Ph125¢c Book Notes
LM SooN WEI DANIEL

S: Shankar, Principles of Quantum Mechanics (2nd Ed.) C: Cooper, Khare, Sukhatme, Supersymmetry in Quantum Mechan-
ics. P: Peskin, An Introduction to Quantum Field Theory (1st Ed), CBG: Dr David Tong, Cambridge Part III Mathematics:
Quantum Field Theory notes 2006-2007.

Momentum space resolution of The Berry potential is used to calculate Partition function (S 21.2.45, Pg
identity (S 21.1.13, Pg 584) the phase factor accumulated by a cyclic 624)
change (S 21.1.64, Pg 595):
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Electromagnetic Lagrangian (2.2.2, Hyperbolic double angle formulae

Coherent state (S Pg 608) is an

Pg 83 . .
g 83) eigenstate of the destruction operator: sinh 2z = 2sinh x cosh x
1 = 2 —_— fr— 1 2
£EM:fmv~v—q¢+g'u-A iy cosh2x =2cosh”x — 1 =2sinh“z +1
2 ¢ |z) = €** |0) = Z 2tanhx
qA tanh 2z = —————
p=mv+—, 227 Pg84 1+ tanh® z
c alz) = z|z>
a Ground state potential from
Landau Levels (S Pg 587) In the (2] = (0le ground state wavefunction (C 3.2,
presence of a uniform magnetic field, (z|aT = (z|2* Pg 15) Note that the notation here uses
the single particle Hamiltonian has har- W(z) while Cheung’s notes use W'(z)
monic oscillator form with canonical The completeness relation is (21.1.127):
1 . h2 "
variables 1% drdy . Vi) = ()
BX I= |2)(z|e 2m, o ()
p=p,-1 —00 )00 T
2 i ;
¢ where z = z 4 iy. Under time evolution Supersymmetric operators (C 3.4,
cPy +qYB/2 . Pg 16)
Q= B the coherent state remains a coherent
q state with new eigenvalue (S 21.1.131, A E d -
and eigenenergies: Pg 610): o V2m dx + W(z)
U(t)|z) = |ze™™) fo__M d
1 B Al = + W(z
2 e The inner product of two coherent states - AtA

is (S 21.1.126, Pg 609):
The lowest Landau level is infinitely de- is ( » 18 )

generate and can be spanned by the set (za]21) = e7a 71 where we have the Riccati equation (C
of functions (S 21.1.42, Pg 589): 3.5, Pg 16) and the superpartner poten-
From an online source: tial:
B 9 h
’(/Jo’m:z7”exp|:—zz:| allz) = =z Vi(z) =W(z)? — —W'(x
" 2) = —Iz) () = W(@)* — =W (a)
Berry phase (S 21.1.57, Pg 593) Imaginary time formalism (S Pg V() = W(x)2 n h W (x)
613) V2m
t
v = z/ (n(t )\ -|n(t"))dt’ t— —it and can relate the superpotential to the
dt ground state wavefunction (C 4.2, Pg 36

which solves the equation (S 21.2.3, Pg .
Berry potential (S 21.1.65, Pg 595) 614): ( and C 3.6, Pg 16):

(1) _
A"(R) = i{n(R)| 7 \n( ) —E%W)(T)):HW(T» 0 Ne"p{ / Wl(y)dy}
: I O 1€))
where R(t) is a parameter that 1he propagator is (S 21.2.4): W(z) =~ V2m ()
parametrizes the time dependence of 1 .
the Hamiltonian. A gauge transforma- U(r) = Z |n) (n|exp (—E,J) Energy eigenvalues of superpoten-
tion on the state vectors induces the h tial partners (C 3.12-3.14, Pg 17)

transformation (S 21.1.67-67, Pg 595):  which can  be approximated  semi- The eigenequations are (C 3.9,3.11, Pg

: 16-17):
. lassicall 21.2.22):
n(R)) = X Pln(R)) clasically (5 21:222) DA
. . . Hy(Ay(l) = BV (Agy))
A™(R) — A™(R) — ho Uir) = exp (‘ hHT) s (‘ nSd) Hy(ATp@) = EP (AT



and introducing normalization coeffi-
cients:

1
Er(f) = E’Igri)’l
EM =0

¥ = [BXL]7 A0,
Yy = B2 ATy

Note that if E(()l) # 0, then (C 3.79, Pg
31):

EY = (1421
o = (B - B RAu,

In general (n systems, C 3.87, Pg 33):
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Note that A, AT change the number of
nodes in the wavefunction! The ground
state of system 2 has no nodes, even
though its energy is equal to the first
excited energy level of system 1.
Supercharges Consider the matrix
SUSY Hamiltonian (C 3.15, Pg 17)

_(H, 0
n= (% )
Construct the supercharge matrices (C
3.16-17, Pg 17) :
0 0
A 0

- (
0 Af
T =
@-(5 %)
with commutation relations (C 3.18, Pg
18):
[HaQ] = [HvQT] =0
{Q.Q"y=H
Infinite well superpotential (C
3.22-26, Pg 19-20) The infinite well
energies are (after displacement and re-
labelling)
n(n + 2)h%n?

ED —
" 2mL2 ’

n=0,1,2,...

with eigenfunctions:

2 1
o) = |2 gy RV

<z<L
i i 0<r<

The supersymmetric partner potential
is:
h2m?

Vel = ga

2cosec®(rz /L) — 1)

with first few wavefunctions:

2
U = =2t
(2) 2 . T . 2rx
1 = ——/=8Ssll1 — 8l

VL L L
Scattering off superpotentials (C

Pg 21) The 1D scattering eigenfunction
is:

’(/}k(x) N eikm + R(k)e—ikx,
i (x) = T(k)e*'™,

T — —00

T — 00
If the superpotential is finite at infinity:
W(x — +o00) = Wi < 00

Then the wavenumbers far away satisfy:

W_ +ik
Ry (k) = W ikRQ(k)
Wy —ik!
Ti(k) = hTz(k)

so that ‘R1|2 = |R2|2, |T1|2 = |T2|2.
Hyperbolic tangent superpotential
(C 3.33, Pg 22) For:

W(z) = Atanh ax

Vi=A? - A(A+a Ysech?

h
Vvam

Vo=A*—A(A-a Ysech?

h
V2m
Note that if A = a\/%fm, then 15 is a
constant potential. Hence V; is a re-
flectionless potential since the (magni-
tude squared) coefficients of reflection
and transmission are the same for both
systems.

Shape invariance (C 4.1, Pg 35)
Two partner potentials are shape invari-
ant if:

Va(w;a1) = Vi(z; f(ar)) + R(a1)

If this holds, the nth Hamiltonian looks
like (C 4.4, Pg 36):

n—1

Hy= 2+ Vi(z; £ (a1) + > R (ar))

2m
k=1

The ground state energies are hence (C
4.5, Pg 36):

n—1
ESY =3 R(f*Y(ar))
k=1

and hence the complete energy spectrum
of Hy is (C 4.6, Pg 37):

E(M(ar) =Y R(f*(a1))
EY

To generate the wavefunctions (C 4.7-
4.8, Pg 37):

Yt o <H AT(%éLk)) 5 (23 any1)

k=1
P o At (z5a0)pl? ) (25 a0)

where we use the ground state wavefunc-
tion for the n+ 1st potential to generate
the original system eigenfunctions.

The scattering amplitudes for shape in-
variant potentials are:

NI (STSES's Py,
. - W (al) - Zkl
Tl(k,al) = (m) Tl(k;GQ)

Bloch waves (W, Pg 76-77) Let the
Hamiltonian be invariant under the spa-
tial translations:

x—x+ L., r=123

Then the solutions of Schrodinger’s
equation are Bloch waves:

U(x) = eI ¢(x)
d(@+L,)=d(x), r=1,23

where g is a wave vector defined by (for
r=1,2,3):

q- Lr = 07"

0<80, <2m
Also note that v,¢ satisfy the time-
independent equations (note h = 1):

H(V,z))(z) = EY(z)
H(V +iq, z)¢(x) = E¢(x)



Bloch’s Theorem statement The
eigenstates ¥ of the one-electron Hamil-
tonian with periodic potential U(r +
R) = U(r) for all R in a Bravais lat-
tice, can be chosen to have the form of
a plane wave times a function with the
periodicity of the Bravais lattice:

wnk(r) = eik.runk,(r)
Born-Von Karman Boundary con-
dition (AM 8.22, Pg 136)

Uv(r+ Nia;) =¢(r), i=1,2,3

Delta function periodic model
(AM 8.80, Pg 149) Consider a peri-
odic potential U(z) = ), gé(xz — na).
Then:

[t| = cosd
2K
cotd = ———
mg

Electric and magnetic fields in
terms of potentials (W 10.1.12, Pg
298)

po A g,
c
B=VxA

Electromagnetic Lagrangian (W
10.1.3, Pg 298)

L="4 g+ A
2 c

Electromagnetic Hamiltonian (W
10.1.9, Pg 300)

(p—2A)?
2m

H = +4q¢

Gauge transformation of Hamilto-
nian (W Pg 301) Make the gauge
transformation:

A'= A+ Va(zx,t)

10
¢ =¢— E&a(m’t)

The Hamiltonian is not gauge invariant.
Define the unitary operator:

U(t) =exp [z %’;a(wn, t)}

n

Then the momentum operator can be
transformed:

U(tpa(U (1) = pu(t) = L Va(a,1)

and the Hamiltonian in the new gauge
is:

d

H' =UH(x,p,t)U "' +ih [dt

U} vt
so that the transformed state vector:
U'(t) = U(t)¥(t)

satisfies the time-dependent Schrodinger
equation:

- d ! ! I

ith—'(t) = H'(t)V'(t)

dt

If E, B are time independent, we pick
a gauge transformation that is also time
independent, so H' = UHU ! and ¥’ =
UV is an eigenstate of H' with the same
eigenvalue F.
Periodicity of occupancy as func-

tion of magnetic field(W 10.3.16,
Pg 305)
A 1 _ he
B, mecEpr

where Ep is the partial Fermi en-
ergy (Fermi energy minus lowest energy
eigenvalue &).

Effect of vector potential on action
(F 21.1, Pg 21-2) With CGS units,
the vector potential adds a phase to the
wavefunction:

e = exp (zq/ dr - A>
hc P

Effect of vector potential on mo-
mentum operator (LN)

iV — —inv — 14
c
where —iAV = p, and this momentum
is not the usual mv momentum.

Probability current with vector po-
tential (F 21.12, Pg 21-4)

— 24 \* _9A
A v ()
m m
opP
:>§:7V'J

P=y"

Multiplying Pauli Matrices (S
20.2.15, Pg 568)

(0-A)oc-B)=A-B+io-(AxB)

Kinetic momentum operator (S
20.2.4, Pg 567)

W:P—QA
c

and the cross product (noting that it is
an operator):

iqgh
71'><7T:£B
c

Natural units (P xix)
h=c=1

[length]=[time]=1/[energy]|=1/[mass].
QFT operators (P xx)

. (0
pt =iot =i ((M),V)
0
EF=i—
Zafﬂo

Least action for classical field
(CBG Pg 8) Given a Lagrangian den-
sity £ defined as a function of the field
o, q.S, V¢, the differential action is given
by (in terms of the four-field ¢, ):

. Toc oc
5= / e {8% Oa+ 6@%)5(8"%)]

=i (@ )]

o (ama))

Euler-Lagrange equation for four-
fields (CBG, Pg 8) The minimization
of the action for the Lagrangian den-
sity (and the requirement that the field
vanish at spatial infinity to remove the
boundary term) gives:

oL oL

— — Oy =——— =0

7~ (.007)

which can be written:
oL 0 oL

0ba  Otdp, 010(¢a)s

where x runs over all z, v, z.
Lagrangian for real scalar field
(CBG, Pg 8)

1 1
— M _ Tan242
L 2g 0,90, ¢ 2m 10)
1

1
= 5(@@)2 - §m2¢>2

L.y 1 2 1 9.9
=2 - (V)2 — =
39 = (V) = Sm?s
Note that the partial with respect to the
covariant gradient is:

oL ;
:8“ = —
56,4 =~ 0= 6.-V9)

so that the equation of motion is:
6=V +mis=0
<= 0,0"p+m?p=0
— Op+m?2p=0

=0




We can also construct the Hamiltonian
for the system (P 2.8, Pg 17):

(@) = ¢()
(VO + gmie
H= /d%%

- H=
Maxwell’s equation in Lagrangian
form (CBG Pg 10)

L= L (OuA) 0" A%) + 50,47

Momentum density conjugate (P
2.4, Pg 16)

oL
0¢()

Hamiltonian density (P 2.5, Pg 16)

m(x) =

H=r(x)p(x) — L

H= /d%?—l

QFT Commutation relations (P
2.20, Pg 20) note h = 1.

[b(z), 7(y)] = i6°(x — y)
[¢(x), ¢(y)] =0
(@), 7(y)] = 0

Fourier expansion of field (P Pg 20)

d3
¢(m7t):/(2ﬂ_1)73

where the condition for ¢(x, t) to be real
is that:

eP(p,t)

Klein-Gordon equation in momen-
tum space (P 20.21, Pg 20)

5z T (PP +m%) | 6(p,1) =0

which has the form of a simple harmonic
oscillator with frequency:

wp = V/|p|* +m?

Review of Simple Harmonic Os-
cillator (P 2.23-24, Pg 20) For the
Hamiltonian:

2
1
Hsno = % + §w2¢2

the ladder operators are related to the
position and momentum operators by:

- a+al
p=—i %(a—aT)

with canonical commutation relation
[a,a’] = 1 so that the Hamiltonian be-

comes:
1
H=w (aTa + 2)

[H,a'] = wa'

[H,a] = —wa
Klein-Gordon Hamiltonian spec-
trum (P 2.25-26, Pg 21) Let each
Fourier mode of the field be treated as
an independent harmonic oscillator:

¢(x) :/(gﬁz;gﬁ (a ¢ 4 ale Zp.z)

T —w
—ahe

7@ = [ AL (-2 (ane

Equivalently (requiring the integral ker-
nel to satisfy ¢f(p) = ¢(—p) to ensure
that the LHS is purely real),

o(x) = / éwﬁ (ap + aip) oiP®
(x) = / i

(27:))3 (_Z)\/Zp (ap —aly) e

and the commutation relations are:

[ap, )] = (27)°6° (p — p')
[ap, ap] =0
[ai,,ai,,} =0

[p(x), n(2)] = i (@ — a)

The commutation of the raising opera-
tors implies that the Klein-Gordon par-
ticles obey Bose-Einstein statistics (or-
der of adding particles does not matter).
Interpretation of K-G operators (P
2.41-2.42) ¢(x) creates a particle at po-
sition x:

¢(@)10) = / (2n)? 2Epe_ip'm P}
= (0| ¢(z) |p) = P

in analogy to the non-relativistic result
(z|p) = ™™,

Field Hamiltonian using ladder op-
erators (P 2.31, Pg 21)

d3p 1

d3

= [ o

1
)3wp (al,ap + Q[GWGI?])

Note that the second term is propor-
tional to §(0), or infinity. The commuta-
tion relations with the ladder operators
are very similar to the SHO case:

[H, a;r,] = wpa;;
[H, ap] = —wpap

Field momentum operator (P 2.33,
Pg 22)

P= —/d3x7r(:n)v¢(:n)

d3p t
= (27-‘-)3 papap

Constructing field states The state
aLaL --+]0) has momentum p + q + ...
and energy wp + wq + .... Field vac-
uum state satisfies:

apl0) =0
(00) =1

Delta function of function (P 2.34,

ﬂljg 22)

b
| f(w0)]

More generally, for a function g(x) with
roots at z;,
oz — x;)

o6 =2 )

Normalized K-G state (P 2.35, Pg
23) Noting that wp, = Ejp,

= \/2Epal, |0)
(plg) = 2E,(27)%5°(p — q)

where the normalization is chosen to be
Lorentz invariant.
Resolution of identity (P 2.39, Pg
23) Given the above normalization and
for one-particle:

d3p 1

H_/(zw)i%' >2E

Lorentz-invariant 3-momentum in-
tegral (P 2.40, Pg 23)

[ o= [

Heisenberg Picture Operators gain
time dependence:

¢($’ t) =
80

Yot
note that H is the full Hamiltonian, that
is, the integrated Hamiltonian density.
Time evolution of K-G operators

6(f(x) — flzo)) =

5(1’ — %0)

(p|

(2m)é(p* —m*)0(p")

z’Ht¢(w7 O)e—th

=10, H]



in Hamiltonian picture (P 2.45, Pg
25)

on(x,t)

ot
where we use the commutation relations
between ¢ and w, and let ¢ commute
with V¢. The raising and lowering op-
erators obey:

7

= —i(=V? +m?)p(x, 1)

ethapeszt —ib,t

ethalteszt

= ape

_ i Byt
= ape

which can be proven by using the com-

mutation relations to derive: Displaced position operator (P
2.48-49, Pg 26) Using commutation
H"ap = a,(H — Ep)" relations, one can show
The K-G operators have time-dependent ipT
form:

—iP-x iP-x __
e ape = ape

efiP-ma;()eiP-m _ ape*ip'm

T 4 afe’)| where P is the total system 3-

rfaementum operator, and p is the three-
momentum associated with a,, (just one

Fourier mode). Then:

YL . —o:
¢(£L',t)—/(2ﬂ_)3 \/E( P

10}
7T((D7 t) - a¢(m7 t)
where px is the four-dimensional scalar o(z) = etPTp(0)eiPe
product:
where P* = (H,P) and Pz is a four-

_ 0 _
pr=pt—p- -x=pn,a" vector scalar product.



Name Vi(z;a) f(a) B

Harmonic Oscillator ‘%f(:c - %b)z —a/2 a na

3D Oscillator iw2r2 + a(ijl) — a+1 2nw
Coulomb é + a(i;rl) + a+1 4(65:1)2 - 4(n+€:+1)2




