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Notation: G - Griffiths, Introduction to Electrodynamics, 4th Edition. J - Jackson, Classical Electrodynamics, 3rd edition.
LN - Lecture Notes. HM - Heald and Marion, Classical Electromagnetic Radiation.

Maxwell’s Equations (J 6.6, Pg
238)

∇ ·D = ρ

∇×H = Jf +
∂D

∂t
∇ ·B = 0

∇×E +
∂B

∂t
= 0

Effect of magnetic monopoles
Maxwell’s equations (where the unit of
magnetic charge is the Ampere-meter):

∇ ·E =
ρe
ε0

∇ ·B = µ0ρm

∇×E = −∂B
∂t
− µ0jm

∇×B = µ0ε0
∂E

∂t
+ µ0je

and Lorentz force law:

F = qe(E + v ×B) + qm

(
B − v × E

c2

)
Misc vector identities LN Pg 596:

a · (b×∇) = (a× b) · ∇

Volume integrals (J Theorems
from Vector Calculus) Let n be the
outwardly directed normal unit vector.∫

V

∇ψd3x =

∫
S

ψnda∫
V

d3x(∇×A) =

∮
S

da(n̂×A)

Surface integrals (J Theorems from
Vector Calculus)∫

S

n×∇ψda =

∮
C

ψdl

Charge conservation (J 5.2, Pg
175)

∂ρ

∂t
+∇ · J = 0

Under magnetostatics, we take ∂ρ
∂t =

0, hence: ∇ · J = 0.
Biot-Savart Law (J 5.4, Pg 175)

dB =
µ0I

4π

dl× x
|x|3

where x = r − r′. Integrating (J 5.14,
Pg 178):

B(x) =
µ0

4π

∫
J(x′)× x− x′

|x− x′|3
d3x′

and by using the gradient of a recipro-
cal and integrating by parts (J 5.16, Pg
179),

B(x) =
µ0

4π
∇×

∫
J(x′)

|x− x′|
d3x′

which is clearly divergence-free.
Infinite straight wire magnetic in-
duction (J Pg 217)

Bφ =
µ0I

2πa

ρ<
ρ>

where ρ< = min(a, ρ).
Force between two wires (J 5.10,
Pg 178) The force on closed loop 1 due
to closed loop 2 is:

F12 = −µ0

4π
I1I2

∮ ∮
(dl1 · dl2)x12

|x12|3

where x12 is the vector distance from dl2
to dl1.
Force and torque on current distri-
bution (J 5.12-13, Pg 178)

F =

∫
J(x)×B(x)d3x

N =

∫
x× (J ×B)d3x

Ampere’s Law (Magnetostatics) (J
5.22, 5.25)

∇×B = µ0J∮
C

B · dl = µ0I

Magnetic vector potential (J 5.27-
28)

B(x) = ∇×A(x)

A(x) =
µ0

4π

∫
J(x′)

|x− x′|
d3x′ +∇Ψ(x)

where the gradient indicates the gauge
freedom of the vector potential.
Gauge transformation (J 6.12-13,
Pg 240)

A→ A+∇Λ

Φ→ Φ− ∂Λ

∂t

Coulomb gauge (J Pg 181)

∇ ·A = 0

This gauge makes the scalar potential
satisfy (J 6.22, Pg 241):

∇2Φ = − ρ

ε0

so that the scalar potential is the instan-
taneous Coulomb potential due to the
charge density. The vector potential sat-
isfies (J 6.30, Pg 242):

∇2A− 1

c2
∂2A

∂t2
= −µ0Jt

where Jt is the transverse current. Note:
V must be time independent in order to
use the above equation (see LN Pg 638).
The magnetic vector potential under the
magnetostatic case becomes:

A(x) =
µ0

4π

∫
J(x′)

|x− x′|
d3x′

Under the Coulomb gauge, the vector
potential is continuous across bound-
aries (LN 5.74, Pg 304):

A2(r) = A1(r)

The normal derivative of the normal
component of A also does not change
(LN 5.79, Pg 306):

∂(A1)n
∂n

∣∣∣∣
r

=
∂(A2)n
∂n

∣∣∣∣
r

The tangential derivatives of A are also
continuous across a boundary (LN 5.84,
Pg 308):

ŝ · ∇[A2(r)−A1(r)] = 0

Lorentz Gauge (J 6.14, Pg 240)
Choose ∇ ·A so that:

∇ ·A+
1

c2
∂Φ

∂t
= 0

which gives the decoupled wave equa-
tions for the potentials (J 6.15-16, Pg
240):

∇2Φ− 1

c2
∂2Φ

∂t2
= − ρ

ε0

∇2A− 1

c2
∂2A

∂t2
= −µ0J
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We use the d’Alembertian with +,-,-,-
metric:

�2V =
ρ

ε0

�2A = µ0J

�2 = ε0µ0
∂2

∂t2
−∇2

Current distributions Loop of radius
a lying in xy plane (J 5.33, Pg 181):

Jφ = I sin θ′δ(cos θ′)
δ(r′ − a)

a

Current distribution of moving particles
(J pg 187):

J =
∑
i

qiviδ(x− xi)

m =
1

2

∑
i

qi(xi × vi) =
∑
i

qi
2Mi

Li

Magnetic dipole field (J 5.41, Pg
183) far away from the loop

Br =
2µ0m cos θ

4πr3

Bθ =
µ0m sin θ

4πr3

where m = Iπa2 is the magnetic dipole
moment. In coordinate-free notation (J
5.56, Pg 186):

B(x) =
µ0

4π

[
3n̂(n̂ ·m)−m

|x|3

]
To account for the dipole itself, we can
add a delta function contribution (J
5.64, Pg 188):

µ0

4π

[
3n̂(n̂ ·m)−m

|x|3
+

8π

3
mδ(x)

]
If the current loop is not planar, the
magnetic dipole moment will be smaller
than if it were planar (LN 5.108, Pg
318):

mloop =
I

2

∮
C

(r′ × dl′(r′))

Vector potential due to dipole (J
5.55, Pg 186)

A(x) =
µ0

4π

m× x
|x|3

Forces and torques on magnetic
dipole (J 5.69, Pg 189)

F = ∇(m ·B)

Note that this implies that the dipole
likes to go to regions of high field. The
torque is (J 5.71, Pg 190):

N = m×B(0)

giving a potential energy (J 5.72, Pg
190):

U = −m ·B

Legendre Polynomial derivative (J
5.47, Pg 184)

d

dx

[√
1− x2P 1

l (x)
]

= l(l + 1)Pl(x)

Magnetic moment den-
sity/Magnetization (J 5.53, Pg
186)

M(x) =
1

2
(x× J(x))

so that the magnetic moment of a local-
ized current distribution is the integral
(J 5.54, Pg 186):

m =
1

2

∫
x′ × J(x′)d3x′

Magnetization (J 5.76, Pg 192)

M(x) =
∑
i

Ni〈mi〉

Effective current density (J 5.79,
Pg 192)

JM = ∇×M

so that the curl of the macroscopic mag-
netic field is due to the flow of free charge
and the effective current density due to
the material magnetic moment (J 5.80-
51, Pg 192):

∇×B = µ0(J +∇×M)

Magnetic field (Macroscopic) (J
5.81, Pg 192)

H =
B

µ0
−M

so that the macroscopic equations are (J
5.82, Pg 193):

∇×H = J

∇ ·B = 0

where J refers to the free charge current
density.
Linear magnetostatics (J 5.84, Pg
193)

B = µH

M = χmH

where µ = µrµ0.
H and B field boundary conditions
- general (J 5.86-87, Pg 194)

(B2 −B1) · n = 0

n× (H2 −H1) = K

where n points from region 1 to region
2. The second condition can be written
(LN 5.72, Slide 302):

H2 −H1 = K × n

H and B field boundary conditions
- linear media (J 5.88-89, Pg 194)

B2 · n = B1 · n

B2 × n =
µ2

µ1
B1 × n

H2 · n =
µ1

µ2
H1 · n

H2 × n = H1 × n

Note that for systems with spherical
symmetry, these boundary conditions
can be stated as (J 5.119, Pg 202):

Hθ is continuous

=⇒ ∂ΦM
∂θ

∣∣∣∣
r−

=
∂ΦM
∂θ

∣∣∣∣
r+

Br is continuous

=⇒ µ−
∂ΦM
∂r

∣∣∣∣
r−

= µ+
∂ΦM
∂r

∣∣∣∣
r+

Magnetic scalar potential (J 5.93,
Pg 195) For J = 0 in some finite region
of space that is simply connected, de-
fine the scalar potential:

H = −∇ΦM

For linear media, the divergence is given
by ∇·B = 0 =⇒ ∇·H = 0 so ΦM sat-
isfies the Laplace Equation: ∇2ΦM = 0.
Multipole expansion of vector po-
tential (Coulomb Gauge) (LN 5.91,
Pg 312)

A =
µ0

4π

1

r

∞∑
i=1

1

rl

∫
V

d3x′J(r′)(r′)lPl(cos γ)

Note there is no l = 0 monopole term
since there are no magnetic monopoles.
Hard Ferromagnets (J 5.95-98, Pg
196) M given, J = 0. Then we have
the magnetostatic Poisson equation:

∇2ΦM = −ρM

and effective magnetic charge density:

ρM = −∇ ·M
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and effective magnetic surface-charge
density:

σM = n ·M

giving a scalar potential solution (J
5.100, Pg 197) with outward pointing
normal:

ΦM (x) = − 1

4π

∫
V

∇′ ·M(x′)

|x− x′|
d3x′

+
1

4π

∮
S

n′M(x′)da′

|x− x′|

with asymptotic behavior of a dipole
with m =

∫
Md3x:

ΦM (x)→ m · x
4πr3

, |x− x′| → ∞

Vector potential of hard ferromag-
nets (J 5.103, Pg 197)

A(x) =
µ0

4π

∫
V

∇′ ×M(x′)

|x− x′|
d3x′

+
µ0

4π

∮
S

M(x′)× n′

|x− x′|
da′

Observe that∇×M is the effective mag-
netic current density and M × n is the
effective magnetic surface current den-
sity.
Uniformly magnetized sphere us-
ing magnetic scalar potential (J
Pg 198) can be solved using the mag-
netic scalar potential from the surface
magnetic-charge density:

σM = n ·M = M0 cos θ

giving a potential everywhere of (J
5.104, Pg 198):

ΦM (r, θ) =
1

3
M0a

2 r<
r2
>

cos θ

where r<, r> are the minimum or max-
imum of (r, a) respectively. Inside the
sphere:

Hin = −1

3
M , Bin =

2µ0

3
M

Outside the sphere, the potential is that
of a dipole with:

m =
4πa3

3
M

Bout =
µ0

4π

3(m · r̂)r̂ −m
r3

Uniformly magnetized sphere us-
ing magnetic vector potential (J Pg
199) The volume current density∇×M

vanishes but the surface current density
is non-vanishing:

M × n′ = M0 sin θ′φ̂

Letting the field point be in the xz plane
φ = 0, the vector potential only has an
azimuthal component (J 5.109, Pg 199):

Aφ(x) =
µ0

4π
M0a

2

∫
dΩ′

sin θ′ cosφ′

|x− x′|

and expanding the distance term in
spherical harmonics gives only the l =
1,m = 1 term that survives (J 5.111, Pg
200):

Aφ(x) =
µ0

3
M0a

2

(
r<
r2
>

)
sin θ

Magnetization of linear paramag-
netic or diamagnetic substance (J
5.115, Pg 200) Inside an object placed
in a uniform field B0 = µ0H0 (J 5.112,
Pg 200),

Bin = B0 +
2µ0

3
M

Hin =
B0

µ0
−M

3

which for linear media Bin = µHin

yields a magnetization (J 5.115, Pg 200):

M =
3

µ0

(
µ− µ0

µ+ 2µ0

)
B0

In general, and even for ferromagnets,
the following relation holds (J 5.116, Pg
200):

Bin + 2µ0Hin = 3B0

Spherical shell magnetic shielding
(J Pg 201-203) Let there be a spheri-
cal shell of inner and outer radii a, b of
permeability µ placed in a uniform mag-
netic induction B0. The effect of the
shell is to introduce a dipole field out-
side the shell with moment (J 5.121, Pg
202):

α1 =

[
(2µr + 1)(µr − 1)

(2µr + 1)(µr + 2)− 2(µr − 1)2a3/b3

]
·(b3 − a3)H0

and the H-field inside the cavity is uni-
form, pointing in the direction of H0

with magnitude:

−δ1 =
9µr

(2µr + 1)(µr + 2)− 2(µr − 1)2a3/b3
H0

In the limit µ� µ0, we have:

α1 → b3H0

−δ1 →
9µ0

2µ(1− a3/b3)
H0

and the internal field vanishes as 1/µ de-
creases.
Magnetic energy Let the vector po-
tential change by δA(x) due to external
sources. The work done by the external
sources is (J 5.144, Pg 213):

δW =

∫
δA · Jd3x

In terms of the magnetic field for local-
ized field distributions (J 5.147, Pg 214):

δW =

∫
H · δBd3x

The total magnetic energy for linear me-
dia is (J 5.148, Pg 214):

W =
1

2

∫
H ·Bd3x

which can be written as (J 5.149, Pg
214):

W =
1

2

∫
J ·Ad3x

Energy change due to object in
field Let the original medium have
µ0,B0 and with the object in place, let
the fields be B,H. Then the change in
energy is:

W =
1

2

∫
V1

(B ·H0 −H ·B0)d3x

and if µ0 is the free space value, (J 5.150,
Pg 214):

W =
1

2

∫
V1

M ·B0d
3x

Self and mutual inductance energy
contribution (J 5.152, Pg 215)

W =
1

2

N∑
i=1

LiI
2
i +

N∑
i=1

N∑
j>i

MijIiIj

Explicitly, the coefficients are (J 5.154-
155, Pg 215):

Li =
µ0

4πI2i

∫
Ci

d3xi

∫
Ci

d3x′i
J(xi) · J(x′

i)

|xi − x′
i|

Mij =
µ0

4πIiIj

∫
Ci

d3xi

∫
Cj

d3x′j
J(xi) · J(x′

j)

|xi − x′
j |

For planar circuits, we make the sub-
stitution Jd3x = J‖dadl and write the
expressions in terms of the vector poten-
tial. The end result is (J 5.156, Pg 216):

Mij =
1

Ij
Fij
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where Fij is the magnetic flux from cir-
cuit j linked within circuit i:

Fij =

∫
Si

Bj · nda

Estimating self-inductance (J
5.157, Pg 216)

L =
1

I2

∫
B ·B
µ

d3x

Vector potential diffusion equation
(J 5.160, Pg 219)

∇2A = µσ
∂A

∂t

with characteristic time for the decay of
an initial field configuration over a spa-
tial lengthscale L (J 5.161, Pg 219):

τ = O(µσL2)

Transverse and longitudinal cur-
rent (J 6.27-28, Pg 242)

Jl = − 1

4π
∇
∫
∇′ · J
|x− x′|

d3x′

Jt =
1

4π
∇×∇×

∫
J

|x− x′|
d3x′

so that:

∇× Jl = 0

∇ · Jt = 0

Helmholtz wave equation (J 7.3,
Pg 296) For EM waves with harmonic
time dependence e−iωt.

(∇2 + µεω2)E = 0

(∇2 + µεω2)B = 0

where µ = µ0µr, ε = ε0εr, giving disper-
sion relation (J 7.4, Pg 296):

k =
√
µεω

EM wave amplitude relations (J Pg
297) Let:

E(x, t) = Eeikn·x−iωt

B(x, t) = Beikn·x−iωt

Then (J 7.11, Pg 297):

B =
√
µεn× E

H = n× E/Z

where Z =
√

µ
ε is the impedance. The

free space impedance is 376.7Ω.
Further relations are (LN 9.23, Pg 494):

B =
1

v
k̂ × E

E = −vk̂ ×B

Poynting vector (J Pg 298) The rate
of mechanical work done by fields is (J
6.110, Pg 260):

dEmech
dt

=

∫
V

J ·Ed3x

and the total field energy is (6.112, Pg
260):

Efield =
ε0
2

∫
V

(E2 + c2B2)d3x

The Poynting vector is defined (J 6.109,
Pg 259):

S = E ×H

and satisfies the energy conservation
equation (J 6.108, Pg 259):

∂ufield

∂t
+∇ · S = −J ·E

or in integral form (J 6.111, Pg 260):

d

dt
(Emech + Efield) = −

∮
S

n · Sda

Its average value is:

〈S〉 =
1

2
< (E ×H∗)

For a plane wave,

S = cufieldk̂

Ohm’s law

J = σE

K = σ�E

so that the rate of energy dissipation
(rate of change of mechanical energy
without fields coming in or out):

Pmech =

∫
V

J ·Edτ

Pmech =

∫
S

K ·Eda

Time-averaged energy density (J
Pg 298)

u =
1

4

(
εE ·E∗ +

1

µ
B ·B∗

)
=
ε

2
|E0|2

We can also write this as (J 6.106, Pg
259):

u =
1

2
(E ·D +B ·H)

Electromagnetic momentum (J Pg
260-261) The mechanical momentum is
(LN 8.36, Pg 472):

~pmech = ρm~v

where ρm is the mass density and ~v is
the velocity field. The rate of change of
mechanical momentum (associated with
particles) is (J 6.114, Pg 260):

dPmech
dt

=

∫
V

(ρE + J ×B)d3x

because the force per unit volume is (G
8.14, Pg 362):

f = ρE + J ×B

The electromagnetic momentum density
is (J 6.118, Pg 261):

g =
1

c2
(E ×H) =

S

c2
= ε0(E ×B)

so that (J 6.117, Pg 261):

Pfield = µ0ε0

∫
V

E ×Hd3x =

∫
V

gd3x

The local conservation law is (G 8.30, Pg
367), without any changes in mechanical
momentum:

∂g

∂t
= ∇ · T

Angular momentum density (G
371)

l = r × g = ε0[r × (E ×B)]

Maxwell Stress Tensor (J 6.120, Pg
261)

Tαβ = ε0

[
EαEβ + c2BαBβ −

δαβ
2

(E2 + c2B2)

]

so that (J 6.122, Pg 261):[
d(Pmech + Pfield)

dt

]
α

=

∮
S

∑
β

Tαβnβda[
d(Pmech + Pfield)

dt

]
α

=

∮
S

dan̂ · T

⇐⇒ ∂

∂t
(~pmech + ~g) = ∇ · T

where n is the outward normal to S.
Using Griffith notation:

Tij = ε0

(
EiEj −

δijE
2

2

)
+

1

µ0

(
BiBj −

δijB
2

2

)

For a plane wave moving in the ẑ direc-
tion with polarization in x̂, only the ẑẑ
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term (i.e. T33) is non-zero (LN 9.34-35,
Pg 498-499):

T
plane

= −u(t)ẑẑ

T
plane

= −k̂k̂εE2
0 cos2(k · r − ωt+ δ)

The force per unit volume, mechanical
momentum per unit volume, and total
EM force can be written as (G 8.19-20,
Pg 363):

f =
∂~pmech
∂t

= ∇ · T − ε0µ0
∂S

∂t

F =

∮
S

T · da− ε0µ0
d

dt

∫
V

Sdτ

Tensor operations (LN 8.33, Pg
470)

a · T =
∑
i

aiTij r̂j

T · a =
∑
j

r̂iTijaj

∇ · T =
∑
i

r̂j
∂

∂ri
Tij

Radiation pressure (LN 9.36, Pg
499) for a perfect absorber

P = u(t)

General polarization state (J 7.19,
Pg 299)

E(x, t) = (ε1E1 + ε2E2)eik·x−iωt

Circular polarization (J Pg 300)
Define the complex orthogonal unit vec-
tors

ε± =
1√
2

(ε1 ± iε2)

satisfying orthonormality relations:

ε∗± · ε∓ = 0

ε∗± · ε3 = 0

ε∗± · ε± = 1

so that the general polarization state can
be written as a superposition of circular
polarization states:

E(x, t) = (E+ε+ + E−ε−)eik·x−iωt

Let E−
E+

= reiα. Then the polarization

ellipse axes satisfy:

a

b
=

∣∣∣∣1 + r

1− r

∣∣∣∣
and the electric field ellipse is rotated
anticlockwise (looking into the wave)

from ε1 by angle α/2.
EM waves at interfaces Snell’s law:

n1 sin θi = n2 sin θt

as a consequence of LN Pg 513:

ŝ · ~ki = ŝ · ~kr = ŝ · ~kt

where ŝ is a tangential unit vector.
Fresnel equations (LN Pg 518-520)
Define:

α =
cos θt
cos θi

> 0

β =
Z1

Z2
> 0

At normal incidence, α = 1. If µ1 = µ2,
then:

β =
n2

n1

For TM (E parallel to plane):

Ẽ0,r

Ẽ0,i

=
α− β
α+ β

Ẽ0,t

Ẽ0,i

=
2

α+ β

For TE (E perpendicular to plane):

Ẽ0,r

Ẽ0,i

=
1− αβ
1 + αβ

Ẽ0,t

Ẽ0,i

=
2

1 + αβ

Power reflection coefficient (LN Pg
529)

Ij =
1

2

c

Zj
E2
j cos θj

Hence we need to multiply by the
impedances and cosines to get the power
ratios:

R =

(
Ẽ0,r

Ẽ0,i

)2

R =


(
α−β
α+β

)2

, ‖(
1−αβ
1+αβ

)2

, ⊥

T =
Z1

Z2

(
Ẽ0,t

Ẽ0,i

)2
cos θt
cos θi

T =

αβ
(

2
α+β

)2

, ‖

αβ
(

2
1+αβ

)2

, ⊥

Brewster’s angle (LN 9.104, Pg
525) for µ1 = µ2.

tan θB =
n2

n1

Otherwise, solve for the case where the
plane-polarized coefficient vanishes.
Wave equation in conducting me-
dia (LN 9.122-123, Pg 533)

∇2E = εµ
∂2E

∂t2
+ σµ

∂E

∂t

∇2B = εµ
∂2B

∂t2
+ σµ

∂B

∂t

Conducting matter wavenumber
(LN 9.124-126, Pg 534)

~k · ~k = εµω2 + iσµω

|~k| = k + iκ

See LN 534 for the full expression.
Good and bad conductors (LN Pg
541)

Poor:
σ

εω
� 1

Good:
σ

εω
� 1

Conductor boundary conditions
(LN 9.159-160, Pg 546)

n̂ · [ε1E1 − ε2E2] = σf

n̂ · [B1 −B2] = 0

ŝ · [E1 −E2] = 0

ŝ ·
[
B1

µ1
− B2

µ2

]
= (Kf × n̂) · ŝ

Square rooting Suppose ~k ·~k = <+i=.
Then √

~k · ~k = k + iκ

k =
√
<

√√√√√1 + =2

<2 + 1

2

κ =
√
<

√√√√√1 + =2

<2 − 1

2

Plasma frequency (LN 9.203, Pg
561)

ω2
p =

NZq2

mε0

where Z is the number of electrons per
site.
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Two-conductor transmission line
(HM 7.2-7.4, Pg 226-227) For a re-
sistanceless line,

∂∆v

∂t
= − 1

C
∂I

∂z
∂I

∂t
= − 1

L
∂∆v

∂z

=⇒ ∂2∆v

∂z2
= LC ∂

2v

∂t2

The characteristic impedance is (HM
7.11, Pg 228):

Z0 =

√
L
C

=
∆v(z, t)

I(z, t)

The current is in phase with the voltage
wave for this resistanceless line. For a
mismatched output load impedance at
z = l, use the ansatz:

v(z, t) = V+e
i(kz−ωt) + V−e

i(−kz−ωt)

i(z, t) = I+e
i(kz−ωt) + I−e

i(−kz−ωt)

the input (generator) impedance is (HM
7.17, Pg 229):

Zgen =
v(0, t)

i(0, t)
= Z0

Zload − iZ0 tan kl

Z0 − iZload tan kl

Note that when Zload = Z0, then Zgen =
Z0. The amplitude reflection coefficient
r and power reflection coefficient R are
(HM 7.18-19, Pg 229):

r =
V−e

−ikl

V+eikl
=
Zload − Z0

Zload + Z0

R =

∣∣∣∣Zload − Z0

Zload + Z0

∣∣∣∣2
Transmission line properties (LN
9.216, Pg 572)

v =
1√
LC

=
1
√
εµ

Transmission line junction reflec-
tion and transmission (LN 9.242-
243, Pg 583) Amplitude coefficients:

r̃ =
Z2 − Z1

Z2 + Z1

t̃ =
2Z2

Z1 + Z2

Power coefficients:

R =

(
Z2 − Z1

Z2 + Z1

)2

T =
Z1

Z2

(
2Z2

Z1 + Z2

)2

Transmission line power (LN 9.237,
Pg 581)

P =
1

2
<(I∗0V0) =

1

2

|V0|2

ZLC

Waveguide nomenclature (J 8.2)
Write the electric field in its parallel and
transverse components:

Ez = ẑEz

Et = (ẑ ×E)× ẑ

Conducting plane waveguide (HM
231-234) with free space inside. The
TE wave electric field is given by:

E0 = x̂E0
0e
−iωtei(k0·r−ωt)

= x̂E0
0e
−iωteik0(−y cos θ0+z sin θ0)

where θ0 is the angle from the normal,
and the wave is taken to propagate in
the negative ŷ and positive ẑ direction.
If the conducting planes are b apart, the
quantization condition to make the elec-
tric field vanish at each plate it:

k0b cos θ0 = nπ, n = 1, 2, 3, . . .

and the cut off frequency for the nth
mode is:

λc =
2b

n

The effective wavelength in the ẑ direc-
tion of propagation is called the guide
wavelength:

λg =
λ0

sin θ0

where λ0 = 2π
k0

= 2π ωc is the free-space
wavelength. The wavenumber relations
satisfy:

k2
0 = k2

c + k2
g

The velocities of the wave are:

up =
c

sin θ0
> c

ug = c sin θ0 < c

upug = c2

In general (J 8.54, Pg 364):

vpvg =
1

µε

because ω∆ω ∝ k∆k.
Hollow conductor waveguide (HM

235-238) Define the transverse Lapla-
cian operator:

∇2
t =

∂2

∂x2
+

∂2

∂y2
= ∇2 − ∂2

∂z2

Consider the complex ansatz inside the
hollow region:

E = E0(x, y)ei(kgz−ωt)

B = B0(x, y)ei(kgz−ωt)

Then Maxwell’s equations are equivalent
to the two-dimensional Helmholtz equa-
tion:

(∇2
t + k2

c )E0 = 0

(∇2
t + k2

c )B0 = 0

where k2
c = γ2 = k2

εµ − k2 = ω2εµ − k2

(LN 9.268, Pg 592). kεµ (or k0) is the
unconfined wavenumber, while k (or kg)
is the wavenumber for propagation on
the z direction.

The transverse components of the fields
can be obtained from the longitudinal
components (holds for all modes):

E0
x =

i

k2
c

(
k0
∂B0

z

∂y
+ kg

∂E0
z

∂x

)
E0
y = − i

k2
c

(
k0
∂B0

z

∂x
− kg

∂E0
z

∂y

)
B0
x = − i

k2
c

(
k0
∂E0

z

∂y
− kg

∂B0
z

∂x

)
B0
y =

i

k2
c

(
k0
∂E0

z

∂x
+ kg

∂B0
z

∂y

)

These can be combined to give (J
8.26ab, Pg 358):

Et =
i

µεω2 − k2 [k∇tEz − ωẑ ×∇tBz]

Bt =
i

µεω2 − k2 [k∇tBz + µεωẑ ×∇tEz]

Types of modes (HM 238-240)
TE: E0

z = 0, B0
z 6= 0 and:

∇B0
z = − ik

2
c

kg
Bt0

Bt0 =
kg
k0

(ẑ ×Et0)

Ht0 =
1

Zεµ

kg
k0

(ẑ ×Et0)

(∇2
t + k2

c )B0
z = 0
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TM: B0
z = 0, E0

z 6= 0 and:

∇⊥E0
z = − ik

2
c

kg
Et0

Et0 = −kg
k0

(ẑ ×Bt0)

H0t =
1

Zεµ

kεµ
k
ẑ ×E0t

(∇2
t + k2

c )E0
z = 0

Both TE and TM (J 8.31-32, Pg
359):

Ht = ± 1

Z
ẑ ×Et

Z =

{
k
εω = k

k0

√
µ
ε , TM

µω
k = k0

k

√
µ
ε , TE

where the ± comes from the sign in
e±ikz.
TEM modes satisfy: (J Pg 358)

∇t ×Et = 0

∇t ·Et = 0

with dispersion relation:

k = k0 = ω
√
µε

and field relation:

Bt = ±√µεẑ ×Et

H0t = ẑ ×E0t
1

Zεµ

Alternative formulation of Modes
from Jackson (J Pg 360) For TM:

Ez = ψe±ikz

Et = ± ik
γ2
∇tψ

For TE:

Hz = ψe±ikz

Ht = ± ik
γ2
∇tψ

where γ and ψ satisfy:

γ2 = µεω2 − k2 ≥ 0

(∇2
t + γ2)ψ = 0

with boundary condition:

ψ|S = 0, TM

∂ψ

∂n

∣∣∣∣
S

= 0, TE

γλ, λ = 1, 2, 3 . . . is quantized, and this
gives the wavenumbers for each value of
λ:

k2
λ = µεω2 − γ2

λ

The frequency when kλ = 0 is the cutoff
frequency:

ωλ =
γλ√
µε

=⇒ kλ =
√
µε
√
ω2 − ω2

λ

The last equation above is the dispersion
relation.
Waveguide boundary conditions
(HM 7.65-66, Pg 239)

n̂×E|S = 0

n̂ ·B|S = 0

or:

∂B0
z

∂n

∣∣∣∣
S

= 0, useful for TE

E0
z

∣∣
S

= 0, useful for TM

TE and TM dispersion relation
(LN 9.276, Pg 601) and cutoff fre-
quency

ω2 = v2
εµ(k2 + γ2

n)

ωc,n = vεµγn

so that the propagation constant is:

kn(ω) = kεµ

√
1−

ω2
c,n

ω2

Rectangular waveguides (HM 240-
245)

B0
z = B0 cos

mπx

a
cos

nπy

b
, TE

E0
z = E0 sin

mπx

a
sin

nπy

b
, TM

(these are the ψ scalar fields in Jackson)
with cutoff frequency:

ωmn = ckc = πc

√
m2

a2
+
n2

b2

Note that the lowest mode in TE is TE10

while the lowest mode in TM is TM11.
EM fields in Finite conductivity
media (J S8.1)

Hc ≈H‖e−ξ/δeiξ/δ

Ec ≈
√
µω

2σ
(1− i)n̂×H‖e−ξ/δeiξ/δ

where Ec,Bc are the fields inside the
conductor, ξ is the normal coordinate
into the conductor, and δ is the skin
depth:

δ =

√
2

µωσ

H‖ is the tangential magnetic field out-
side the surface, which is continuous
across the interface because the bound-
ary conditions are:

n̂× (H −Hc) = 0

n̂× (E −Ec) = 0

n̂ · (B −Bc) = 0

for unit normal n̂ pointing outward from
the perfect conductor into a perfect non-
conductor.
The tangential electric field outside the
conductor is:

E‖ ≈
√
µω

2σ
(1− i)(n̂×H‖)

and the current density near the surface
is:

J = σEc =
1

δ
(1− i)(n̂×H‖)e−ξ(1−i)/δ

which gives an equivalent surface cur-
rent density:

Keff =

∫ ∞
0

Jdξ = n×H‖

There is a power flow into the conduc-
tor since the Poynting vector is nonzero
at the surface. The power loss per unit
area is:

dP

da
= −1

2
< [n̂ ·E ×H∗]

=
µωδ

4
|H‖|2

=
1

2σδ
|Keff |2

Integrating the power loss along the cir-
cumference of the waveguide gives the
power loss per unit transmitted distance
(J 8.58, Pg 364):

−dP
dz

=
1

2σδ

∮
C

|n×H|2dl

Transmitted power (J 8.51, Pg
363)

PTM =
ε

2
√
µε

(
ω

ωλ

)2
√

1−
ω2
λ

ω2

∫
A

ψ∗ψda

PTE =
µ

2
√
µε

(
ω

ωλ

)2
√

1−
ω2
λ

ω2

∫
A

ψ∗ψda

where we integrate over the cross-
sectional area of the waveguide.
Waveguide mode power (LN 9.306-
307, Pg 617) Cross-terms between
modes vanish when integrated over the
cross section. Hence the power is just
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the weighted average of individual mode
powers:

〈P 〉 =
∑
m

|cTMm |2〈PTEm 〉+
∑
n

|cTEn |2〈PTEn 〉

The same relation holds for energy den-
sity U .
Energy density of waveguide (J
8.52, Pg 364)

UTM =
ε

2

(
ω

ωλ

)2 ∫
A

ψ∗ψda

UTE =
µ

2

(
ω

ωλ

)2 ∫
A

ψ∗ψda

Waveguide mode group velocity
(LN 9.130, Pg 618)

vg,n =
dω

dkn(ω)
= vεµ

√
1−

ω2
c,n

ω2

The group velocity relates the power and
energy density:

〈Pn〉 = vg,n(ω)〈Un〉

Gauge transformation (LN 10.16,
Pg 637)

A→ A+∇λ

V → V − ∂λ

∂t

Retarded potentials (LN 10.46, Pg
648)

V (r, t) =
1

4πε0

∫
V

dτ ′
ρ(r′, tr)

|r − r′|

A(r, t) =
µ0

4π

∫
V

dτ ′
J(r′, tr)

|r − r′|

where the retarded time is:

tr = t− |r − r
′|

c

Four-vector transformation (J

11.61-65)

(A′)α =
∂(x′)a

∂xβ
Aβ

(B′)α =
∂xβ

∂(x′)α
Bβ

(F ′)αβ =
∂(x′)α

∂xγ
∂(x′)β

∂xδ
F γδ

(G′)αβ =
∂xγ

∂(x′)α
∂xδ

∂(x′)β
Gγδ

(H ′)αβ =
∂(x′)α

∂xγ
∂xδ

∂(x′)β
Hγ
δ

Four vector dot product

B ·A = BαA
α

Four-vectors (LN)

∂µ =

(
∂

∂r0
,
∂

∂r1
,
∂

∂r2
,
∂

∂r3

)
�2 = ∂µ∂

µ =
1

c2
∂2

∂t2
−∇2

vµ = γ(c,~v)

Jµ = (ρc, ρ~v)

Aµ =

(
V

c
, ~A

)
Fµ = γ

(
~F · ~v
c

, ~F

)

Kronecker Delta

∂xα

∂xβ
= δαβ

gαγg
γβ = δβα

Lorentz transform In matrix form:

ΛT gΛ = g

where g is the metric tensor. In tensor
notation (LN 12.36, Pg 783):

F̃µν = ΛµλΛνσF
λσ

Field tensors and components (LN

Pg 783-784)

Fµν = ∂µAν − ∂νAµ

F j0 = −F 0j =
Ej
c

F ij = −εijkBk
βiβjF

ij = −βiβjεijkBk = 0

Gµν =
1

2
εµνλσFλσ

G00 = F 00 = 0

Gjj = F jj = 0

Gj0 = −G0j = Bj

Gij =
1

c
εijkEk

Transformation of fields (LN 12.54,
Pg 787)

Ẽ‖ = E‖

B̃‖ = B‖

~̃E⊥ = γ[ ~E⊥ − ~v × ~B⊥]

~̃B⊥ = γ

[
~B⊥ +

1

c2
~v × ~E⊥

]
where i, j, k, l only run over 1,2,3.
Tensor identities (LN)

εijkεijm = 2δkm

εjklβkβl = 0

Key four-vector equations (LN)

Charge conservation: ∂µJ
µ = 0

Wave equation: �2A = µ0J

Lorenz gauge: ∂µA
µ = 0

−c
2

2
FµνF

µν = E2 − c2B2

− c
4
FµνG

µν = ~E · ~B

Force:
dpµ

dτ
= qFµνvν

Maxwell’s equations (LN 12.80, 82,
Pg 794)

∂µF
µν = µ0J

ν

∂µG
µν = 0
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