during the FDTD to obtain the frequency-

domain complex fields at the intended dipole positions.5,6 This greatly reduces the memory

requirements compared to that of the adjoint procedure for a time-domain objective function.

The derivative calculation step is simple for objective functions that depend on the pixel-

wise permittivities and permeabilities. Since the tunable permittivities and permeabilities

are localized to individual grid points, the system matrices in the adjoint formulation for the

S5

electric and magnetic fields can be differentiated explicitly with respect to the permittivity εi

and permeability µi at grid point i at position xi. We exhibit the system matrix derivatives

for objective functions that depend on the complex electric field:

∂ME

∂εi
ü(t) = δiiDttu(t) (S17)

∂KE

∂εi
= 0 (S18)

∂FE

∂εi
= 0 (S19)

where Dtt is the discretized second time derivative and δii is a zero matrix with a 1 in

the (i, i) position. The objective function gradient element is thus:

dG

dεi
= −

∫
Ω

d3x

∫ T

0

dt

[
EA(x, t) · ∂

2

∂t2
δ(x− xi)E(x, t)

]
(S20)

= −
∫ T

0

dt

[
EA(xi, t) ·

∂2

∂t2
E(xi, t)

]
(S21)

Since the fields at the start and end of the simulation are zero, we can perform the time

integral over all time.

dG

dεi
= −

∫ ∞
−∞

dt

[
EA(xi, t) ·

∂2

∂t2
E(xi, t)

]
(S22)

= − 1

4π2

∫ ∞
−∞

dt

[∫ ∞
ω=−∞

EA(xi, ω)e−iωtdω · ∂
2

∂t2

∫ ∞
ω=−∞

E(xi, ω)e−iωtdω

]
(S23)

= − 1

4π2

∫ ∞
−∞

dt

[∫ ∞
ω=−∞

EA(xi, ω)e−iωtdω ·
∫ ∞
ω=−∞

(−ω2)E(xi, ω)e−iωtdω

]
(S24)

=
1

4π2

∫ ∞
ω=−∞

∫ ∞
ω′=−∞

∫ ∞
t=−∞

e−i(ω+ω′)tω′2dtEA(xi, ω) ·E(xi, ω
′)dωdω′ (S25)

=
1

4π2

∫ ∞
ω=−∞

∫ ∞
ω′=−∞

2πδ(ω + ω′)ω′2EA(xi, ω) ·E(xi, ω
′)dωdω′ (S26)

=
1

2π

∫ ∞
ω=−∞

(−ω)2EA(xi, ω) ·E(xi,−ω)dω (S27)

=
1

2π

∫ ∞
ω=−∞

ω2EA(xi, ω) ·E∗(xi, ω)dω (S28)

S6

Note that E(xi,−ω) = E∗(xi, ω) since the time-domain signal is purely real. Given that

the frequency-domain signal has support only over ∆ω and −∆ω (∆ω only contains positive

frequencies), we can perform the frequency integration over that domain:

dG

dεi
=

1

2π

∫
∆ω

[
(−ω)2EA(xi,−ω) ·E∗(xi,−ω) + ω2EA(xi, ω) ·E∗(xi, ω)

]
dω (S29)

=
1

2π

∫
∆ω

[
ω2EA∗(xi, ω) ·E(xi, ω) + ω2EA(xi, ω) ·E∗(xi, ω)

]
dω (S30)

=
1

π
Re

∫
∆ω

ω2EA(xi, ω) ·E∗(xi, ω)dω (S31)

For a single frequency objective function, the gradient is proportional to Re[EA(xi) ·

E∗(xi)] evaluated at the grid position xi, the form that is commonly employed in nanopho-

tonic inverse design. This gradient can also be derived by exploiting the symmetry of Lorentz

reciprocity between time-harmonic current sources and their fields2 for this special case.

3 Reverse mode automatic differentiation

Here, we provide an intuitive explanation of the behavior and scaling performance of reverse

mode automatic differentiation (RM AD). There are two passes in RM AD. The forward

pass traverses the computational tree from the inputs to the outputs and stores all the

intermediate values obtained. The backward pass performs the chain rule for differentiation

from the outputs back towards the inputs, drawing upon the stored intermediate values.

The backward pass is also known as backpropagation, which is the foundation of modern

machine learning, as it provides the objective function gradients with respect to many tunable

parameters (e.g., weights and biases in neural networks) for iterative model training and

refinement. These forward and backward pass features are best envisioned with an exemplar

objective function G consisting of N scalar functions, F1 to FN , which operate sequentially

S7

on an input x:

G(x) = (FN ◦ FN−1 ◦ · · · ◦ F1)(x) = FN(FN−1(· · ·F1(x) · · ·)) (S32)

This computation tree is a single long line of operations from x through F1, F2, . . . to G.

Each operation is a continuous elementary function of the previous variable with a stored

functional derivative form. For example, Fi is a function of Fi−1 such that the functional

derivative ∂Fi/∂Fi−1 is well-defined in terms of Fi−1, and this information is stored in the

respective tree nodes. We show the objective function and intermediate functions are shown

as single-valued for simplicity, but the tree is generalizable to multi-valued functions and

multi-valued inputs. During backpropagation, we seek to compute the sensitivity, dG/dP ,

where P ∈ {G,FN , FN−1, . . . , F1, x} represents every node in the tree. The sensitivity is the

derivative of the final objective function with respect to the value of a node. Notice that

the sensitivity is written as a total derivative and not a partial derivative; the parameter P

may not be explicitly represented in the objective function G but G is indirectly affected by

P through the other intermediate parameters. The final sensitivity value to be calculated is

dG/dx, the gradient of the objective function for descent optimization.

The first adjoint term is dG/dG = 1 by definition. If we compute the adjoints in reverse

order from G towards x, we can re-use (backpropagate) the adjoint value from the previous

step to compute the subsequent adjoint value:

dG

dFN

=
dG

dG

∂G

∂FN

∣∣∣∣
FN

dG

dFN−1

=
dG

dFN

∂FN

∂FN−1

∣∣∣∣
FN−1

...

dG

dF1

=
dG

dF2

∂F2

∂F1

∣∣∣∣
F1

dG

dx
=

dG

dF1

∂F1

∂x

∣∣∣∣
x

(S33)

S8

At every calculation step, the backpropagating sensitivity term is multiplied into the

derivative ∂Fi/∂Fi−1 evaluated at Fi−1. The stored node values {Fi, x}i=1,...,N during the

forward pass thus provide the necessary information to calculate the derivatives during back-

propagation.

This simple example also demonstrates how the computation complexity of RM AD is

independent of Ninput. Suppose that x ∈ RNinput is an Ninput-dimensional vector (Ninput � N

so there are many more mathematical operations than tunable parameters, as would be

typical) and F1 : RNinput 7→ R. We keep all other operations F2, . . . , FN , G the same so that

the backpropagation algorithm yields dG/dF1 with the same number of steps as described

previously. Then the multi-valued gradient ∇xG can be easily obtained from dG/dF1 and

the functional form of F1 through Ninput additional elementary steps:

∇xG =

{
dG

dxi

}
i=1,...,Ninput

=

{
dG

dF1

∂F1

∂xi

}
i=1,...,Ninput

(S34)

This gradient calculation thus does not scale with Ninput since the number of mathe-

matical operations N � Ninput is large and dominates the computational cost. Instead of

running the full computation tree once for each of the Ninput degrees of freedom, and per-

forming N operations each time, as a single-sided finite difference technique would require,

backpropagation eliminates redundant calculations and attains favorable scaling with respect

to Ninput. As mentioned earlier, RM AD is guaranteed to provide the multivariate gradient

in no more than five times the number of operations in the objective function (i.e., within

five times the runtime of the forward pass), independent of the degrees of freedom.7 This

scaling performance is comparable to the adjoint method, which also yields the multivariate

gradient in a constant multiple of simulation runtimes (i.e., two runs).

S9

4 Time and memory scaling derivations for gradient

calculation methods

We derive here the time and memory scaling relations for gradient calculation in different

schemes.

4.1 Complexity of one FDTD simulation

Consider an FDTD simulation with NV pixels and over NT timesteps. We consider a common

use of the FDTD to yield the steady-state frequency-domain response of a time-independent

dielectric geometry. This involves illuminating the dielectric geometry with an electromag-

netic pulse and recording the time-domain field at the positions of interest. The pulsed source

is a superposition of temporal frequencies, allowing the steady-state frequency domain field

at each pixel position to be obtained by Fourier transformation of the recorded time-domain

field, such as in the case below for angular frequency ω:

E(ω) =

∫ ∞
0

E(t)e−iωtdt (S35)

We do not need to perform the integration all the way to infinity because E(t) decays

over a finite time interval, allowing the FDTD simulation to be halted at a maximum time

step NT and the Fourier transform approximated by a discrete form:

E(ω) =

NT∑
n=0

E(n∆t)e−iωn∆t∆t (S36)

Frequency-domain field values thus depend on the field values over the simulation du-

ration. This requires that the time-domain field values be stored over the length of the

simulation, which will require significant memory storage that scales as O(NVNT) if the

frequency-domain response of all FDTD pixels is desired. FDTD users typically select a

subset of the pixels for frequency-domain evaluation by introducing a monitor object, but

S10

this large storage requirement is typically alleviated by only evaluating the Fourier transform

over a small number of frequency points Nf � NT that have been specified in advance. For

each frequency of interest ω, the FDTD program records an additional value P (ω, n) at each

pixel of interest. P (ω, n) is the partial sum at timestep n of the discrete Fourier transform

at that frequency.6

P (ω, n) =
n∑

k=0

E(k∆t)e−iωk∆t∆t (S37)

The partial sum value can be updated at every timestep and converges to the discrete

Fourier transform value by the end of the FDTD simulation. The memory required for this

partial sum accumulation (assuming all NV pixels are treated in this manner) thus scales

as O(NVNf), which is much better than the O(NVNT) memory scaling required for storing

all the time-domain information for Fourier transformation after simulation since Nf � NT

typically.

The time complexity for a single FDTD run scales as O(NVNTNf) since the NV pixels

need to be updated for NT timesteps, and there are Nf partial sums to be updated for each

field value in each pixel.

4.2 Finite Difference performance scaling

The single-sided finite difference evaluates the objective function at the position of interest,

then evaluates the effect of Ninput small perturbations, one in each of the degrees of freedom.

Thus, it takes Ninput + 1 function calls to make Ninput first order gradient approximations.

Each function call is equivalent to an FDTD simulation run that has O(NVNTNf) operations

and a peak simulation memory usage of O(NVNf). O(Ninput) simulation calls result in a

O(NinputNVNTNf) runtime complexity. The peak simulation memory usage scales with

Ninput if the simulations are run in parallel.

S11

4.3 Forward Mode Automatic Differentiation performance scaling

In the forward mode AD calculation, the chain rule calculations are performed in the same

order as in the forward computation of the objective function. The forward mode calculation

uses the computation tree as a backbone. Each node or intermediate variable in the compu-

tation tree is augmented to store the derivative of the intermediate variable with respect to

every degree of freedom, of which there are Ninput. For example, for intermediate variable y,

and input degrees of freedom {xi}i=1,...,Ninput
, the node for y also contains the Ninput derivative

values {dG/dxi}i=1,...,Ninput
. These derivatives are propagated forward as the computation

progresses in the forward direction, until the computation reaches the objective function

value G, at which time the algorithm yields the derivative values {dG/dxi}i=1,...,Ninput
, the

desired gradient.

Importantly, during the forward mode AD process, the derivative values stored at pre-

vious nodes are not re-used. This means that once the partial derivatives at each node

are propagated to the next layer in the FDTD computation tree, which corresponds to an

update time step, the memory associated with the partial derivatives can be freed. Effec-

tively, the forward mode AD just needs to keep track of the field values and its derivatives

at one timestep. Thus, the peak memory complexity of forward mode AD in FDTD scales

as O(NinputNVNf).

Since the elementary mathematical operations at each node are duplicated by Ninput

times, the time complexity of forward mode AD in FDTD is Ninput times that of the single

run FDTD, yielding a time complexity of O(NinputNVNTNf).

4.4 Reverse Mode Automatic Differentiation performance scaling

The reverse mode algorithm requires the entire computation tree and intermediate values

to be stored for the backpropagation step. Thus, the peak memory complexity scales as

O(NoutputNVNTNf). For each objective function, the gradient calculation time complexity

scales as an integer multiplied by the time complexity of a single run, independent of Ninput.

S12

Thus, the time complexity of reverse mode AD in FDTD is O(NoutputNVNTNf).

4.5 Adjoint variable method performance scaling

Adjoint optimization in nanophotonics typically requires two FDTD simulations: the forward

and adjoint simulation. Both simulations take place on the same simulation volume and

over the same spectral range. Thus, the time complexity for the adjoint method scales

as that of an FDTD run that is performed Noutput times, one for each objective function:

O(NoutputNVNTNf). The peak memory complexity scales as that of a single FDTD run,

O(NoutputNVNf), assuming that the adjoint simulation for different objective functions are

performed in parallel and the objective function is either in the frequency-domain or uses

checkpointing to reduce backpropagation memory requirements.

4.6 Direct Differentiation performance scaling

As described in the main text, the peak memory requirements for DD come from two contri-

butions: storage of the field derivative values (with respect to each of the Noutput objective

functions) for one timestep of the simulation and storage of the time-domain field values

at the recording boundary. The memory required to store the fields at one timestep is

O(NVNf) and is thus O(NoutputNVNf) for Noutput field derivative values. For the recording

boundary, the peak memory required to store the time-domain field values is proportional

to the number of timesteps multiplied by the number of pixels along the recording boundary

∂NV . Thus, the peak memory scaling for DD is O(NoutputNVNf +NT∂NV).

The time complexity of DD is the same as that of reverse mode AD, less O(NVNTNf)

memory storage operations (no need to store the forward pass intermediate values) and with

an additional O(NVNTNf) operations for the backward time-stepping FDTD. Thus, the

time complexity of DD is also O(NoutputNVNTNf).

S13

5 Direct Differentiation Key Equations

5.1 FDTD forward update equations

The FDTD update equations solve Maxwell Equations on the Yee grid. Consider a system

discretized into cubic grids of equal side length ∆ = ∆x = ∆y = ∆z. We label each

grid element and the field components within the grid by an integer index tuple (x, y, z) so

that one corner is located at (x · ∆, y · ∆, z · ∆). Each grid contains six field components

Dx, Dy, Dz, Hx, Hy, Hz that are defined at different locations inside the grid. Dl is stored

at (x · ∆, y · ∆, z · ∆) + (1/2)el∆ and Hl is stored at ((x + 1/2) · ∆, (y + 1/2) · ∆, (z +

1/2) ·∆)− (1/2)el∆ for l = x, y, z and unit vectors el. Each grid cube is associated with a

single uniform dielectric permittivity ε(x, y, z) for the model considered here, although more

complex dielectric tensors can be incorporated. The simulation time is discretized into NT

time steps, each of duration ∆t. In each full timestep, the D and H fields are updated

in alternating order so that the time interval between D and H field updates is (1/2)∆t.

In the following equations, the four-tuple (x, y, z, t) comprising integers and half-integers

corresponds to the real spacetime location (x ·∆, y ·∆, z ·∆, t ·∆t).

Considering Maxwell’s equations in matter with SI units with no free currents and mag-

netization:

∂D

∂t
= ∇×H (S38)

∂H

∂t
= − 1

µ
∇×E (S39)

It is generally useful to express Maxwell’s equations in Gaussian units (setting µ = µ0)

so that D,H and E are all on the same order of numerical magnitude:

∂D

∂t
= c∇×H (S40)

∂H

∂t
= −c∇×E (S41)

S14

The rest of this Supplementary section will use Gaussian units. Discretizing the deriva-

tives using finite differences and isolating the time-advanced terms, we obtain the FDTD

forward update equations:

Dx

(
x +

1

2
, y, z, t

)
= Dx

(
x +

1

2
, y, z, t− 1

)
+

c∆t

∆

[
Hz

(
x +

1

2
, y +

1

2
, z, t− 1

2

)
−Hz

(
x +

1

2
, y − 1

2
, z, t− 1

2

)
−Hy

(
x +

1

2
, y, z +

1

2
, t− 1

2

)
+ Hy

(
x +

1

2
, y, z − 1

2
, t− 1

2

)]
(S42)

Dy

(
x, y +

1

2
, z, t

)
= Dy

(
x, y +

1

2
, z, t− 1

)
+

c∆t

∆

[
Hx

(
x, y +

1

2
, z +

1

2
, t− 1

2

)
−Hx

(
x, y +

1

2
, z − 1

2
, t− 1

2

)
−Hz

(
x +

1

2
, y +

1

2
, z, t− 1

2

)
+ Hz

(
x− 1

2
, y +

1

2
, z, t− 1

2

)]
(S43)

Dz

(
x, y, z +

1

2
, t

)
= Dz

(
x, y, z +

1

2
, t− 1

)
+

c∆t

∆

[
Hy

(
x +

1

2
, y, z +

1

2
, t− 1

2

)
−Hy

(
x− 1

2
, y, z +

1

2
, t− 1

2

)
−Hx

(
x, y +

1

2
, z +

1

2
, t− 1

2

)
+ Hx

(
x, y − 1

2
, z +

1

2
, t− 1

2

)]
(S44)

S15

Hx

(
x, y +

1

2
, z +

1

2
, t +

1

2

)
= Hx

(
x, y +

1

2
, z +

1

2
, t− 1

2

)
+

c∆t

∆

[
Ey

(
x, y +

1

2
, z + 1, t

)
− Ey

(
x, y +

1

2
, z, t

)
−Ez

(
x, y + 1, z +

1

2
, t

)
+ Ez

(
x, y, z +

1

2
, t

)]
(S45)

Hy

(
x +

1

2
, y, z +

1

2
, t +

1

2

)
= Hy

(
x +

1

2
, y, z +

1

2
, t− 1

2

)
+

c∆t

∆

[
Ez

(
x + 1, y, z +

1

2
, t

)
− Ez

(
x, y, z +

1

2
, t

)
−Ex

(
x +

1

2
, y, z + 1, t

)
+ Ex

(
x +

1

2
, y, z, t

)]
(S46)

Hz

(
x +

1

2
, y +

1

2
, z, t +

1

2

)
= Hz

(
x +

1

2
, y +

1

2
, z, t− 1

2

)
+

c∆t

∆

[
Ex

(
x +

1

2
, y + 1, z, t

)
− Ex

(
x +

1

2
, y, z, t

)
−Ey

(
x + 1, y +

1

2
, z, t

)
+ Ey

(
x, y +

1

2
, z, t

)]
(S47)

The D and E fields are related through the constitutive relations:

Ex

(
x+

1

2
, y, z, t

)
=

1

ε(x, y, z)
Dx

(
x+

1

2
, y, z, t

)
(S48)

Ey

(
x, y +

1

2
, z, t

)
=

1

ε(x, y, z)
Dy

(
x, y +

1

2
, z, t

)
(S49)

Ez

(
x, y, z +

1

2
, t

)
=

1

ε(x, y, z)
Dz

(
x, y, z +

1

2
, t

)
(S50)

The fields are initialized at zero. A single FDTD loop proceeds as follows:

1. E fields are used to update the H fields.

2. TFSF boundary conditions are enforced and the source E,H fields are injected.

3. H fields are used to update the D fields.

4. Lossy boundary D,H fields are recorded at the recording layer.

S16

5. D fields are used to compute the E fields at the same location using the constitutive

equations.

6. For frequency-domain field monitors, the E fields are used to update the running

discrete Fourier transform to obtain the complex E fields at the monitor positions.

5.2 FDTD reverse update equations

By exchanging the positions of the time-advanced and time-retarded terms, we obtain the

time-reversed FDTD update equations:

S17

Dx

(
x +

1

2
, y, z, t− 1

)
= Dx

(
x +

1

2
, y, z, t

)
− c∆t

∆

[
Hz

(
x +

1

2
, y +

1

2
, z, t− 1

2

)
−Hz

(
x +

1

2
, y − 1

2
, z, t− 1

2

)
−Hy

(
x +

1

2
, y, z +

1

2
, t− 1

2

)
+ Hy

(
x +

1

2
, y, z − 1

2
, t− 1

2

)]
(S51)

Dy

(
x, y +

1

2
, z, t− 1

)
= Dy

(
x, y +

1

2
, z, t

)
− c∆t

∆

[
Hx

(
x, y +

1

2
, z +

1

2
, t− 1

2

)
−Hx

(
x, y +

1

2
, z − 1

2
, t− 1

2

)
−Hz

(
x +

1

2
, y +

1

2
, z, t− 1

2

)
+ Hz

(
x− 1

2
, y +

1

2
, z, t− 1

2

)]
(S52)

Dz

(
x, y, z +

1

2
, t− 1

)
= Dz

(
x, y, z +

1

2
, t

)
− c∆t

∆

[
Hy

(
x +

1

2
, y, z +

1

2
, t− 1

2

)
−Hy

(
x− 1

2
, y, z +

1

2
, t− 1

2

)
−Hx

(
x, y +

1

2
, z +

1

2
, t− 1

2

)
+ Hx

(
x, y − 1

2
, z +

1

2
, t− 1

2

)]
(S53)

Hx

(
x, y +

1

2
, z +

1

2
, t− 1

2

)
= Hx

(
x, y +

1

2
, z +

1

2
, t +

1

2

)
− c∆t

∆

[
Ey

(
x, y +

1

2
, z + 1, t

)
− Ey

(
x, y +

1

2
, z, t

)
−Ez

(
x, y + 1, z +

1

2
, t

)
+ Ez

(
x, y, z +

1

2
, t

)]
(S54)

Hy

(
x +

1

2
, y, z +

1

2
, t− 1

2

)
= Hy

(
x +

1

2
, y, z +

1

2
, t +

1

2

)
− c∆t

∆

[
Ez

(
x + 1, y, z +

1

2
, t

)
− Ez

(
x, y, z +

1

2
, t

)
−Ex

(
x +

1

2
, y, z + 1, t

)
+ Ex

(
x +

1

2
, y, z, t

)]
(S55)

Hz

(
x +

1

2
, y +

1

2
, z, t− 1

2

)
= Hz

(
x +

1

2
, y +

1

2
, z, t +

1

2

)
− c∆t

∆

[
Ex

(
x +

1

2
, y + 1, z, t

)
− Ex

(
x +

1

2
, y, z, t

)
−Ey

(
x + 1, y +

1

2
, z, t

)
+ Ey

(
x, y +

1

2
, z, t

)]
(S56)

The fields are initialized at zero for the final timestep. A single time-reversed FDTD loop

S18

proceeds as follows:

1. Inject stored H components into the boundary pixels at the recording layer.

2. Use H values to reverse-update D.

3. Inject stored D components into the boundary pixels at the recording layer.

4. Use D values to compute E.

5. Use E values to reverse-update H .

5.3 Gradient calculation

In this section, we detail the equations that allow the gradient backpropagation to occur

under the direct differentiation framework. Specifically, we show the calculation of the

derivative dG/dF (t− 1/2) from dG/dF (t) for objective function G and fields F (t) at time

t > 0 and demonstrate how the field values F (t) from the simultaneously-running reverse

simulation are incorporated into the calculation. For this section, we consider an objective

function that depends only on the electric fields G[E(t),H(t)] with analytically-defined

derivatives ∂G/∂E(t), ∂G/∂H(t). The tunable parameters are contained in vector p and

the system is nondispersive.

At the start of the gradient calculation proceed, we initialize empty total derivative fields

dG/dE, dG/dH and empty electromagnetic fields E,H . A single gradient calculation loop

proceeds as follows:

1. Use dG/dH and the analytical derivative ∂G/∂E to compute dG/dE.

2. Accumulate dG/dp using dG/dE and dG/dH .

3. Perform a time-reversed FDTD update.

4. Use dG/dE to compute dG/dD for one backwards time-step.

S19

5. Use dG/dD and the analytical derivative ∂G/∂H to compute dG/dH for one back-

wards time-step.

The explicit equations are listed below. Equation components in blue are provided by

the user as they change based on the form of the objective function. Other equation com-

ponents in black do not need to be changed as they reflect the internal FDTD calculation

functional dependence. The derivatives can be obtained by differentiation of the FDTD

update equations in Equations S42-S44. The Courant number is Sc ≡ c∆t/∆.

The dG/dE time-reversed update equations are:

dG

dEx

(
x+ 1

2
, y, z, t

) = Sc

[
dG

dHy

(
x+ 1

2
, y, z + 1

2
, t+ 1

2

) − dG

dHy

(
x+ 1

2
, y, z − 1

2
, t+ 1

2

)
− dG

dHz

(
x+ 1

2
, y + 1

2
, z, t+ 1

2

) +
dG

dHz

(
x+ 1

2
, y − 1

2
, z, t+ 1

2

)]

+
∂G

∂Ex

(
x+ 1

2
, y, z, t

) (S57)

dG

dEy

(
x, y + 1

2
, z, t

) = Sc

[
dG

dHz

(
x+ 1

2
, y + 1

2
, z, t+ 1

2

) − dG

dHz

(
x− 1

2
, y + 1

2
, z, t+ 1

2

)
− dG

dHx

(
x, y + 1

2
, z + 1

2
, t+ 1

2

) +
dG

dHx

(
x, y + 1

2
, z − 1

2
, t+ 1

2

)]

+
∂G

∂Ey

(
x, y + 1

2
, z, t

) (S58)

dG

dEz

(
x, y, z + 1

2
, t
) = Sc

[
dG

dHx

(
x, y + 1

2
, z + 1

2
, t+ 1

2

) − dG

dHx

(
x, y − 1

2
, z + 1

2
, t+ 1

2

)
− dG

dHy

(
x+ 1

2
, y, z + 1

2
, t+ 1

2

) +
dG

dHy

(
x− 1

2
, y, z + 1

2
, t+ 1

2

)]

+
∂G

∂Ez

(
x, y, z + 1

2
, t
) (S59)

The form of the dG/dp calculation varies based on the tunable parameter of choice. We

S20

exhibit one such calculation here for the pixel-wise isotropic dielectric permittivity ε(x, y, z).

dG

dε(x, y, z)
= − 1

ε(x, y, z)2

∑
t

[
dG

dEx

(
x+ 1

2
, y, z, t

)Dx

(
x+

1

2
, y, z, t

)
+

dG

dEy

(
x, y + 1

2
, z, t

)Dy

(
x, y +

1

2
, z, t

)
+

dG

dEz

(
x, y, z + 1

2
, t
)Dz

(
x, y, z +

1

2
, t

)]
(S60)

Since dG/dε(x, y, z) is a sum of contributions over all timesteps, this sum can be accu-

mulated in every gradient calculation loop.

The dG/dD calculation equations are:

dG

dDx

(
x+ 1

2
, y, z, t

) =
1

ε(x, y, z)

dG

dEx

(
x+ 1

2
, y, z, t

) +
dG

dDx

(
x+ 1

2
, y, z, t+ 1

) (S61)

dG

dDy

(
x, y + 1

2
, z, t

) =
1

ε(x, y, z)

dG

dEy

(
x, y + 1

2
, z, t

) +
dG

dDy

(
x, y + 1

2
, z, t+ 1

) (S62)

dG

dDz

(
x, y, z + 1

2
, t
) =

1

ε(x, y, z)

dG

dEz

(
x, y, z + 1

2
, t
) +

dG

dDz

(
x, y, z + 1

2
, t+ 1

) (S63)

S21

The dG/dH time-reversed update equations are:

dG

dHx

(
x, y + 1

2
, z + 1

2
, t− 1

2

) = Sc

[
dG

dDy

(
x, y + 1

2
, z, t

) − dG

dDy

(
x, y + 1

2
, z + 1, t

)
− dG

dDz

(
x, y, z + 1

2
, t
) +

dG

dDz

(
x, y + 1, z + 1

2
, t
)]

+
dG

dHx

(
x, y + 1

2
, z + 1

2
, t+ 1

2

) +
∂G

∂Hx

(
x, y + 1

2
, z + 1

2
, t− 1

2

)
(S64)

dG

dHy

(
x+ 1

2
, y, z + 1

2
, t− 1

2

) = Sc

[
dG

dDz

(
x, y, z + 1

2
, t
) − dG

dDz

(
x+ 1, y, z + 1

2
, t
)

− dG

dDx

(
x+ 1

2
, y, z, t

) +
dG

dDx

(
x+ 1

2
, y, z + 1, t

)]

+
dG

dHy

(
x+ 1

2
, y, z + 1

2
, t+ 1

2

) +
∂G

∂Hy

(
x+ 1

2
, y, z + 1

2
, t− 1

2

)
(S65)

dG

dHz

(
x+ 1

2
, y + 1

2
, z, t− 1

2

) = Sc

[
dG

dDx

(
x+ 1

2
, y, z, t

) − dG

dDx

(
x+ 1

2
, y + 1, z, t

)
− dG

dDy

(
x, y + 1

2
, z, t

) +
dG

dDy

(
x+ 1, y + 1

2
, z, t

)]

+
dG

dHz

(
x+ 1

2
, y + 1

2
, z, t+ 1

2

) +
∂G

∂Hz

(
x+ 1

2
, y + 1

2
, z, t− 1

2

)
(S66)

6 Recording layer implementation

The recording layer serves as a simulation region boundary that records the electromagnetic

field values in time during the forward pass, then plays back the field values during the

time-reversal simulation. Specifically, the recording layer comprises a discrete set of con-

nected pixels (i, j, k) ∈ ∂ that forms a closed boundary. The pixels at which the topological

optimization is performed (pixels where the shape derivatives are required) must be enclosed

within the interior of ∂. The electromagnetic D and H fields are stored as a function of

S22

time during the forward sweep. Due to the half-unit displaced positions within the FDTD

Yee Grid scheme, for the pixel spanning the cubic cell [i, i + 1] × [j, j + 1] × [k, k + 1], we

store the following:

Dx(i+ 1/2, j, k, t), Dy(i, j + 1/2, k, t), Dz(i, j, k + 1/2, t), (S67)

Hx(i, j + 1/2, k + 1/2, t+ 1/2), Hy(i+ 1/2, j, k + 1/2, t+ 1/2),

Hz(i+ 1/2, j + 1/2, k, t+ 1/2) (S68)

For the time-reversal simulation that runs in parallel with the back-propagation step, the

simulation region is restricted to the interior of ∂. For cases in which ∂ comprises multiple

non-intersecting recording boundaries, which we did not perform in this study, one may

divide the disjoint interiors into multiple independent simulation regions and time-reverse

them independently and in parallel with multi-threading. There are no additional boundary

conditions (e.g., PMLs) required during the time-reversal simulation since the recording layer

forms a closed boundary around the time-reversal simulation region.

The recording boundary can enclose a smaller subset of the simulation volume than

the lossy boundaries, allowing the reverse time-stepping simulation to be performed over

a smaller volume and thus consuming even less memory and computation time. Although

this smaller volume does not need to enclose the FDTD field sources (since the information

is already encoded on the recording boundary), the recording boundary must enclose the

structure vector p locations to preserve the updating of the gradient dG/dp there, as would

be the case in AVM as well.

In first order FDTD, only the pixels immediately adjacent to the pixel to be updated

are involved in the update equation. When pixels adjacent to the recording layer are time-

stepped in reverse, they extract the requisite field values from the recording layer to be

substituted in the update equation.

S23

7 Validation against commercial FDTD software suite

Figure S1: Validation of the accuracy of DD FDTD field calculations against that of a
commercial FDTD suite (Ansys Lumerical). Three pillar structures are simulated (first
column: a, e, and i) and the transmitted field intensities in the yz plane using the DD FDTD
and commercial FDTD are plotted in the second (b, f, j) and third (c, g, k) columns. The
fourth column (d, h, k) plots the difference in intensity obtained between the two simulation
platforms.

We validated the DD FDTD platform results against those obtained from a commercial

FDTD software suite, Lumerical FDTD 2021 R2 (Ansys Inc.) (Supplementary Figure S1).

The commercial FDTD is used to simulate the identical geometry, pixel size, and Courant

number as in Figure 2a in the main text for different pillar configurations. As in the DD

FDTD, a Total Field Scattered Field (TFSF) source and boundary is employed and the

FDTD boundary conditions are all PMLs. For the commercial FDTD, the simulation time

is set to 50 fs with an automatic shutoff threshold of 5× 10−12 as the energy fraction below

which the simulation will automatically terminate, effectively ensuring that the simulation

S24

does not end before the full time elapses. A staircasing mesh method is used where the per-

mittivity mesh coincides with the spatial Cartesian mesh. The electromagnetic field intensity

is recorded at the same monitor plane as in Figure 2a. Three different pillar configurations

are simulated: a single square pillar, three non-identical rectangular pillars, and alternating

air/material pixels in a checkerboard pattern, corresponding to each row of Supplementary

Figure S1, respectively. The normalized cross-correlation between the DD FDTD intensity

pattern and the commercial FDTD intensity pattern is 0.997, 0.997 and 0.999 for the three

pillar configurations, respectively, indicating strong numerical agreement. For the single

square pillar, the zeroth order transmission phase is −0.023 rad for DD FDTD and −0.027

rad for the commercial FDTD. For the three rectangular pillars, the transmission phase is

0.160 rad for DD FDTD and 0.167 rad for the commercial FDTD. For the checkerboard

pattern, the transmission phase is 0.129 rad for DD FDTD and 0.128 rad for the commercial

FDTD. Thus, the transmission phase deviation obtained from the two simulators is on the

order of 10−3π. The slight deviation between the two simulators is likely due to the different

PML implementation.

8 Adjoint method derivation for field phase

Here, we derive the adjoint equations for optimization systems in which the objective function

is written in terms of the phase of field values. Consider the system represented by Figure

2a in the main text, in which the objective function G[E,H] = arg
∑

Ω Ez is the phase

of the average z-directed transverse electric field over a domain Ω. We derive the adjoint

system using the Lorentz reciprocity approach since the objective function is written in

the frequency-domain.2,3 We consider the shift in the objective function dG due to a small

change δE(xm) in the z-directed electric field E at a position xm ∈ Ω. All summations are

S25

performed over Ω and the z-subscript for the electric field is suppressed for concision.

dG = atan2 [Im(ΣE + δE(xm)), Re(ΣE + δE(xm))]− atan2[Im(ΣE), Re(ΣE)] (S69)

= atan2 [Im(ΣE) + Im(δE(xm)), Re(ΣE) +Re(δE(xm))]− atan2[Im(ΣE), Re(ΣE)]

(S70)

The derivatives of atan2 with respect to each of its arguments is:

d(atan2(y, x))

dx
= − y

x2 + y2
(S71)

d(atan2(y, x))

dy
=

x

x2 + y2
(S72)

Thus, linearizing the objective function change in δE(xm),

dG =
Re(ΣE)

[Re(ΣE)]2 + [Im(ΣE)]2
Im[δE(xm)]− Im(ΣE)

[Re(ΣE)]2 + [Im(ΣE)]2
Re[δE(xm)] (S73)

=
Re(ΣE)Im[δE(xm)]− Im(ΣE)Re[δE(xm)]

|ΣE|2
(S74)

The induced field at xm due to an induced dipole moment pind(x′) = δε∆V E(x′) at

x′ (the pixels to be optimized) is δE(xm) = Gr(xm,x
′)pind(x′), where Gr(xm,x

′) is the

Green’s function. Substituting,

dG =
Re(ΣE)Im[Gr(xm,x

′)pind(x′)]− Im(ΣE)Re[Gr(xm,x
′)pind(x′)]

|ΣE|2
(S75)

=
Im[Re(ΣE)Gr(xm,x

′)pind(x′)]−Re[Im(ΣE)Gr(xm,x
′)pind(x′)]

|ΣE|2
(S76)

Using the Lorentz symmetry of the Green’s function, Gr(xm,x
′) = Gr(x′,xm),

dG =
Im[Gr(x′,xm)Re(ΣE)pind(x′)]−Re[Gr(x′,xm)Im(ΣE)pind(x′)]

|ΣE|2
(S77)

Defining the adjoint fields for a single dipole EA,r
m = Gr(x′,xm)Re(ΣE)/|ΣE|2, EA,i

m =

S26

Gr(x′,xm)Im(ΣE)/|ΣE|2, we can rewrite the objective function shift as:

dG = Im[EA,r
m (x′)pind(x′)]−Re[EA,i

m (x′)pind(x′)] (S78)

= Im[EA,r
m (x′)pind(x′)]− Im[iEA,i

m (x′)pind(x′)] (S79)

= Im{[EA,r
m (x′)− iEA,i

m (x′)]pind(x′)]} (S80)

Observe that we can add the adjoint field components as:

EA
m(x′) ≡ EA,r

m (x′)− iEA,i
m (x′) (S81)

= Gr(x′,xm)

[
Re(ΣE)

|ΣE|2
− iIm(ΣE)

|ΣE|2

]
(S82)

= Gr(x′,xm)

[
(ΣE)∗

|ΣE|2

]
(S83)

where the asterisk indicates complex conjugation. Thus, the functional change is:

dG = Im
[
EA

m(x′)pind(x′)
]

(S84)

This is the shift in the objective function just due to a single field point on the monitor.

We will have one such shift for every monitor point and can run these simultaneously since

their field contributions add linearly. Thus, we have:

dG =
∑
m∈Ω

Im[EA
m(x′)pind(x′)] (S85)

= Im

{[∑
m∈Ω

EA
m(x′)

]
pind(x′)

}
(S86)

= δε∆V Im[EA(x′)E(x′)], EA(x′) ≡
∑
m∈Ω

EA
m(x′) (S87)

summing over all points m on the monitor plane. The implementation of the adjoint

calculation is as follows:

S27

1. Simulate a plane wave incident on the nanostructures from the glass side and record

the electric field at the pillars E(x′) and on the monitor plane E(xm).

2. For each point on the monitor plane, place a dipole of amplitude (
∑
E)∗/|

∑
E|2.

3. Run the simulation again without the incident plane wave and record the total adjoint

field EA(x′) at the nanostructure locations.

4. Compute the change in figure of merit using dG = dφ = δε∆V Im[EA(x′)E(x′)] .

9 Design of color sorter

The full 3D FDTD region for the passive color sorter has a geometry similar to that of

Figure 2a, with an increased x × y × z extent of 184 × 50 × 70 pixels (2530 nm × 687.5

nm × 962.5 nm) excluding the ten PML layers surrounding all six boundary surfaces. The

TFSF region has an extent of 152 × 38 × 68 pixels (2090 nm × 522.5 nm × 935 nm) so

that its x extents are 6 pixels away from the PML boundaries in the x direction. The

substrate is glass with a fixed refractive index of 1.44. The structure to be optimized is a

compact 30× 60 array of pillars on the yz plane. Each pillar has an x× y × z dimension of

72 × 1 × 1 pixels (990 nm × 13.75 nm × 13.75 nm) so that the full array has an extent of

72× 30× 60 pixels (990 nm × 412.5 nm × 825 nm). The optimization tunable parameters

are the permittivities of these 30 × 60 = 1800 pillars. To avoid optimizing with parameter

bounds, we choose a latent space for the normalized permittivity p to be on the full real

line, then map the real line monotonically to a bounded relative permittivity εr range using

the hyperbolic tangent function. To account for material dispersion, we let the relative

permittivity bounds correspond to that of real materials: air and TiO2. Thus, for a pillar

with normalized permittivity p, its relative permittivities at the two wavelengths of interest

S28

λ1, λ2 are:

εr(p, λ1) = εr,T iO2(λ1)
1

2

(
tanh

p

2
+ 1
)

+ εr,air(λ1)

[
1− 1

2

(
tanh

p

2
+ 1
)]

(S88)

εr(p, λ2) = εr,T iO2(λ2)
1

2

(
tanh

p

2
+ 1
)

+ εr,air(λ2)

[
1− 1

2

(
tanh

p

2
+ 1
)]

(S89)

The numerical values used are εr,T iO2(488 nm) = 2.73122 and ε(r, T iO2)(633 nm) =

2.38932. This method of incorporating material dispersion is not unique and more com-

plex versions which incorporate analytic approximations can be used as well. The device

is illuminated by a z-polarized plane wave propagating in the x-direction. We define the

objective function G1,2 to be maximized for each wavelength to be the overlap between the

transverse intensities |Ez|2(y, z) recorded at a 30 × 60 pixel (412.5 nm × 825 nm) monitor

plane placed 50 pixels (687.5 nm) above the pillars and a desired intensity profile. We use

|Ez|2 as a proxy for the total intensity because the incident polarization is z-directed and

the total transmitted intensity is dominated by the |Ez|2 component. We pick the desired

intensity profile for each wavelength to be gaussians with different center positions (y1,2, z1,2)

and width W = 8 pixels (110 nm).

G1,2 =
30∑

ny=1

30∑
nz=1

|Ez(ny∆y, nz∆y)|2 exp

[
−(ny∆y − y1,2)2 + (nz∆z − z1,2)2

2W 2

]
(S90)

The gaussian center positions and widths are plotted over the optimized intensity profile in

Supplementary Figure S2. The total objective function to be maximized for the system G

is the minimum of the two individual wavelength objective functions G = min(G1, G2).

The gradient of G with respect to each of the 1800 permittivity values is computed using

DD and the optimization of G is performed using simple gradient descent with a constant

learning rate. The objective function for each of G1,2 a function of iteration is plotted in

Supplementary Figure S2b. The starting permittivity profile (in the normalized latent space

units) is chosen to be uniformly 0 on the left and a random uniform distribution from 0 to

S29

Figure S2: Optimization details for color sorter. a Location of the target gaussian intensity
profiles (centered on the black crosses) and widths (dotted line), overlaid on the converged
intensity profiles at each wavelength after optimization. b Variation of objective function
values with iteration number for the individual wavelength objective functions G1,2. A
Gaussian smoothing filter is applied to the right hand side of the permittivity profile after
iteration 599, resulting in a transient decrease in the objective function. The binarization
step was started at iteration 956.

5 inclusive on the right. This starting configuration was chosen as the optimized structure

significantly outperformed that of other starting configurations (uniform distribution, two

halves with uniform distributions). In order to reduce the grainy permittivity pattern, a

Gaussian kernel of five pixel width was applied to the right hand side of the latent space

permittivity pattern after step 599 of optimization.

To obtain a final binary structure, we applied a binarization push from iteration step

956. This takes the form of multiplying the latent space vector by a constant 1.1 after every

update step. Since negative latent space numbers are closer to the air refractive index and

positive latent space numbers are closer to the TiO2 refractive index, this multiplication has

the effect of pushing the structure towards the refractive index bounds. This produces a

slight reduction in deflection performance.

We validate the performance of the inverse-designed device by simulating it in a commer-

cial FDTD suite (Ansys Lumerical 2023 R1.1) in addition to the DD FDTD. A staircasing

mesh method is used where the permittivity mesh coincides with the spatial Cartesian mesh.

S30

The commercial FDTD simulation is run for 100 fs without an automatic early shutoff. The

transmitted intensity plots in Figure 3c and Supplementary Figure S2a are of the commercial

FDTD electric field profiles.

10 Design of resonator array for imposing group delay

To simulate infinitely periodic arrays in the transverse dimension, we introduce periodic

boundary conditions in the transverse direction instead of TFSF boundary conditions. The

boundary conditions in the x propagation direction remain as 10 layer thick PMLs. The

pixel size for this simulation is 20 nm, the Courant number is kept at 0.9, and the total

simulation x× y × z dimensions are 128× 25× 25 pixels (2560× 500× 500 nm), including

the PMLs in the x-direction. The tunable parameters are the 9900 dielectric permittivities

in a 44× 15× 15 pixel block (880× 300× 300 nm) centered in the yz plane. The dielectric

permittivities are parametrized in the same latent space on the infinite real line as in the

previous sections. There is no glass substrate in this simulation and the structure is illu-

minated by a z-polarized transversely uniform Gaussian pulse located 25 pixels (500 nm)

behind the structure, propagating in the +x direction, with the form:

Ez(t) = sin(ω0t) exp

[
−
(
t− t0
τ

)2
]

(S91)

where ω0 = 2π(564 THz) is the center frequency corresponding to a vacuum wavelength

of 532 nm, t0 is a time displacement of 20 fs, and τ is a temporal width of 8 fs.

The objective function for this calculation is the transmitted z-polarized electric field

summed over the full transverse cross-section A of the simulation, which can be related to

the far-field on-axis electric field. Specifically, the objective function to be maximized is:

G =

t=64.8fs∑
t=62.4fs

∫
A

Ez(x, t)d
2x (S92)

S31

where the cross-section A is located 25 pixels (500 nm) away from the top of the structure.

The objective function represents the total transmitted electric field between timesteps

1800 and 1870 of the simulation, which is about 38.7 fs delayed from the envelope peak of

the illuminating pulse had there been no structure present. This delay is greater than the

temporal delay of (nmax − 1)L/c = 4.1 fs that can be attained by simply replacing a slab

of n = 1 air with thickness L with a uniform slab of nmax = 2.404, thereby requiring the

structure to exploit resonances in order to perform the group delay.

The initial permittivities in the structure block are uniformly sampled over −10 and 10

in the permittivity latent space and the gradient descent is performed with a fixed step size.

To remove isolated pixels and force filled pixels to cluster together in space, we apply a

3D Gaussian blur on the 3D latent space distribution at various points in the optimization,

which has the effect of penalizing isolated pixel structures. This blur is imposed at step 7

(Gaussian width 2 pixels) and every 15 iterations (Gaussian width 1 pixel) between steps 439

and 544. From iteration 545 onwards, no Gaussian blurring is implemented and the device

is allowed to converge. The optimization is terminated at iteration 602. Each optimization

step takes 17 seconds using two CPU cores on an Intel E5-2690 v2 processor (3.00 GHz

base frequency, 3.60 GHz turbo frequency). The objective value as a function of iteration is

plotted in Supplementary Figure S3.

To evaluate the performance of the optimized device, the simulation is run for 30000

timesteps (1040 fs) and the fields at the cross-sectional plane A are recorded for the system

with and without the optimized device. The time-domain fields are plotted in Figure 4c,

which demonstrate that the device successfully maximized the electric field values in the

desired shaded time range by delaying the signal envelope. The complex mean electric fields

for each situation are obtained by fast Fourier transformation of the averaged Ez fields

across A and the complex transmission coefficient of the optimized devices is obtained by

taking the ratio of these complex electric fields. Figure 4d-e plots the transmission intensity

(squared absolute value of the amplitude) and unwrapped transmission phase as a function

S32

of frequency for the optimized device, respectively. As expected, the transmission phase

exhibits a linear decrease across the center frequency of 564 THz, indicating that the device

implements a group delay on the illuminating pulse. To quantify this group delay, we fit

the transmission phase to a quadratic polynomial for a range of ±50 THz about the center

frequency, for which the group delay (GD) and group delay dispersion (GDD) parameters

can be estimated using the fitted polynomial coefficients:

φ(ω) = φ0 +GD(ω − ω0) +
1

2
GDD(ω − ω0)2 (S93)

such that:

GD =
∂φ

∂ω

∣∣∣∣
ω=ω0

, GDD =
∂2φ

∂ω2

∣∣∣∣
ω=ω0

(S94)

Figure S3: Optimization progress for time-domain resonator inverse design. To remove
isolated pixels and improve fabrication robustness, 3D gaussian smoothing is performed over
the device permittivity distribution in the permittivity latent space. The iterations at which
the smoothing is performed is indicated with an arrow. The gaussian width used is 2 pixels
for the first smoothing iteration and 1 pixel for subsequent smoothing implementations.

S33

References

(1) Li, Z.; Pestourie, R.; Lin, Z.; Johnson, S. G.; Capasso, F. Empowering Metasurfaces

with Inverse Design: Principles and Applications. ACS Photonics 2022, 9, 2178–2192.

(2) Lalau-Keraly, C. M.; Bhargava, S.; Miller, O. D.; Yablonovitch, E. Adjoint shape opti-

mization applied to electromagnetic design. Optics Express 2013, 21, 21693.

(3) Miller, O. D. Photonic Design: From Fundamental Solar Cell Physics to Computational

Inverse Design. Ph.D. thesis, University of California, Berkeley, 2013.

(4) Molesky, S.; Lin, Z.; Piggott, A. Y.; Jin, W.; Vucković, J.; Rodriguez, A. W. Inverse

design in nanophotonics. Nature Photonics 2018, 12, 659–670.

(5) Yunpeng Song,; Nikolova, N. Memory-Efficient Method for Wideband Self-Adjoint Sen-

sitivity Analysis. IEEE Transactions on Microwave Theory and Techniques 2008, 56,

1917–1927.

(6) Sullivan, D. M. Electromagnetic simulation using the FDTD method ; IEEE Press, 2000.

(7) Griewank, A. On Automatic Differentiation. Mathematical Programming: Recent Devel-

opments and Applications 1989, 83–108.

S34

	Residual operators in AVM
	AVM for frequency-domain objectives
	Reverse mode automatic differentiation
	Time and memory scaling derivations for gradient calculation methods
	Complexity of one FDTD simulation
	Finite Difference performance scaling
	Forward Mode Automatic Differentiation performance scaling
	Reverse Mode Automatic Differentiation performance scaling
	Adjoint variable method performance scaling
	Direct Differentiation performance scaling

	Direct Differentiation Key Equations
	FDTD forward update equations
	FDTD reverse update equations
	Gradient calculation

	Recording layer implementation
	Validation against commercial FDTD software suite
	Adjoint method derivation for field phase
	Design of color sorter
	Design of resonator array for imposing group delay
	References

