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Notation: G - Griffiths, Introduction to Electrodynamics, 4th Edition. J - Jackson, Classical Electrodynamics, 3rd edition.

LN - Lecture Notes. HM - Heald and Marion, Classical Electromagnetic Radiation.

Maxwell’s Equations (J 6.6, Pg

238)
V-D=p
oD
H=J
v T
V-B=0
0B
VxE+—=0
BT
Effect of magnetic monopoles

Maxwell’s equations (where the unit of
magnetic charge is the Ampere-meter):

V- E="
€0

0B
E En e — 'm
V X It — HoJ

OFE
V x B = poeo— - ot + HoJe

and Lorentz force law:

F=g¢(E+vxB)+gn <B

E
v X 2
Misc vector identities LN Pg 596:

a-(bxV)=(axb) -V

Volume integrals (J Theorems
from Vector Calculus) Let n be the
outwardly directed normal unit vector.

/v Vydiz = /S Ynda
/Vd%(v x A) = yida(ﬁ x A)

Surface integrals (J Theorems from
Vector Calculus)

/Snwida:]izbdl

Charge conservation (J 5.2, Pg
175)
dp

E-&-V J=0

Under magnetostatics, we take % =

0, hence: V-J = 0.
Biot-Savart Law (J 5.4, Pg 175)

&Idlx;c

dB =
47

z/?

where € = r — 7’.
Pg 178):

Integrating (J 5.14,

Ho ’ z -z 3,/
— [ J X ————d
47r/ (@) |z — |3 *
and by using the gradient of a recipro-
cal and integrating by parts (J 5.16, Pg

179),
Ho J ('
_47Tvx/|:c—33’|

B(z) =

which is clearly divergence-free.
Infinite straight wire magnetic in-
duction (J Pg 217)

tol p<

B =
*” 27a P>

where p. = min(a, p).

Force between two wires (J 5.10,
Pg 178) The force on closed loop 1 due
to closed loop 2 is:

(dly - dly)
Fyp, = **11]2%?{ 1|‘,/c1273$12

where @15 is the vector distance from dls
to dl1 .

Force and torque on current distri-
bution (J 5.12-13, Pg 178)

F= /J(:c) x B(x)d*x

N:/azx(JxB)d%
Ampere’s Law (Magnetostatics) (J
5.22, 5.25)

VxB= ,LtoJ

c

Magnetic vector potential (J 5.27-
28)

B(x) =V x A(x)

_ Ho J(@) 5,
A($)47r/a:—ac’|dx + V¥(x)

where the gradient indicates the gauge
freedom of the vector potential.

Gauge transformation (J 6.12-13,
Pg 240)

A A+ VA
oA

R
T

Coulomb gauge (J Pg 181)
V-A=0

This gauge makes the scalar potential
satisfy (J 6.22, Pg 241):

Ve =L

€0
so that the scalar potential is the instan-
taneous Coulomb potential due to the

charge density. The vector potential sat-
isfies (J 6.30, Pg 242):

1 9%A
2 912

where J; is the transverse current. Note:
V must be time independent in order to
use the above equation (see LN Pg 638).
The magnetic vector potential under the
magnetostatic case becomes:

V2A - 5 = —,U/()Jt

|z — ']

Under the Coulomb gauge, the vector
potential is continuous across bound-
aries (LN 5.74, Pg 304):

= A1 (T‘)

The normal derivative of the normal
component of A also does not change
(LN 5.79, Pg 306):

O(A1)n
on

AQ(T)

9(A2)n
T on

(a (a

The tangential derivatives of A are also
continuous across a boundary (LN 5.84,
Pg 308):

§-V][Az(r) — A1(r)] =0
Lorentz Gauge (J 6.14, Pg 240)
Choose V - A so that:
109
A =0

VoAt 2 ot
which gives the decoupled wave equa-
tions for the potentials (J 6.15-16, Pg
240):
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2@_77:_7
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We use the d’Alembertian with +,-,-,-
metric:

P
€0
|:|2A = qu
82
02 = — -V
€00 12

0%V =

2

Current distributions Loop of radius
a lying in zy plane (J 5.33, Pg 181):

/ J—
Js = Isinf'§(cos 9/)M
a

Current distribution of moving particles
(J pg 187):

J =) quid(z—z;)
:EZq-(w- X v;) = %y,
9 i i\Ls i 7; oM, i

Magnetic dipole field (J 5.41, Pg
183) far away from the loop

2uom cos 6
B, = —1—
" 473
Lom sin 0
By = ——
o 473

where m = Iwa? is the magnetic dipole
moment. In coordinate-free notation (J
5.56, Pg 186):

To account for the dipole itself, we can
add a delta function contribution (J
5.64, Pg 188):

to [3n(n-m)—m 8«

PO NI T00) = 700 O s

47 { ||3 3" (@)
If the current loop is not planar, the
magnetic dipole moment will be smaller
than if it were planar (LN 5.108, Pg
318):

Mioop = gé(r/ X dll(rl))

Vector potential due to dipole (J
5.55, Pg 186)

fo M X T

A(x) = i

]

Forces and torques on magnetic
dipole (J 5.69, Pg 189)

F =V(m-B)

Note that this implies that the dipole
likes to go to regions of high field. The
torque is (J 5.71, Pg 190):

N =m x B(0)

giving a potential energy (J 5.72, Pg
190):

U=-m B

Legendre Polynomial derivative (J
5.47, Pg 184)

[\/1_33131 ]—zz+1)pl( )

Magnetic moment
sity/Magnetization (J 5.53,
186)

den-
Pg

5 (@ x J())

so that the magnetic moment of a local-
ized current distribution is the integral
(J 5.54, Pg 186):

%/m’ x J(x')d*s'

Magnetization (J 5.76, Pg 192)
=2 Nifmi)

Effective current density (J 5.79,
Pg 192)

M(z) =

m =

Ju=VxM

so that the curl of the macroscopic mag-
netic field is due to the flow of free charge
and the effective current density due to
the material magnetic moment (J 5.80-
51, Pg 192):

VxB=pu(J+VxM)

Magnetic field (Macroscopic) (J
5.81, Pg 192)

B
H=—-M

Ho
so that the macroscopic equations are (J
5.82, Pg 193):

VxH=J
V-B=0

where J refers to the free charge current
density.
Linear magnetostatics (J 5.84, Pg
193)

B=uH
M =x,H

where pu = p,po.
H and B field boundary conditions
- general (J 5.86-87, Pg 194)

(BQ—Bl)’n,:O
TLX(HQ*Hl):K

where n points from region 1 to region
2. The second condition can be written

(LN 5.72, Slide 302):
H2 — H1 =Kxn

H and B field boundary conditions
- linear media (J 5.88-89, Pg 194)

Bg-n:Bl~n

BQX?’L:MileTL
i1

H2~n:M—lHl~n
142
HQX’I’L:HlX’I’L

Note that for systems with spherical
symmetry, these boundary conditions
can be stated as (J 5.119, Pg 202):

Hy is continuous

0D 0%y
00 00 -
B, is continuous
0Py 0D
— - or — Ht or

T+

Magnetic scalar potential (J 5.93,
Pg 195) For J = 0 in some finite region
of space that is simply connected, de-
fine the scalar potential:

H=-Vdy

For linear media, the divergence is given
by V-B=0 = V-H = 0so0 &), sat-
isfies the Laplace Equation: V2®,, = 0.
Multipole expansion of vector po-
tential (Coulomb Gauge) (LN 5.91,
Pg 312)

o 1 3
47rrzrl/d J(r

Note there is no | = 0 monopole term
since there are no magnetic monopoles.
Hard Ferromagnets (J 5.95-98, Pg
196) M given, J = 0. Then we have
the magnetostatic Poisson equation:

"} Py(cos)

VQ(I)M = —PM
and effective magnetic charge density:

py=—-V-M



and effective magnetic surface-charge
density:

O’]y]:’an

giving a scalar potential solution (J
5.100, Pg 197) with outward pointing
normal:

LY@
|z — 2|

"da'

|z — |

1 [ n'M(x
4r S

with asymptotic behavior of a dipole
with m = [ Md®z:
m-x

oy(z) 5 2T
(@) 43’

|z — x| — oo

Vector potential of hard ferromag-
nets (J 5.103, Pg 197)

po [ V' x M(w’)d%,
47 | — x|
M (x') x n/da’

|z — |

A(x) =

Lt
ar Jg
Observe that V x M is the effective mag-
netic current density and M x n is the
effective magnetic surface current den-
sity.
Uniformly magnetized sphere us-
ing magnetic scalar potential (J
Pg 198) can be solved using the mag-
netic scalar potential from the surface
magnetic-charge density:

om =n-M = Mycosb

giving a potential everywhere of (J
5.104, Pg 198):

DPpr(r,0 ~Mopa®—= cosf

Mm(r,0) = 3 0 =]
where 7., r~ are the minimum or max-
imum of (r,a) respectively. Inside the
sphere:
1 2
Hy, =M, By ==""M

3 3

Outside the sphere, the potential is that
of a dipole with:

dma®
3
to 3(m - 7)F —m
Ar r3

M

m =

Bout =

Uniformly magnetized sphere us-
ing magnetic vector potential (J Pg
199) The volume current density V x M

vanishes but the surface current density
is non-vanishing:

M xn' = Mysin6'¢

Letting the field point be in the xz plane
¢ = 0, the vector potential only has an
azimuthal component (J 5.109, Pg 199):

/ /
HO Mo /dQ,smG cos ¢

A
o o=

and expanding the distance term in
spherical harmonics gives only the [ =
1,m =1 term that survives (J 5.111, Pg
200):

Ag(x) = 3 Mo (:i) sin 0
Magnetization of linear paramag-
netic or diamagnetic substance (J
5.115, Pg 200) Inside an object placed
in a uniform field By = poHy (J 5.112,
Pg 200),

2
B, = By + gOM

g B M
Ho 3

which for linear media B;, = uH;,

yields a magnetization (J 5.115, Pg 200):

3 _
M_Ci%>%
Ho \ K+ 20
In general, and even for ferromagnets,

the following relation holds (J 5.116, Pg
200):

By, + 2puoH;, = 3By

Spherical shell magnetic shielding
(J Pg 201-203) Let there be a spheri-
cal shell of inner and outer radii a,b of
permeability u placed in a uniform mag-
netic induction By. The effect of the
shell is to introduce a dipole field out-
side the shell with moment (J 5.121, Pg
202):

(2pr + 1) (pr — 1)
(2pr + 1) (pr +2) = 2(pr — 1)%a? /03
(b3 — a3)H0

o] =

and the H-field inside the cavity is uni-
form, pointing in the direction of Hj
with magnitude:

]
@rr + D)(jar +2) = 201, — 1)%a? /63

In the limit pu > pg, we have:

_5 =

o] — b3H0

o

7 = )

Hy

and the internal field vanishes as 1/ de-
creases.

Magnetic energy Let the vector po-
tential change by J A(x) due to external
sources. The work done by the external
sources is (J 5.144, Pg 213):

SW = /5A-Jd3a:

In terms of the magnetic field for local-
ized field distributions (J 5.147, Pg 214):

SW = /H~5Bd3z

The total magnetic energy for linear me-
dia is (J 5.148, Pg 214):

W:%/H-Bd?’x

which can be written as (J 5.149, Pg
214):

W:%/J-Ad?’x

Energy change due to object in
field Let the original medium have
1o, Bo and with the object in place, let
the fields be B, H. Then the change in
energy is:

1

sz/ (B-Hy— H - By)d*x
2 Jv,

and if po is the free space value, (J 5.150,
Pg 214):
1

W=_

M - Byd®z
2 Vl

Self and mutual inductance energy
contribution (J 5.152, Pg 215)

ZL 12+ZZM,JII

i=1 j>1

Explicitly, the coefficients are (J 5.154-
155, Pg 215):

el
(’)

M;; = ddl dd/ L j
i 471']]/ z/ -

_w’|

HoFor planar circuits, we make the sub-

stitution Jd*z = Jydadl and write the
expressions in terms of the vector poten-

tial. The end result is (J 5.156, Pg 216):

1
—Fyj

Mij = T
J



where Fj; is the magnetic flux from cir-
cuit j linked within circuit ¢:

Fij :/ Bj -nda
Si

Estimating  self-inductance (J
5.157, Pg 216)
1 B-B
== | —dz
12 1

Vector potential diffusion equation
(J 5.160, Pg 219)

oA
V2A = po =
Ho ot

with characteristic time for the decay of
an initial field configuration over a spa-
tial lengthscale L (J 5.161, Pg 219):

7= O(uoL?)

Transverse and longitudinal cur-
rent (J 6.27-28, Pg 242)

1 v J
J=——V A3z’
! 47 /|:B—a:’| *
1
Jtz—VxVx/ J 3z’
47 |z — a'|

so that:

V x Jl =0
V- -J,=0
Helmholtz wave equation (J 7.3,

Pg 296) For EM waves with harmonic
time dependence e~ *?.

(V2 + pew®)E =0
(V2 + pew?)B =0

where p = popr, € = €€y, giving disper-
sion relation (J 7.4, Pg 296):

k= /pew

EM wave amplitude relations (J Pg
297) Let:

E(a:,t) _ Seiknm—iwt
B(a:,t) — Beikn-m—iwt

Then (J 7.11, Pg 297):

B=./uen x £
H=nxE/Z

where Z = /£ is the impedance. The
free space impedance is 376.7¢).
Further relations are (LN 9.23, Pg 494):

B-lixe
v
E=—vkxB

Poynting vector (J Pg 298) The rate
of mechanical work done by fields is (J
6.110, Pg 260):

dEmech :/ J- Ed3LI,‘
dt v

and the total field energy is (6.112, Pg
260):

Efiola = 2 / (E? + 2B?)dx
2 Jv
The Poynting vector is defined (J 6.109,
Pg 259):
S=ExH

and satisfies the energy conservation
equation (J 6.108, Pg 259):

ufield
— -S=-J-E
5 +V
or in integral form (J 6.111, Pg 260):
d

@(Emech + Efield) = *% n - Sda
S

Its average value is:
1
(S) = 5%(E x H*)

For a plane wave,

S = Cufieldl;'
Ohm’s law
J=0cF
K = O'DE

so that the rate of energy dissipation
(rate of change of mechanical energy
without fields coming in or out):

Pricen :/ J - Edr
1%

Pmech = / K - Eda
S

Time-averaged energy density (J
Pg 298)

1 1
w=-= (eE~E*+B-B*> = S|B?
4 o 2

We can also write this as (J 6.106, Pg
259):

1

Electromagnetic momentum (J Pg
260-261) The mechanical momentum is
(LN 8.36, Pg 472):

Pmech = PmU

where p,, is the mass density and ¢ is
the velocity field. The rate of change of
mechanical momentum (associated with
particles) is (J 6.114, Pg 260):

deech

= E B)&?
i /V(p +J x B)d’x

because the force per unit volume is (G
8.14, Pg 362):

f=pE+JxB

The electromagnetic momentum density
is (J 6.118, Pg 261):

1 S
gzg(EXH):ngO(EXB)

so that (J 6.117, Pg 261):
Picia = [o€o / E x Hdz = / gd’z
\4 |4

The local conservation law is (G 8.30, Pg
367), without any changes in mechanical
momentum:

99 _

=Vv.T
ot v-L

Angular momentum density (G
371)

l=rxg=e¢lrx(ExB)]

Maxwell Stress Tensor (J 6.120, Pg
261)

Top = €0 {EaEﬁ + *BoBgs — 5“‘7‘3(152 + 6232):|
so that (J 6.122, Pg 261):
d(Pmech + Pfield):| %
= Topngda
e ten] < 5

d(Pmech + Pfield) _ % dan - T
dt T A

0
— @ 7=V -T
at(pmech+g) \Y =

where n is the outward normal to S.
Using Griffith notation:

8 F? 1 5:; B2
111']' = €0 (E;EJ - 7]2 ) + % (BqBJ - 7]2

For a plane wave moving in the Z direc-
tion with polarization in Z, only the 22



term (i.e. T33) is non-zero (LN 9.34-35,
Pg 498-499):

L e = —u(t)2z

T oone = —kkeE2 cos®(k - r — wt + 6)
The force per unit volume, mechanical
momentum per unit volume, and total
EM force can be written as (G 8.19-20,
Pg 363):

oS

=VvV.-T— =
v.-T €0,Lbo(9

ot = t
F:%I-da—eoﬂoi/SdT
s dt Jy

Tensor operations (LN 8.33, Pg
470)

aﬁmech

a - z = Z aiﬂjfj
z' a = Z fiTijaj
J
.0
Radiation pressure (LN 9.36, Pg
499) for a perfect absorber
P = u(t)

General polarization state (J 7.19,
Pg 299)

E(:c,t) = (€1E1 + GQEQ)eik‘m_th

Circular polarization (J Pg 300)
Define the complex orthogonal unit vec-
tors

1
= 7(61 + i62)

V2

satisfying orthonormality relations:

€+

€L -ex =0
€l -e3=0
€ e =1

so that the general polarization state can
be written as a superposition of circular
polarization states:

E(wvt) = (E+6+ + E_e_)eik'm—iwt

Let % = re'®. Then the polarization

ellipse axes satisfy:

4
b

|1+
T l1-r

and the electric field ellipse is rotated
anticlockwise (looking into the wave)

from €; by angle a/2.
EM waves at interfaces Snell’s law:

nqsinf; = ngsin 6,

as a consequence of LN Pg 513:

— —

§-ki=58 k=5 Fk

where § is a tangential unit vector.
Fresnel equations (LN Pg 518-520)
Define:
o cos 0 >0
cos 0;
Z
Rz

B8 >0

At normal incidence, o = 1. If p; = pa,
then:
N2

B=

ni

For TM (E parallel to plane):

Ey, a-8
Ey; a+p
Eoy 2

Eo; a+f

For TE (E perpendicular to plane):

EOJ. B 1—af
Eo; 1+ap
Eoy 2

Ey: l+ap

Power reflection coefficient (LN Pg
529)

1c
. ==
727

2
Ej cos 0

Hence we need to multiply by the
impedances and cosines to get the power
ratios:

Brewster’s angle (LN 9.104, Pg
525) for 1 = po.

n
tanfp = -2

ni

Otherwise, solve for the case where the
plane-polarized coefficient vanishes.
Wave equation in conducting me-
dia (LN 9.122-123, Pg 533)

0’E OFE

°E = en—— ot
v i o +ou 5
0’B 0B

’°B = eyu—— -
v i BT +op 5

Conducting matter wavenumber
(LN 9.124-126, Pg 534)

k-k= e’ + o pw
k| =k +ix
See LN 534 for the full expression.

Good and bad conductors (LN Pg
541)

o
Poor: — <1
€w

Good: z >1
€w

Conductor boundary conditions

(LN 9.159-160, Pg 546)

- [ElEl — EQEQ] =0f
f-[By—By] =0
§-[Ey—Ey] =0

B,

§~LL1—M2]:(Kf><ﬁ)-§

Square rooting Suppose k-k = R+iS.
Then

Vik-k=k+ik
2
V1t +1

1+3 -1

k=vVR

-

K=VR

Plasma frequency (LN 9.203, Pg
561)

2 NZq?
w, =

meg

where Z is the number of electrons per
site.



Two-conductor transmission line
(HM 7.2-7.4, Pg 226-227) For a re-
sistanceless line,

0Av

101

ot COz

g 7718Av

ot L 0z
92 Av

022

i
ot?

The characteristic impedance is (HM
7.11, Pg 228):

L Av(z,t)
ZO — _= —
C I(z,t)
The current is in phase with the voltage
wave for this resistanceless line. For a

mismatched output load impedance at
z =, use the ansatz:

v(z,t) = Vielthzwt) Ly gil=hz—wt)
i(z,t) = I e'ks=wt) 4 [ eil=ke—wt)

the input (generator) impedance is (HM
7.17, Pg 229):

7 _ U(O, t) _ Zo Zload — iZ() tan kl
gen 1(0,¢) Zo — 1 Zjpaq tan ki

Note that when Zjoqq = Zo, then Zge,, =
Zo. The amplitude reflection coefficient

r and power reflection coefficient R are
(HM 7.18-19, Pg 229):

Vee ™ Zioa — Zo
V+€ikl B Zioad + Zo
Zload — %o 2
Zioad + Zo

T =

Transmission line properties (LN
9.216, Pg 572)

1 1
V= —

VIC e

Transmission line junction reflec-
tion and transmission (LN 9.242-
243, Pg 583) Amplitude coeflicients:

. =7
r = -
o+ 24
i 22
T I+ Zy

Power coefficients:

P 2
R= <2Z1>
Zy+ 2y

- ( 27, )2
T Zy \Zy + Zy

Transmission line power (LN 9.237,
Pg 581)

o 1 * o 1|V0|2
P = 5%(10‘/0) =570

Waveguide nomenclature (J 8.2)
Write the electric field in its parallel and
transverse components:

E,=ZF,
E.=(:(xE)xz

Conducting plane waveguide (HM
231-234) with free space inside. The
TE wave electric field is given by:

EO _ i,Ege—iwtei(koq‘—wt)

_ aAngefiwteiko(fy cos Bp+zsin )

where 6 is the angle from the normal,
and the wave is taken to propagate in
the negative § and positive Z direction.
If the conducting planes are b apart, the
quantization condition to make the elec-
tric field vanish at each plate it:

kobcosOy =nm, n=1,2,3,...

and the cut off frequency for the mth

mode is:

_»
_’I'L

Ac

The effective wavelength in the Z direc-
tion of propagation is called the guide
wavelength:

Ao
sin 90

Ag =

where A\ = i—z = 27% is the free-space

wavelength. The wavenumber relations
satisfy:

kg = k2 + k]
The velocities of the wave are:

Up =

Siﬂ@o
ug = csinfpy < c

upty = c?
In general (J 8.54, Pg 364):
Uplg = —

because wAw o kAk.
Hollow conductor waveguide (HM

235-238) Define the transverse Lapla-
cian operator:

2 02 , O
T =Y T a2

v2
t ayg

s

Consider the complex ansatz inside the
hollow region:

E = EQ(J»', y)ei(kngwt)
B = BO<$7 y)ei(kgz—wt)

Then Maxwell’s equations are equivalent
to the two-dimensional Helmholtz equa-
tion:

(Vi+k2)E)=0
(Vi+k2)By=0

where k2 = 42 = kfu —k? = wlep — K?
(LN 9.268, Pg 592). k., (or ko) is the
unconfined wavenumber, while k (or k)
is the wavenumber for propagation on
the z direction.

The transverse components of the fields
can be obtained from the longitudinal
components (holds for all modes):

i 0B? OE?
EO — L z z
k2 (ko Oy kg 8:6)
o 0 oB? OE?
5= (4%,
o i OE? oB?
&‘%<%ay%ax
o i (, OE? dBY
By = k2 (ko Ox kg Ay

These can be combined to give (J
8.26ab, Pg 358):

E, = m [kV.E. — w? x V,B.]
Bt = !

- m [kV¢B. + pewz x Vi E.]

Types of modes (HM 238-240)
TE: E? =0, BY # 0 and:

32
VB! = ——£ By
g

kg .
BtO = kfg(z X EtO)
0

1k,
Y v E
Zn ko (2 x Ero)

(Vi+EkHB =0

Hy =




TM: BY =0, EY # 0 and:

k’2
VB = e gy,
kg
kg .
EtO = 7]67(2 X BtO)
0
1 k
Hy =22 xE,
0t ZE# L 0t

(Vi +k)E =0
Both TE and TM (J 8.31-32, Pg
359):

1
Ht:i QXEt

— 13
7 = {m_ \/> ™

., TE

ozl "

k k

where the + comes from the sign in
e:i:ikz.

TEM modes satisfy: (J Pg 358)
Vix E; =0
vV, E, =0

with dispersion relation:

k= ko = w\/Jic

and field relation:

Bt = iw//LE,% X Et

R 1
H()t =z XEOtZ

en

Alternative formulation of Modes
from Jackson (J Pg 360) For TM:

E _wezl:ikz
L, =

ik
Et = i?viﬂb

For TE:
Hz — ¢e:|:ikz
ik
Ht == :‘:?Vﬂp

where v and v satisfy:
v = pew? — k%2 >0
(Vi+7*) =0

with boundary condition:

Yls =0, TM
9% =0, TFE
on|g
Y, A = 1,2,3... is quantized, and this

gives the wavenumbers for each value of

A

kS = pew? =3

The frequency when k) = 0 is the cutoff
frequency:

= k) = ey w? —wi

The last equation above is the dispersion
relation.

Waveguide boundary conditions
(HM 7.65-66, Pg 239)

nx Elg=0
n-Blg=0
or:
BO
9B, =0, wuseful for TE
on
E2|S:0, useful for TM

TE and TM dispersion relation
(LN 9.276, Pg 601) and cutoff fre-
quency
S =, 47
We,n = VepTn

so that the propagation constant is:

2
wc,n

2

kp(w) =kept/ 1 — "

Rectangular waveguides (HM 240-
245)

BY = B cos Y cos %, TE
Eg = EYsin mre sin %, ™
a

(these are the 1) scalar fields in Jackson)
with cutoff frequency:

m2 n2

Note that the lowest mode in TE is T E1q
while the lowest mode in TM is T M.
EM fields in Finite conductivity
media (J S8.1)

Winn, = Ck. = TC

Hc ~ H”67§/56i£/6

[ Hw N A —€/8 i£/8
EC~1/%(1—z)anHe £/9 it/

where E., B. are the fields inside the
conductor, £ is the normal coordinate
into the conductor, and ¢ is the skin

depth:
[ 2
0=y —
Hwo

H) is the tangential magnetic field out-
side the surface, which is continuous
across the interface because the bound-
ary conditions are:

for unit normal 7 pointing outward from
the perfect conductor into a perfect non-
conductor.

The tangential electric field outside the
conductor is:

and the current density near the surface
is:

1
which gives an equivalent surface cur-
rent density:

1—d)(f x Hjj)e $(=0/9

Keff:/o Jd§=n><H||

There is a power flow into the conduc-
tor since the Poynting vector is nonzero
at the surface. The power loss per unit
area is:

dP 1
uwé
= |Hy|?
1
- — |K,
555 il

Integrating the power loss along the cir-
cumference of the waveguide gives the
power loss per unit transmitted distance
(J 8.58, Pg 364):

_ar
- 2(75]{|n><11| dl
Transmitted power (J 8.51, Pg
363)
€ w > w?
Pry = - -2 *3hd
e () i [
2 2
H d WX *
Prp = L) qf1- 22 d
TE 2\/;E(w,\> w2 AIZJI//CL

where we integrate over the cross-
sectional area of the waveguide.

Waveguide mode power (LN 9.306-
307, Pg 617) Cross-terms between
modes vanish when integrated over the
cross section. Hence the power is just



the weighted average of individual mode 11.61-65)

powers:
8<x/)(l
Al o AB
Z |CT]M 2 PTE + Z |CTE| PTE> ( ) B
m (B/) - 8:55
Th lation holds f d T oA
e same relation holds for energy den- o
sity U. (F’)O‘B _ o(z') a(x/(zﬁFyé
Energy density of waveguide (J Iy 8x6
8.52, Pg 364) (G = O0z? Oz G
P 3y a(a)p T
(x> Oz°
€ AN y
Urnm = 3 (> /1/) Yda (H')§ = Oz 8(x/>BH6
uf w
Urg == — / V*1)da Four vector dot product
2 W) A
Waveguide mode group velocity B-A=Ba.A
LN 9.130, Pg 618
( T8 ) Four-vectors (LN)
dw w?
Vgin = o = v\ 1 — _(2 9 90 9
P kg (W) : w? O = ((97"07 orl’ or2’ ord
2
The group velocity relates the power and 02 = 0,,0" = %872 B v2
energy density: c? Ot
v =5(e, U)
(Pn) = vg,n(W)(Un) JH = (pc, pv)
vV -
Gauge transformation (LN 10.16, Al = (c’A
Pg 637) I
F.-¥ 5
FF =~ < ,F)
A— A+ VA ¢
oA
V=V-— Fn Kronecker Delta
(e}
Retarded potentials (LN 10.46, Pg oa" =43
648) O .
goryg’Y = 5(1
1 p(r',tr)
Vi(rt)= 47T60 / dr’ ‘1, _r | Lorentz transform In matrix form:

ATgh =g

=i [
Tt |r — 7|

here the retarded time is:
WHOTE The tetarded thie 18 notation (LN 12.36, Pg 783):

-7

=t — v v Ao
tr =1 c Fr = AYAYF

Four-vector transformation (J Field tensors and components (LN

where ¢ is the metric tensor. In tensor

Pg 783-784)
FAY = ghAY — o A
Fi0— _ 0 — &
c
F9 = —€;;1. By,

BiB;iF = —BiBj€ijn By = 0

1
GW = 7€;LV)\O'F>\U

2
G — 00 _
GII = Fii =
GI'=_-GY =R

1
GY = b

Transformation of fields (LN 12.54,
Pg 787)
By = E
By = By
EJ_ZW[EJ_—TfX EL]
A _, 1 _,
BL—’)/[BL+217><EL:|
c

where i, 7, k,l only run over 1,2,3.
Tensor identities (LIN)

€ijk€ijm = 20km
€ikBrB =0

Key four-vector equations (LN)

Charge conservation: 9,J" =0

Wave equation: 024 = Moi

Lorenz gauge: 9,A" =0
CQF FHY — E2 QBQ
~5Fuw —F2_¢
c , = =
~ FuG" = E-B

dp™
Force: 2 — qF* v,
dr

Maxwell’s equations (LN 12.80, 82,
Pg 794)

O™ = g J"
8,G" =0



