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Chapter 1

Week 1

1.1 Friday, 15 Jan 2016

1.1.1 Fluid element

Consider a cube of length lregion. We require that the properties of fluid element to be simply defined and
not vary across the length scale of the element. Mathematically:

lregion ăă lscale „
q

|∇q|
(1.1)

for a quantity q. We also require that the number of particles contained within the element is large:

nl3region ąą 1 (1.2)

We also require that, for a collisional fluid, the mean free path be small compared to the characteristic scale,
so that the collisions will serve to maximize the entropy and achieve a well defined pressure:

lregion ąą λ (1.3)

Note that for a collisionless fluid, λ ě lregion so that the system retains the memory of the initial velocity
field and does not achieve the final velocity distribution that maximizes the entropy. In such a case, pressure
is not a well-defined quantity.

1.1.2 Relationship between Lagrangian and Eulerian descriptions

Consider a scalar field Qp~r, tq. Consider two points p~r, tq Ñ p~r ` δ~r, t` δtq. Then the total derivative is:

DQ

Dt
“ lim
δtÑ0

«

Qp~r ` δ~r, t` δtq ´Qp~R, tq

δt

ff

(1.4)

We re-write the numerator by Taylor expansion:

Qp~r ` δ~r, t` δtq ´Qp~r, tq “ Qp~r ` δ~r, t` δtq ´Qp~r, t` δtq `Qp~r, t` δtq ´Qp~r, tq (1.5)

“ p∇Qp~r, t` δtqq ¨ δ~r ` BQp~r, tq

Bt

ˇ

ˇ

ˇ

ˇ

~r,t

δt (1.6)

“ δ~r ¨

„

∇Qp~r, tq ` B∇Qp~r, tq
Bt

δt` . . .



`
BQp~r, tq

Bt

ˇ

ˇ

ˇ

ˇ

~r,t

δt (1.7)

“ δ~r ¨∇Qp~r, tq ` BQp~r, tq

Bt

ˇ

ˇ

ˇ

ˇ

~r,t

δt, to first order (1.8)
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Hence we have the recipe for the derivative:

D

Dt
“
B

Bt
` ~u ¨∇, ~u ”

d~r

dt
(1.9)

The Lagrangian derivative is D
Dt , the Eulerian derivative is B

Bt and the convective derivative is ~u ¨∇.

1.1.3 Fluid Kinematics

• Streamlines: lines so that the tangent to the line at each point points in the direction of the local fluid
velocity. In other words:

d~r

ds
ˆ ~u “ 0 (1.10)

• Particle paths: are the trajectories of the fluid particles:

d~r

dt
“ ~up~r, tq (1.11)

• Streaklines: the locus of points such that these points have passed through a fixed point ~r0 at some
earlier point in time:

t~r|Dt ă t1, ~rptq “ ~r0u (1.12)

1.2 Monday 18 Jan 2016

1.2.1 Mass conservation

The rate of mass change is given by:

B

Bt

ż

V

ρdV (1.13)

Provided that there are no sources and sinks of matter (which is a reasonable assumption), then the rate of
change is solely due to the flow of mass across the boundary. Define inflow to be positive. Then:

B

Bt

ż

V

ρdV “ ´

ż

S

ρ~u ¨ d~S (1.14)

where the negative sign comes fro the definition of the infinitesimal area vector as pointing outwards. Then
the divergence theorem gives (after generalizing to all volumes):

∇ ¨ pρ~uq ` Bρ
Bt
“ 0 (1.15)

which is the mass conservation relation/continuity equation in the Euler perspective. In the Lagrangian
point of view, we replace the partial time derivative and obtain:

∇ ¨ pρ~uq ` Dρ

Dt
´ ~u ¨∇ρ “ 0 ùñ

Dρ

Dt
` ρ∇ ¨ ~u “ 0 (1.16)

The definition of an incompressible fluid is that Dρ
Dt “ 0. It is not the same as taking the partial derivative

with respect to time to be vanishing. Then using the Lagrangian point of view, the divergence of a velocity
field for an incompressible fluid must vanish.
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1.2.2 Gas Pressure

Write the force per unit volume along any direction as:

Fi “ σij
d~Sj

|d~Sj |
(1.17)

where σij is the stress tensor. The diagonal terms correspond to the pressure: σii “ p.

1.2.3 Momentum equation

Consider the pressure acting on a surface element along the n̂ direction: ´pd~S ¨ n̂. The net force due to
pressure is the integral:

F “ ´

ż

S

pn̂ ¨ ~S “ ´

ż

V

∇ ¨ ppn̂qdV “ ´
ż

V

n̂ ¨∇pdV (1.18)

because ∇ ¨ n̂ “ 0 since n̂ is a constant.

Now let gravity act on the fluid. We evaluate the rate of change of momentum per unit volume along n̂:

ˆ

D

Dt

ż

V

ρ~udV

˙

¨ n̂ “ ´

ż

V

n̂ ¨∇pdV ` n̂ ¨
ż

V

ρ~gdV (1.19)

Note that the signs of gravity and pressure gradient are opposite. Now we consider the limit where V “
ş

dV “ δV Ñ 0. Then we replace the integrals:

ˆ

D

Dt
pρ~uδV q

˙

¨ n̂ “ ´n̂ ¨∇pδV ` n̂ ¨ ρ~gδV (1.20)

Note that ρδV is the mass of the fluid element. Under mass conservation, we make take ρδV to be constant
as we following the fluid element in time:

ρδV
D

Dt
~u ¨ n̂ “ ´n̂ ¨∇pδV ` n̂ ¨ ρ~gδV (1.21)

Now this equality must hold for all δV, n̂, and hence we have:

ρ
D

Dt
~u “ ´∇p` ρ~g (1.22)

This is the Momentum equation in Lagrangian form. Note further that we can write it out in Eulerian
form in:

ρ
B~u

Bt
` ρp~u ¨∇q~u “ ´∇p` ρ~g (1.23)

1.2.4 More about the stress tensor

Consider the rate of change of momentum in Eulerian form:

B

Bt
pρuiq “ ρ

Bui
Bt
` ui

Bρ

Bt
(1.24)

Substituting the momentum equation for ρBtui, we obtain:

B

Bt
pρuiq “ ui

Bρ

Bt
´ ρpujBjqui ´ Bjppδijq ` ρgi (1.25)
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Now by the continuity equation, Btρ “ ´Bjpρujq. Hence we have:

B

Bt
pρuiq “ ´Bjpρujui ` pδijq ` ρgi (1.26)

The term Bjpρujuiq is called the ram pressure. Note that we wrote the pressure using the Kronecker delta
so that we can bring the pressure term into the partial derivative with respect to j instead of i. We hence
have the terms of the stress tensor:

σij “ ρujui ` pδij (1.27)

so that the momentum change is given by:

Bpρuiq

Bt
“ Bjσij ` ρgi (1.28)

Example Consider fluid flowing through a pipe aligned in the ŷ direction. The diagonal terms of the stress
tensor is given by the pressure. Doing an average over the fluid motion, and noting that there is a bulk flow
of the motion along the ŷ direction ,we note that we must include an additional ram pressure in the σyy
term:

σ “

¨

˝

p 0 0
0 p` ρu2 0
0 0 p

˛

‚ (1.29)

All other ram pressure components uiuj average to zero if the fluid is isotropic other than the ŷ flow.

Example applied to astrophysics Consider a galaxy with cross section radius Rd flowing through the
intercluster medium. The ram pressure is given by pram “ ρICMv

2. The amount of swept-up material from
the ICM is also given by πR2

dρICMv. Hence we note that the momentum transfer to the galaxy (per unit
cross-sectional area) from the ICM is just the mass transfer multiplied by the relative velocity v.

1.3 Wednesday 20 Jan 2016

1.3.1 Conservative force

Recall that a conservative force can be written as the gradient of a potential (scaling constant and sign
arbitrary). The following are equivalent:

~F “ ∇φ (1.30)
¿

~F ¨ d~l “ 0 (1.31)

1.3.2 Gravitational potential

We define:

~g “ ´∇ψ (1.32)

1.3.3 Poisson Equation

For continuous systems,

~gp~rq “ ´

ż

V

Gρp~r1qp~r ´ ~r1qd3~r1

|~r ´ ~r1|3
(1.33)
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First consider taking the divergence of an inverse square field:

∇r
ˆ

~r

|r|3

˙

(1.34)

Integrating both sides over a vanishing volume and noting that the integral is constant, we note that:

∇r
ˆ

~r

|r|3

˙

“ 4πδp~rq (1.35)

Hence we may take the derivative of both sides of the gravitational field equation:

∇r ¨ ~g “ ´4πG

ż

ρp~r1qδp~r ´ ~r1qd3~r1 “ ´4πGρp~rq (1.36)

Using the definition of the gravitational potential, we hence obtain Poisson’s equation:

∇2ψ ` 4πGρp~rq “ 0 (1.37)

In integral form:

ż

S

~g ¨ d~S “ ´4πGMenc (1.38)
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Chapter 2

Week 2

2.1 Friday 22 Jan 2016

2.1.1 Gravitational binding energy

Ω “ ´
1

2

ÿ

j‰i

ÿ

i

GMiMj

|~rj ´ ~ri|
(2.1)

For a continuous system:

Ω “
1

2

ż

dV ρp~rqψp~rq “ ´G

ż 8

0

Mprqdm

r
(2.2)

2.1.2 Virial theorem

Consider the second derivative of the moment of inertia:

1

2

d2I

dt2
“
ÿ

i

~ri ¨ ~Fi ` 2T (2.3)

where T is the total kinetic energy of the system. The term
ř

i ~ri ¨
~Fi is called the virial V . Considering

N3L,

V “
ÿ

i

ÿ

jąi

~FjÑi ¨ p~ri ´ ~rjq (2.4)

Note that for an ideal gas interacting through gravity alone:

V “ ´
ÿ

i

ÿ

jąi

Gmimj

rij
(2.5)

which we realize is simply the potential energy of the system. Then:

1

2

d2I

dt2
“ 2T ` Ω (2.6)

If the system is in steady state, the time derivative vanishes, hence we have: 2T “ ´Ω for a gravitating ideal
gas in equilibrium.
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2.1.3 Effect of external pressure

The Jean’s equation is:

1

2

d2I

dt2
“ 2T ` Ω` Σ (2.7)

where Σ is called the surface tension term, which arises if the system is embedded in an environment with
a nonzero pressure.

Example Consider a uniform gas cloud with γ “ 5{3, temperature T , radius rcl, total mass M and gas
mass Mgas. The total gravitational effect is hence contributed by the total mass, but the baryonic matter
is only given by Mgas. Assume no bulk motions. Let there be an external pressure around the cloud pext.
The specific thermal energy is given by:

u “
kBT

pγ ´ 1qµmH
(2.8)

where µ is the mean molecular weight. The total kinetic energy is hence T “ Mgasu. The total potential
energy due to gravitational binding will only be calculated for the interaction between a thin spherical gas
shell and the total enclosed mass. Hence we need to take ρgas and ρtot in the calculation, and obtain:

Ω “ ´
3G

5

MgasM

rcl
(2.9)

The surface tension term is:

Ω “ ´4πr3
clPext (2.10)

which is the work done by the external pressure. Putting these terms together,

2Mgas
kBT

pγ ´ 1qµmH
´

3G

5

MgasM

rcl
´ 4πr3

clPext “ 0 (2.11)

The virial temperature can be obtained by solving for T in the absence of an external pressure (taking
γ “ 5{3):

Tvir “
µmHGM

5kBrcl
(2.12)

Hence the heavier the cloud for the same radius, the hotter the cloud has to be to avoid collapse and remain
at steady state. If there exists an external pressure, then the temperature of the cloud has to be higher than
the virial temperature to prevent collapse.

2.2 Monday 25 Jan 2016

2.2.1 Equation of state for ideal gas

p “
R˚
µ
ρT (2.13)

where R˚ is the modified gas constant numerically equal to 1000R “ 8300JK´1mol´1 and µ is the mean
molecular weight in kilograms.

10
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2.2.2 Barotropic equation of state

is such that pressure is only a function of density (no need to take temperature into account). For the
adiabatic case:

p “ Kργ , γ “
Cp
Cv

(2.14)

Start from the 1st law (use total differentials for a reversible process):

dQ “ dε` pdV (2.15)

Cv ”
dεpT q

dT
(2.16)

ùñ dQ “ CvdT `
R˚T
µV

dV, ρ “
1

V
(2.17)

Note that for a reversible process, entropy is a constant and dQ “ 0. Dividing by T :

Cvd lnT `
R˚
µ
d lnV “ 0 (2.18)

ùñ V9T´Cvµ{R˚ (2.19)

ùñ p9T 1`Cv{pR˚{µq (2.20)

Note that in the classical limit we can also write:

Cv “ f
R˚
2µ

(2.21)

where f is the number of degrees of freedom in the case. For a monoatomic gas, we have Cv “
3R˚

2µ and for

the diatomic gas, we have Cv “
5R˚

2µ .

We may now manipulate the 1st law by using the total derivative:

dppV q “
R˚
µ
dT (2.22)

dQ “

ˆ

dε

dT
`
R˚
µ

˙

dT ´ V dp (2.23)

where the term in the parenthesis is the specific heat capacity at constant pressure. In terms of γ ”
Cp
Cv

, we
hence have the scaling relations:

p9T γ{pγ´1q (2.24)

V9T´1{pγ´1q (2.25)

ùñ p9V ´γ (2.26)

ùñ p “ Kργ (2.27)

Note that K can either be constant locally (each fluid element has its own K and constant energy content)
or globally (isentropic fluid where K is the same for every element).

2.2.3 Energy Equation

We now choose to be exceedingly confusing and define the work to be done by the fluid element to write:

Dε

Dt
“
DW

Dt
`
DQ

Dt
(2.28)

11



Soon Wei Daniel Lim Astrophysical Fluids (Cambridge NatSci (Physical), Part II), Week 2

The differential work done by the fluid element is defined dW “ ´pdV ùñ DW
Dt “

p
ρ2
Dρ
Dt where we used

ρ “ 1
V . We also define DQ

Dt “ ´
9Qcool, the cooling function. Then:

Dε

Dt
“

p

ρ2

Dρ

Dt
´ 9Qcool (2.29)

Now we consider the total energy per unit volume in order to use the continuity equations:

E “ ρp
1

2
u2 ` ψ ` εq (2.30)

Using the definition of the Lagrangian total derivative:

DE

Dt
“

ˆ

BE

Bt
` ~u ¨∇E

˙

“
Dρ

Dt

E

ρ
` ρ

ˆ

~u ¨
D~u

Dt
`
Dψ

Dt
`

p

ρ2

Dρ

Dt
´ 9Qcool

˙

(2.31)

We can use the continuity equation to replace Dρ
Dt and the momentum equation to replace D~u

Dt and obtain:

BE

Bt
`∇ ¨ rpE ` pq~us “ ρ

Bψ

Bt
´ ρ 9Qcool (2.32)

where we note that E has the same units of p because we are looking at the energy per unit volume.

2.3 Wednesday, 27 Jan 2016

2.3.1 Hydrostatic equilibrium

We set ~u “ 0 and set all time derivatives to zero. Then the continuity equation is trivially satisfied. The
momentum equation in Eulerian form gives:

0 “ ´∇p´ ρ∇Ψ (2.33)

which is the condition for hydrostatic equilibrium. The other equation to use is Poisson’s equation.

Now assume Barotropic flow ppρq.

2.3.2 Case 1: Isothermal slab

Use the ideal gas equation p “ R˚ρT
µ ” Aρ. Then the hydrostatic equilibrium condition gives:

A
∇ρ
ρ
“ ´∇Ψ (2.34)

ùñ A
d ln ρ

dz
“ ´

dΨ

dz
ùñ Ψ “ ´A ln

ρ

ρ0
`Ψ0 (2.35)

ùñ ρ “ ρ0e
´pΨ´Ψ0q{A (2.36)

Poisson’s equation requires:

d2Ψ

dz2
“ 4πGρ0e

´pΨ´Ψ0q{A (2.37)

Make the change of variables:

χ “ ´
Ψ´Ψ0

A
(2.38)

Z “ z

c

2πGρ

A
(2.39)

12
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which gives the new DE:

d2χ

dZ2
“ ´2eχ (2.40)

with boundary conditions:

χpZ “ 0q “ 0 (2.41)

dχ

dZ

ˇ

ˇ

ˇ

ˇ

Z“0

“ 0 (2.42)

Rearranging the DE:

1

2

d

dZ

«

ˆ

dχ

dZ

˙2
ff

“ ´2
dpeχq

dZ
(2.43)

ùñ

ˆ

dχ

dZ

˙2

“ C1 ´ 4eχ, C1 “ 4 (2.44)

ùñ
dχ

dZ
“ 2

?
1´ eχ (2.45)

ùñ ´2 tanh´1
?

1´ eχ ` C2 “ 2Z, C2 “ 0 (2.46)

ùñ χ “ lnp1´ tanh2
p´Zqq (2.47)

ùñ χ “ lnp1´ tanh2 Zq (2.48)

ρ “
ρ0

cosh2

ˆ

z
b

2πGρ0
A

˙ (2.49)

2.3.3 Case 2: Earth’s Atmosphere

We want to solve the ODE:

∇p
ρ
“ ´∇Ψ “ ´gr̂ (2.50)

which is an exponential atmosphere:

ρ “ ρ0e
´µgz
R˚T (2.51)

2.3.4 Stars

Proceed in spherical polar coordinates. The hydrostatic equilibrium condition is:

dp

dr
“ ´ρ

dΨ

dr
(2.52)

We require that the density be positive and we note that since all the parameters are radially symmetric,
we can just write the pressure and density as functions of the gravitational potential:

ppΨq, ρpΨq (2.53)

Hence the surfaces of constant density, pressure and gravitational potential coincide, and we call this situa-
tion a barotrope.

13
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2.3.5 Polytropes - another barotropic equation of state

Let:

p “ Kρ1`1{n (2.54)

where n is the barotropic index. Then the density can be written as a function of the gravitational potential:

ρ “

ˆ

ΨT ´Ψ

pn` 1qK

˙n

(2.55)

where ρc is the density at the center of the star. The boundary conditions are:

ρ “ 0 at surface (2.56)

Ψc, ρc at r=0 (2.57)

Non-dimensionalizing the equation:

θ “
ΨT ´Ψ

ΨT ´Ψc
(2.58)

ùñ ∇2θ “ ´
4πGρc

ΨT ´Ψc
θn (2.59)

Introducing the scaled radius:

ξ “

c

4πGρc
ΨT ´Ψc

r (2.60)

Then the relation between the radius and the gravitational potential becomes:

1

ξ2

d

dξ

ˆ

ξ2 dθ

dξ

˙

“ ´θn

which is called the Lane-Emden equation.

14



Chapter 3

Week 3

3.1 Friday 29 Jan 2015

3.1.1 Solution to Lane-Emden Equations

Recall that we wanted to solve:

1

ξ2

d

dξ

ˆ

ξ2 dθ

dξ

˙

“ ´θn

Consider n “ 8 so that the pressure is proportional to the density, which is the isothermal condition. The
solution will be that ρ9r´2 ùñ M9r. Objects that satisfy this are called Bonner-Ebert spheres. Since the
mass included goes to infinity as r goes to infinity, we need to truncate the star at a physical radius, then
treat the effect of the external mass as exerting an external pressure stabilizing the star.

3.1.2 Scaling relations

For a fixed polytropic index n, assume that the proportionality constant K from P “ Kρ1`1{n is the same
for each star in the family of solutions. Then we want to see how each parameter scales with the central
density ρc. Eliminating ΨT ´Ψc from the dimensionless parameters, we obtain that:

M9ρp3{n´1q{2
c (3.1)

r9ρp1{n´1q{2
c (3.2)

ùñ M9rp3´nq{p1´nq (3.3)

If the star has an adiabatic equation of state with γ “ 5{3 ùñ n “ 3
2 ùñ M9r´3. This, however, is not

observed. We observe that M9r instead. It is not true that K is constant for a fixed value of n. A better
approximation is to take the core temperature Tc to be the same across the family. Then at the center, we
have a relation between K and ρc:

K9ρ´1{n
c (3.4)

and this will give M9r.

3.1.3 Timescales of hydrostatic equilibrium

The propagation of disturbances through the fluid is given by the speed of sound:

th „
r

cs
(3.5)

This is approximately 1 day for the sun t@,h.
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3.1.4 Thermal timescale

tth „
Epot
L

(3.6)

where L is the luminosity. For the Sun, t@,th “ 30Myrs. Hence the hydrostatic timescale is much faster than
the thermal timescale.

The relative size of these timescales gives the mode by which the star adapts its radius to an amount of mass
dumped on the surface. Note that for an adiabatic change, mass scales as M9rp3´nq{p1´nq. Hence for an
increase in mass, the star will move towards the adiabatic scaling line in the short term (short hydrostatic
equilibrium timescale). In the long term (thermal timescale), the star will move back to the scaling line for
M9r for the constant central temperature.

3.1.5 Accreting rotating star

Consider a star with angular velocity Ω. Let a small amount of mass ∆M be added. We conserve angular
momentum:

J9Mr2Ω (3.7)

Hence for a change Ω Ñ Ω`∆Ω, we require that:

∆Ω

Ω
“ ´

∆pMr2q

Mr2
(3.8)

Now we model the addition of mass as an adiabatic process. Hence we have a relation between the mass and
radius, and:

∆Ω

Ω
“ ´

ˆ

5´ 3n

3´ n

˙

∆M

M
(3.9)

Hence the sign of the angular velocity change will be determined by the sign of the term in the parenthesis.

3.2 Monday 1 Feb 2016

3.2.1 Case 1: Uniform medium

Consider the continuity equation and the momentum equation in the absence of gravity:

Bρ

Bt
`∇ ¨ pρ~uq “ 0 (3.10)

B~u

Bt
` p~u ¨∇q~u “ ´1

ρ
∇P (3.11)

Let the unperturbed system have uniform pressure P0, density ρ0 and zero velocity ~u0 “ ~0. Let it be at
steady state. Now consider a perturbation of the form:

P “ P0 `∆P (3.12)

ρ “ ρ0 `∆ρ (3.13)

~u “ ∆~u (3.14)

These are Lagrangian perturbations, that is, perturbations to a single fluid element.
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3.2.2 Eulerian perturbations

Interconvert using the Lagrangian derivative:

δρ “ ∆ρ´ ~ξ ¨∇ρ (3.15)

where δ represents Eulerian perturbations and ∆ represents Lagrangian perturbations.

Now ~ξ is the differential displacement of the fluid element.

Note that in this uniform case, the gradient of the unperturbed quantities vanishes, hence the Lagrangian
perturbation is exactly equal to the Eulerian perturbation. Substituting these perturbations into the fluid
equations and doing grungy algebra to first order, we end up with:

B∆ρ

Bt
` ρ0∇ ¨∆~u “ 0 (3.16)

B∆~u

Bt
“ ´

1

ρ0
∇p∆P q (3.17)

Now we implement an additional assumption that the fluid is barotropic P pρq ùñ ∇P pρq “ dP
dρ∇ρ. Hence:

B∆~u

Bt
“ ´

1

ρ0

dP

dρ
∇p∆ρq (3.18)

Combining,

B2∆ρ

Bt2
“
dP

dρ
∇2p∆ρq (3.19)

which is a wave equation. Moving into the Fourier domain, let ∆ρ “ ∆ρ0e
ip~k¨~x´ωtq

´ω2 “ ´
dP

dρ
k2 (3.20)

ùñ vp “
ω

k
“

d

dP

dρ
” cs (3.21)

Substituting this ansatz into the ∆~u solution, we obtain that the velocity perturbation is given by:

∆~u “
ω

k

∆ρ0

ρ0
eip
~k¨~x´ωtqk̂ (3.22)

Hence the velocity perturbation is in phase with the density perturbation. Also, since the density perturba-
tion is small, we have:

|∆~u| ăă cs (3.23)

Observe that the functional equation P pρq depends on whether the sound propagation is conducted in an
isothermal manner or adiabatic manner. This may or may not be the same condition as the unperturbed
medium. This means that a medium that is initially isothermal can experience adiabatic perturbations. In
each case:

cs,T “

d

R˚T
µ

(3.24)

cs,A “

d

R˚γT
µ

(3.25)
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3.3 Wednesday 03 Feb 2016

3.3.1 Sound propagation in non-uniform medium

Consider sound waves propagating in an isothermal atmosphere experiencing constant gravitational accel-
eration. By symmetry, sound waves moving in the horizontal direction are not affected by the atmosphere.
We hence examine sound waves in the vertical direction and consider all functions of z alone. Then by the
continuity and momentum equations (u is velocity in the z-direction):

Bρ

Bt
`
B

Bz
pρuq “ 0 (3.26)

Bu

Bt
` u

Bu

Bz
“ ´

1

ρ

BP

Bz
´ g (3.27)

The equilibrium solution corresponds to u0 “ 0 and ρ0pzq “ ρ0e
´z{H , H “

R˚T
µg . The pressure is also

P0pzq “ P0e
´z{H as well. We hence consider a Lagrangian perturbation about this equilibrium state:

u “ ∆u (3.28)

ρ “ ρ0pzq `∆ρ (3.29)

P “ P0pzq `∆P (3.30)

Recall that the relation between Lagrangian and Eulerian perturbations was:

δρ “ ∆ρ´ ~ξ ¨∇ρ (3.31)

Then the Eulerian perturbations are:

δ~u “ ∆~u (3.32)

δρ “ ∆ρ´ ξz
Bρ0pzq

Bz
(3.33)

δP “ ∆P ´ ξz
BP0pzq

Bz
(3.34)

Note that the differential displacements are related to the velocity by:

∆~u “
d~ξ

dt
“
B~ξ

Bt
` ~u ¨∇~ξ “ B~ξ

Bt
, ~u0 “ 0 (3.35)

Substituting these Eulerian perturbations into the Eulerian continuity and momentum equations, and sifting
through the grungy algebra, we obtain:

B∆ρ

Bt
` ρ0

B∆uz
Bz

“ 0 (3.36)

B∆uz
Bt

“ ´
c2u
ρ0

B∆ρ

Bz
, cu “

d

dP0pzq

dρ0pzq
(3.37)

Combining,

B2∆ρ

Bt2
“ ρ0pzq

B

Bz

ˆ

c2u
ρ0pzq

B∆ρ

Bz

˙

(3.38)

Note that dP0pzq
dρ0pzq

“ constant. Then we have:

B2∆ρ

Bt2
´ c2u

B2∆ρ

Bz2
´
c2u
H

B∆ρ

Bz
“ 0 (3.39)
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Moving into the Fourier domain, we make the ansatz ∆ρ9eipkz´ωtq. Then we obtain the dispersion relation:

´ω2 ` c2uk
2 ´

c2u
H
ik “ 0 ùñ ω2 “ c2u

ˆ

k2 ´
ik

H

˙

(3.40)

Inverting,

kpωq “
i

2H
˘

d

ω2

c2u
´

1

4H2
(3.41)

Note that the sign of the quantity in the square root determines if kpωq has any real propagating part. If
ω ą cu

2H , then the square root gives a real part and hence the sound wave propagates. Then the density goes
as:

∆ρpzq “ Ae´z{2H exp

«

i

˜

d

ω2

c2u
´

1

4H2
z ´ ωt

¸ff

(3.42)

The velocity amplitude can also be determined:

∆u “
∆ρ

ρ0

ω

k
ùñ ∆u9ez{2H (3.43)

Note that this implies that the velocity perturbation amplitude will increase if it moves in the positive z
direction. This is not physically possible generally since we have ignored viscosity and considered an isother-
mal atmosphere.

On the other hand, if ω ă cu
2H , then the values of k are purely imaginary. Proceeding with the same analysis

as above, we obtain:

∆u “ Aekzeiωt,∆ρ “ Bekzeiωt (3.44)

Hence there is no propagation, but the amplitude still depends on the height z. We just have standing waves.

3.3.2 Transmission of sound waves across boundary

Consider non-dispersive propagation of sound waves. Then to the left of the boundary, we have:

∆ρ “ eipk1x´ω1tq ` reipk3x´ω3tq (3.45)

and to the right, we have:

∆ρ “ teipk2x´ω2tq (3.46)

Let the sound velocities be cs,1 and cs,2 for the left and right media respectively.

Now we require that the wave be continuous across the boundary. This requires that ω1 “ ω2 “ ω3 and
k1 “ ´k3. We also require that the amplitude be continuous across the boundary, which gives:

1` r “ t (3.47)

Requiring that the first derivative of the wave also be continuous, we obtain that:

k1p1´ rq “ k2ptq (3.48)

Solving for r and t simultaneously, we obtain:

r “
k1 ´ k2

k1 ` k2
(3.49)

t “
2k1

k1 ` k2
(3.50)

Note that if the second medium is extremely cold, so that cs,2 is small and k2 is large, then the transmitted
wave amplitude goes to zero.
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Week 4

4.1 Friday, 5 Feb 2015

4.1.1 Supersonic flows

In the subsonic regime, the vector addition of the subsonic fluid flow and the disturbance (assumed to be
moving spherically outward at the speed of sound) can point in all directions (covers 4π solid angle). This
communicates information of the disturbance to all regions of the fluid. However, in supersonic flow, the
vector sum of the supersonic velocity and the disturbance displacement vector will always have a component
in the direction of fluid flow. Hence there is no information about the flow proceeding in the opposite direc-
tion to the supersonic flow. The information propagates along a Mach cone.

The half-angle of the cone α is given by:

sinα “
cs
v
”

1

M
ă 1 (4.1)

4.1.2 Planar Shock

Let the incoming flow be characterized by u1, ρ1, P1 and the outgoing flow be characterized by u2, ρ2, P2.
Put the shock along the plane x “ 0. Continuity gives:

Bρ

Bt
`
B

Bx
pρuxq “ 0 (4.2)

Integrate the continuity equation around the shock using a box with infinitesimal width. Then we have
(exchanging the order of derivatives and using the fundamental theorem of calculus):

B

Bt

ż

ρdx` ρux|x“dx{2 ´ ρux|x“´dx{2 “ 0 (4.3)

Now we require that the mass flux be conserved across the shock (no build-up of mass in the shock), so that
the first term vanishes. This gives the first Rankine-Hugoniot condition:

ρ1u1 “ ρ2u2

where all velocities u are assumed to be in the x direction. Generally the velocity is lower in the post shock
region u2 ă u1 so the density in the post shock region is higher than in the pre-shock region.
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Now consider the momentum equation for the gravitational potential and the ram pressure:

B

Bt
pρuxq “ ´

B

Bx
pρuxux ` P q ´ ρ

dΨ

dx
(4.4)

Suppose that the gravitational potential is constant in space and in time. Then we throw away the last term.
Integrate the DE across the shock, and note that the mass flux across the shock does not vary, allowing us
to let the first term vanish as well:

ρ1u
2
1 ` P1 “ ρ2u

2
2 ` P2

This second R-H condition says that the sum of the ram pressure and thermal pressure is continuous across
the shock. We may interpret the shock as redistribution ordered ram pressure motions into disordered ther-
mal motions.

Now assume that the fluid flows adiabatically. That is, we do not allow fluid elements to exchange energy.
We also disallow cooling: 9Qcool “ 0. Then the energy equation gives:

BE

Bt
`∇ ¨ rpE ` pq~us “ ´ρ 9Qcool ` ρ

BΨ

Bt
(4.5)

We ignore the terms in the RHS. Integrating the resultant DE across the shock, we obtain:

B

Bt

ż

Edx` pE ` P qux|x“dx{2 ´ pE ` P qux|x“´dx{2 “ 0 (4.6)

We require that the total energy of the fluid element be conserved across the shock. Then the energy flux
across the shock has to be conserved, and we note that the first term goes to zero. This gives us the third
R-H equation:

pE1 ` P1qu1 “ pE2 ` P2qu2

Note further that the total energy of the fluid element can be written as:

E “ ρ

ˆ

1

2
u2 ` ε`Ψ

˙

(4.7)

where ε is the internal energy density. We substitute this expression into the third equation and divide both
sides by ρ1u1 “ ρ2u2 (1st R-H condition) to obtain an alternative formulation of the third R-H condition:

1

2
u2

1 ` ε1 `
P1

ρ1
“

1

2
u2

2 ` ε2 `
P2

ρ2

Call the sum ε ` P
ρ the enthalpy. Hence the third R-H condition tells use that the sum of the energy and

the enthalpy terms are continuous across the shock. Observe that the KE for the pre-shock region is higher
than the KE for the post-shock region. Hence the enthalpy of the post-shock region is higher than that of
the pre-shock region. The shock converts KE into enthalpy.

We may further re-write the internal energy per unit mass of the flow to be:

ε “ cvT “
cv
R˚{µ

P

ρ
“ pγ ´ 1q

P

ρ
(4.8)

which follows from:
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γ “
cp
cv
, cp ´ cv “

R˚
µ

ùñ cvpγ ´ 1q “
R˚
µ

(4.9)

Now assume that the adiabatic factor γ does not change across the shock. Then we have the simplified 3rd

R-H condition using the adiabatic sound velocity cs “
b

γP
ρ :

1

2
u2

1 `
γ

γ ´ 1

P1

ρ1
“

1

2
u2

2 `
γ

γ ´ 1

P2

ρ2
(4.10)

ùñ
1

2
u2

1 `
c2s1
γ ´ 1

“
1

2
u2

2 `
c2s2
γ ´ 1

(4.11)

Some grungy algebra later...

ρ2

ρ1
“
pγ ` 1qP2 ` pγ ´ 1qP1

pγ ` 1qP1 ` pγ ´ 1qP2
“
u1

u2
(4.12)

Strong shock limit Let P2 ąą P1. Then ρ2
ρ1
Ñ

γ`1
γ´1 which is approximately 4 for a γ “ 5{3. Hence for an

adiabatic shock, the limiting ratio of the densities is 4.

Consider a fluid element crossing the shock. Note that even though P1{P2 can achieve a wide range, ρ1{ρ2

is bound. This means that K “ P {ργ is not conserved across the shock. There is an entropy jump across
the shock - ordered bulk flow is converted into disordered thermal flow.

4.2 Monday, 8 Feb 2015

4.2.1 Isothermal shocks

Note that as compared to the adiabatic shock, we may now take 9Qcool ‰ 0. We also require T1 “ T2.
Note that this does not imply that the shock region itself has the same temperature. The temperature
of the fluid element increases as it enters the shock, and then as it exits the shock, it cools back to a
constant temperature (not necessarily the same temperature) over a lengthscale called the cooling length
lcool. If the cooling length is on the order of the size of the system, then the system behaves effectively
adiabatically. If we take the cooling length to be small compared to the size of the system and assume that
the asymptotic temperature is the same across the shock, then we obtain an isothermal shock approximation.

In the isothermal case, the first two R-H conditions still hold:

ρ1u1 “ ρ2u2 (4.13)

ρ1u
2
1 ` P1 “ ρ2u

2
2 ` P2 (4.14)

Since the temperature is the same on both sides of the shock, we take cs1 “ cs2 “ cs “
b

R˚T
µ and

P1,2 “ c2sρ1,2. Combining the two R-H conditions, we have:

c2s “ u1u2 (4.15)

This gives the density relation:

ρ2

ρ1
“
u1

u2
“

ˆ

u1

cs

˙2

“M2
1 ą 1 (4.16)
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Note further that for a shock, we require that u1 ą cs. Hence the flow after the shock must be subsonic
u2 ă cs. This condition (supersonic u1 implies subsonic u2) holds also for adiabatic shocks, but is alge-
braically messy.

Spherically symmetric example Let there be a spherical cloud with ρ1, P1, T1 that is stationary u1 “ 0
embedded in a medium with ρ2, P2, T2 that is also stationary u2 “ 0. Assume that T1 ă T2 so the cloud is
colder than its environment, and let it be denser ρ1 ą ρ2. Neglect gravity. If the pressures are equal, then
the only two processes that occur are diffusion and conduction.

If, however, u2 ą cs, then a shock will form. The shock will be curved due to the spherical symmetry of the
cloud, and is called a bow shock.

4.3 Wednesday 10 Feb 2016

4.3.1 Blast waves

Spherically symmetric expanding shock. At t “ 0, let the medium be uniform with density ρ0. Consider a
point explosion with some associated energy E. Assume that the temperature of the surrounding medium
is approximately zero so that the sound speed is negligible. The blast wave Mach number hence goes to
infinity. Also neglect the other pressures in the medium. Let the radius of the blast wave be R and let its
thickness (small compared to R) be D. Let the blast wave shell have density and pressure ρ1, P1. Let the
pressure in the cavity be Pin.

Since this blast wave is an extremely strong shock, in the adiabatic regime, the ratio of the densities ap-
proaches the limiting value of ρ1

ρ0
“ 4 for γ “ 5{3.

Let the blast wave sweep most of the mass into its shell. Then we have:

4π

3
ρ0R

3 “ 4πρ1R
2D (4.17)

ùñ D “
1

3

γ ´ 1

γ ` 1
R (4.18)

Now move into the frame of the shock. Then we may implement continuity:

ρ0u0 “ ρ1u1 (4.19)

and the relative velocity of the shock is:

U “ u0 ´ u1 «
2u0

γ ` 1
(4.20)

in the limit of ρ1{ρ0 “ pγ ` 1q{pγ ´ 1q.

Now make the further assumption that the pressure in the interior of the blast radius is linearly related to
the shock pressure:

Pin “ αP1 (4.21)

Implementing the second R-H condition:
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P0 ` ρ0u
2
0 “ P1 ` ρ1u

2
1 (4.22)

ùñ P1 “ ρ0u
2
0

ˆ

1´
ρ1u

2
1

ρ0u2
0

˙

, P0 « 0 (4.23)

ùñ P1 “
2

γ ` 1
ρ0u

2
0 (4.24)

Now the pressure in the interior of the blast wave will exert a force on the blast wave, and this should result
in a time rate of change in blast wave momentum. Hence:

d

dt

ˆ

4π

3
ρ0R

3U

˙

“
d

dt

ˆ

4π

3
ρ0R

3 2u0

γ ` 1

˙

“ 4πR2Pin “ 4πR2α
2

γ ` 1
ρ0u

2
0 (4.25)

ùñ
dpR3u0q

dt
“ 3αR2u2

0 (4.26)

Note further that u0 is the velocity of the shock in the frame of the unperturbed medium, which means that
we can write u0 “

dR
dt . Assume a power law solution. Then the differential equation and ansatz are:

d

dt
pR3 9Rq “ 3αR2 9R2 (4.27)

Let Rptq9tb (4.28)

ùñ b2p4´ 3αq “ b (4.29)

ùñ b “
1

4´ 3α
, b ‰ 0 (4.30)

ùñ R9t1{p4´3αq, u09t
p3α´3q{p4´3αq (4.31)

Note that the kinetic energy of the blast wave is:

KE “
1

2

ˆ

4π

3
ρ0R

3

˙

U2 (4.32)

while the internal energy is largely contained in the cavity:

ε “
1

γ ´ 1
Pin (4.33)

where ε is the internal energy per unit mass. Hence the total internal energy is:

εV “
4π

3
R3 αP1

γ ´ 1
(4.34)

By conservation of energy, we hence have:

E “
1

2

ˆ

4π

3
ρ0R

3

˙

U2 `
4π

3
R3 αP1

γ ´ 1
(4.35)

ùñ E9R3u2
09t

p6α´3qp4´3αq (4.36)

Since energy is conserved, we require α “ 1{2.
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Chapter 5

Week 5

5.1 Friday, 12 Feb 2016

5.1.1 Blast Waves - Similarity Solution

Recall that the relevant parameters are the explosion energy E and unperturbed density of the surrounding
medium ρ0. If these are the only parameters of interest, it is not possible to obtain an expression with units
of length. Hence there is no natural length scale in the problem. Introducing a time parameter, we can,
however, obtain the length parameter than depends on time:

λ “

ˆ

Et2

ρ0

˙1{5

(5.1)

The dimensionless distance can hence be written as ξ ” r
λ .

We also examine solutions for X P tρ, P, u, T, vu in separated form: Xpr, tq “ X1ptqX̃pξpr, tqq. Also assume
spherical symmetry. Then by the chain rule:

BX

Br

ˇ

ˇ

ˇ

ˇ

t

“ X1
dX̃

dξ

dξ

dr

ˇ

ˇ

ˇ

ˇ

t

(5.2)

BX

Bt

ˇ

ˇ

ˇ

ˇ

t

“ X̃
dX1

dt
`X1

dX̃

dξ

dξ

dt

ˇ

ˇ

ˇ

ˇ

r

(5.3)

(5.4)

5.1.2 Breakdown of similarity solution

Note that by taking the temperature of the surrounding medium to be near zero, we have neglected the
pressure due to the interstellar medium. This does not hold in general. This approximation should breakdown
when the pressure in the shell becomes on the order of the ambient pressure. Recall that the shell pressure
is given by:

P1 “
2

γ ` 1
ρ0u

2
0 (5.5)

hence the approximation should breakdown around:

2

γ ` 1
ρ0u

2
0 “ P1 “

ρ0c
2
s

γ
“ P0 (5.6)

ùñ u0 « cs (5.7)
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Hence when the shell is no longer moving supersonically, the approximation breaks down.

We may also estimate the energy of the system in this situation:

u2
0 „

γ ` 1

2γ
c2s (5.8)

ùñ EpP0 « P1q „
4π

3
ρ0R

3
max

c2s
2γ

3γ ´ 1

γ2 ´ 1
(5.9)

where we note that Rmax marks the radius past which the blast wave does not propagate significantly (since
the blast velocity becomes subsonic and sound waves are released outwards instead). Note further that the
total internal energy can be written as:

ε “ V
P0

γ ´ 1
“

4π

3
R3
max

c2sρ0{γ

γ ´ 1
(5.10)

Comparing this to the total energy, we note that at Rmax, the total energy is on the order of the internal
energy. Hence most of the energy of the explosion has been converted into the internal energy of the cavity
region within the maximum radius of the blast wave.

5.1.3 Non-self similar solution with more parameters

We now have three parameters in the model: E, ρ0, T0pcsq. We may now construct a natural length scale
and a time scale:

r „

ˆ

E

ρ0c2s

˙1{3

(5.11)

t „
1

cs

ˆ

E

r0c2s

˙1{3

(5.12)

5.1.4 Example: ISM

Let the parameters of the ISM be T „ 104, ρ „ 10´21kgm´3. We also know that Rmax „ 100pc and
tmax „ 10Myrs and the supernova rate 10´7Myr´1pc´3. Comparing the volume of the typical supernova
with the size of a region with 1 supernova per time scale (106pc), we note that the supernova blast volume
exceeds 106pc, which implies that the entire ISM should be heated to blast wave temperatures of around
106K. This is clearly not the case since we see star formation. This is an indication that our adiabatic
assumption is breaking down. There is significant cooling and the interstellar region is not uniform. The
blast wave will get stopped when it goes subsonic. Also, the blast wave does not sweep up all the material
— the cold neutral matter in the ISM are sufficiently cold and dense so that they do not get completely
ablated by the oncoming blast wave.

5.2 Monday, 15 Feb 2016

5.2.1 Bernoulli’s equation

Begin with the momentum equation:

Bu

Bt
` u ¨∇u “ ´1

ρ
∇P ´∇Ψ (5.13)

26



Soon Wei Daniel Lim Astrophysical Fluids (Cambridge NatSci (Physical), Part II), Week 5

Assume barotropic equation of state P “ P pρq and steady flow so that the time derivative vanishes. Recall
that the material derivative can be written as:

u ¨∇u “ ∇p1
2
u2q ´ uˆ p∇ˆ uq (5.14)

Also define the vorticity w “ ∇ˆ u. For a barotropic flow, we also have:

1

ρ
∇P “ ∇

ż

dP

ρ
(5.15)

Then the momentum equation becomes:

∇p1
2
u2q ´ uˆw “ ´∇

„
ż

dP

ρ
`Ψ



(5.16)

Dotting both sides with u, and noting that the LHS will vanish, we obtain:

u ¨∇
„

1

2
u2 `

ż

dP

ρ
`Ψ



“ 0 (5.17)

Define H “ 1
2u

2 `
ş

dP
ρ `Ψ, the Bernoulli constant.

5.2.2 Steady, Irrotational flows

For w “ 0, we can write:

∇H “ 0 (5.18)

hence H is constant throughout.

5.2.3 Helmholtz Equation - General flow with vorticity

Write:

Bu

Bt
“ ´∇H ` uˆw (5.19)

ùñ
Bw

Bt
“ ∇ˆ puˆwq (5.20)

Note that if the vorticity is initially zero, it will remain zero.

The flux of the vorticity over a surface S is constant and moves with the flow. This means that the Lagrangian
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derivative vanishes:

D

Dt

ż

S

w ¨ dS “

ż

S

Bw

Bt
¨ dS `

ż

S

w ¨
DdS

Dt
(5.21)

“

ż

S

Bw

Bt
¨ dS `

ż

S

w ¨

¿

dS

uˆ dl (5.22)

“

ż

S

Bw

Bt
¨ dS `

ż

S

¿

dS

w ˆ u ¨ dl (5.23)

“

ż

S

Bw

Bt
¨ dS `

¿

CpSq

w ˆ u ¨ dl (5.24)

“

ż

S

Bw

Bt
¨ dS `

ż

S

∇ˆ pw ˆ uq ¨ dS (5.25)

“ 0 (5.26)

5.2.4 Velocity potential

For an irrotational flow w “ 0 and incompressible flow ∇ ¨u “ 0, we may define a potential function Φm such
that u “ ´∇Ψm which satisfies the Poisson equation as well (using incompressibility condition): ∇2Ψm “ 0.

5.3 Wednesday, 17 Feb 2016

5.3.1 De Laval nozzle

Steady flow through a pipe with variable cross section. Let the cross section beApzq. Consider barotropic,irrotational
flow. By continuity:

9M “ ρuA (5.27)

ùñ ln ρ` lnu` lnA “ ln 9M (5.28)

ùñ ∇ ln ρ`∇ lnu`∇ lnA “ ∇ ln 9M (5.29)

ùñ
1

ρ
∇ρ “ ´∇ lnu´∇ lnA, ∇ ln 9M “ 0 (5.30)

Recall further that by the momentum equation for steady state flow without external forces:

~u ¨∇u “ ´1

ρ
∇P (5.31)

and hence combining,

~u ¨∇u “ c2s p∇ lnu`∇ lnAq (5.32)

Rearranging,

pu2 ´ c2sq∇ lnu “ c2s∇ lnA (5.33)

Observe that when the pipe has a minimum or maximum cross section, then the RHS is vanishing and hence
either u “ cs (sonic transition) or an extremum in velocity.

Observe that if u ă cs and the cross sectional area is decreasing, then u is increasing. However, if u ą cs
and the cross sectional area is increasing, u will also increase! This is due to the great variations of density
in the supersonic regime, so the liquid can be compressed to a great extent.
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5.3.2 Isothermal De Laval nozzle

Consider the Bernoulli equation without gravity:

1

2
u2 `

ż

dP

ρ
“ constant (5.34)

The isothermal equation of state is:

P “
R˚ρT
µ

ùñ

ż

dP

ρ
“ c2s ln ρ (5.35)

Suppose the sonic transition occurs at cross section Am. Then by Bernoulli’s equation:

1

2
u2 ` c2s ln ρ “

1

2
c2s ` c

2
s ln ρ|Am (5.36)

and by continuity:

ρuA “ ρ|AmcsAm (5.37)

and combining,

u2 “ c2s

„

1` 2 ln
ρ|Am
ρ



“ c2s

„

1` 2 ln
uA

csAm



(5.38)

Hence given Apzq, Am and the sound speed, we may in principle solve for u using the above equation.

5.3.3 Polytropic De Laval nozzle

The equation of state is P “ Kρ1`1{n. Note that the sound speed will vary along the tube:

c2s “
n` 1

n
Kρ1{n (5.39)

ż

dP

ρ
“

ż

dP

dρ

dρ

ρ
(5.40)

“

ż

K
n` 1

n
ρ1{n dρ

ρ
(5.41)

“ nc2s (5.42)

Now by continuity,

9M “ ρ|Amcs|Amcs (5.43)

and combining,

ρ|Am “

»

–

˜

9M

Am

¸2
n

Kpn` 1q

fi

fl

n{p2n`1q

(5.44)

and including the Bernoulli equation,

ˆ

1

2
` n

˙

n` 1

n
Kρ1{n|Am “

1

2

˜

9M

Aρ

¸2

`Kpn` 1qρ1{n (5.45)

which can be used to formally solve for ρ.
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Chapter 6

Week 6

6.1 Friday 19 Feb 2016

6.1.1 Spherical accretion

Assume that the gas is at rest at infinity. Hence we expect the gas to accelerate from the subsonic regime
into the supersonic regime near the star (treat as as point mass). Consider a barotropic equation of state
and consider the steady state. Then by continuity:

9M “ ρuA “ ρprquprq4πr2 (6.1)

ùñ
d ln ρ

dr
`
d lnu

dr
`
d ln r2

dr
“ 0 (6.2)

ùñ
d ln ρ

dr
“ ´

d lnu

dr
´

2

r
(6.3)

and by the momentum equation:

u
du

dr
“ ´

1

ρ

dP

dr
´
GM

r2
(6.4)

ùñ u2 d lnu

dr
“ ´

1

ρ

dP

dρ

dρ

dr
´
GM

r2
(6.5)

ùñ u2 d lnu

dr
“ ´c2s

d ln ρ

dr
´
GM

r2
(6.6)

Combining, we obtain:

u2 d lnu

dr
“ ´c2s

ˆ

´
d lnu

dr
´

2

r

˙

´
GM

r2
(6.7)

ùñ pu2 ´ c2q
d lnu

dr
“

2c2s
r
´
GM

r2
“

2c2s
r

ˆ

1´
GM

2c2sr

˙

(6.8)

Define the sonic radius rs “
GM
2c2s

. At the sonic radius, we observe that u has to be an extremum or cross the

sound speed.
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6.1.2 Isothermal spherical accretion

The temperature is constant, hence the sound speed is known and the sonic radius is well-defined. We want
to solve for ρprq and 9M . By the Bernoulli equation, we have:

H “
1

2
u2 `

ż

dP

ρ
`Ψ,

ż

dP

ρ
“ c2s ln ρ (6.9)

ùñ
1

2
u2 ` c2s ln ρ´

GM

r
“

1

2
c2s ` c

2
s ln ρ|rs ´

GM

rs
(6.10)

ùñ u2 “ 2c2s

„

ln
ρs
ρ
´

3

2



`
2GM

r
(6.11)

Hence we observe that close to the star, for small r, the velocity field is dominated by the effect of the point
mass and the pressure does not contribute significantly. The gas is in free-fall. Now consider the limit as
r Ñ8. Since we require that the velocity of the gas vanish at infinity, we hence require that:

ln
ρs
ρp8q

´
3

2
“ 0 (6.12)

ùñ ρs “ ρp8qe3{2 (6.13)

6.1.3 Polytropic spherical accretion

Now the sound speed is a function of the radius. Now the energy equation becomes:

1

2
u2 ` c2s|r ln ρ´

GM

r
“

1

2
c2s ` c

2
s ln ρs ´

GM

rs
(6.14)

Note that for a polytropic equation of state, the sound speed is a function of the density:

c2s “
n` 1

n
Kρ1{n

s (6.15)

The sound speed as a function of the density at the sonic point is:

cs “

ˆ

GM

2

˙2{3 ˆ
4πρs

9M

˙1{3

(6.16)

Implementing the Bernoulli equation, continuity and the boundary condition at infinity, when the dust settles
we have:

c2s,8 “
n´ 3{2

n
c2s (6.17)

9M “
πG2M2ρ8

c3s,8

ˆ

n

n´ 3{2

˙n´3{2

(6.18)

Note that when n “ 3{2, or γ “ 5{3, the solution for 9M blows up. This is because the sound speed has to
go to infinity at the sonic radius, and the infalling gas never actually experiences the sonic transition.

The accretion rate can also be written as (Bondi-Hoyle-Littleton accretion):

9M “
4πG2M2ρ8
pc2s,8 ` V

2
8q

3{2
(6.19)
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6.2 22 Feb 2016, Monday

6.2.1 Fluid Instabilities

Consider a fluid in the steady state. Consider a small perturbation in the fluid. There are two possibilities.
The first is that the perturbation decays in time or oscillates. The second case is that the perturbation grows
in time.

6.2.2 Convective instabilities and the Schwarzschild stability criterion

Assume ideal gas, hydrostatic equilibrium and uniform gravitational field. Consider a parcel of fluid with
initial conditions ρ, P . Perturb the parcel by moving the parcel δz in the positive z direction antiparallel to
the gravitational field. Then the fluid element is now embedded in a medium with parameters ρ1, P 1. The
perturbed parcel will have a different density ρ˚ as it expands to match the pressure outside P 1. There are
two cases: ρ˚ ą ρ1, ρ˚ ă ρ1. The former corresponds to unstable rising motion and the latter corresponds to
a stable return to equilibrium.

Consider the adiabatic parcel. Then to first order:

ρ˚ “ ρ

ˆ

P 1

P

˙1{γ

(6.20)

“ ρ

ˆ

1`
1

P

dP

dz
δz

˙1{γ

(6.21)

« ρ`
1

γP

dP

dz
δz (6.22)

ρ1 « ρ`
dρ

dz
δz (6.23)

Comparing, we find that under the unstable condition is:

ρ

Pγ

dP

dz
ă
dρ

dz
(6.24)

Suppose that the fluid is isentropic, so K “ P
ργ is a constant. Taking its derivative with respect to z-distance

and requiring dK{dz “ 0, we observe that

ρ

Pγ

dP

dz
“
dρ

dz
(6.25)

and hence if K is a constant, the fluid is stable at the margin. We may re-write the instability criterion by
replacing the density derivative by a temperature dependence using the ideal gas equation:

´

ˆ

1´
1

γ

˙

ρ

P

dP

dz
`
ρ

T

dT

dz
ă 0 (6.26)

ùñ

ˇ

ˇ

ˇ

ˇ

dT

dz

ˇ

ˇ

ˇ

ˇ

ă

ˆ

1´
1

γ

˙

T

dP

ˇ

ˇ

ˇ

ˇ

dP

dz

ˇ

ˇ

ˇ

ˇ

(6.27)

where the moduli are included because the first derivatives are actually negative. This is called the
Schwarzschild stability criterion.

Observe that if ρ˚ ă ρ1 and since the pressures of the fluid parcel and the surrounding medium are equal,
we have that T˚ ą T 1, and the parcel is warmer than its surroundings. The parcel will hence transfer heat
energy to its surroundings, and will finally cool to sink back. Repeating the same argument, the parcel will
now be cooler than its surroundings, allowing the surrounding medium to heat up the parcel and repeating
the cycle again. This flow forms convective cells.

32



Soon Wei Daniel Lim Astrophysical Fluids (Cambridge NatSci (Physical), Part II), Week 6

6.2.3 Equation of motion of parcels in convective cells

ρ˚
d2pδzq

dt2
“ ´gpρ˚ ´ ρ1q (6.28)

In the limit of small perturbations, we write ρ˚ “ ρ ` δρ, and use the Schwarzchild equation relating the
derivatives of pressure and temperature:

pρ` δρq
d2pδzq

dt2
“ ´g

ˆ

ρ

T

dT

dz
´

ˆ

1´
1

γ

˙

ρ

P

dP

dz

˙

δz (6.29)

ùñ
d2pδzq

δt2
“ ´g

ˆ

1

T

dT

dz
´

ˆ

1´
1

γ

˙

1

P

dP

dz

˙

δz “ ´N2δz (6.30)

N2 ” g

ˆ

1

T

dT

dz
´

ˆ

1´
1

γ

˙

1

P

dP

dz

˙

(6.31)

Observe that this equation of motion is an oscillation with angular frequency N . Hence these are internal
density oscillations.

6.2.4 Jeans instability

Include gravity. Consider a uniform medium (Lagrangian and Eulerian perturbations are the same). Consider
the mass conservation equation, momentum equation and Poisson equation:

Bρ

Bt
`∇ ¨ pρuq “ 0 (6.32)

Bu

Bt
` u ¨∇u “ ´1

ρ
∇P ´∇Ψ (6.33)

∇2Ψ “ 4πGρ (6.34)

Substituting the perturbations into these equations and skipping all the grungy algebra (taking linearization
to first order):

Bp∆ρq

Bt
` ρ0∇ ¨ p∆uq “ 0 (6.35)

∆u

Bt
“ ´c2s∇p∆ρq

1

ρ0
´∇p∆Ψq (6.36)

∇2p∆Ψq “ 4πG∆ρ (6.37)

Consider the oscillatory ansatz:

∆ρ “ ρ1e
ipk¨x´ωtq (6.38)

∆u “ u1e
ipk¨x´ωtq (6.39)

∆Ψ “ Ψ1e
ipk¨x´ωtq (6.40)

This gives the Fourier space representation of the dispersion relation:

ω2 “ c2s

ˆ

k2 ´
4πGρ0

c2s

˙

“ c2s
`

k2 ´ k2
J

˘

(6.41)

where we define the Jeans’ wavenumber kJ . Now this corresponds to the boundary between imaginary and
real solutions for ω, giving the distinction between the oscillatory and exponential growth modes of the
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perturbation. Hence if k ă kJ , we have that ω is imaginary and the solution is unstable.

Also define the Jeans’ length and the Jeans mass:

λJ “
2π

kJ
(6.42)

MJ “ ρ0λ
3
J (6.43)

6.3 Wednesday 24 Feb 2016

6.3.1 2D Fluid instabilities

Consider the 2D xz plane, with the half-planes above and below the z “ 0 plane having two different
conditions. Let the fluid below the z “ 0 plane have density and x-velocity (parallel to the z “ 0 plane)
ρ, U , and that above the z “ 0 plane have ρ1, U 1. Let a uniform gravitational field act in the ´ẑ direction.
Observe that a pressure gradient is necessary to ensure that the fluid remains in a steady state. Let the
pressure of the fluid across the interface be continuous. Let the fluid be incompressible p∇ ¨u “ 0q and ideal.
Let the flow be irrotational initially (and hence be irrotational for all time). Then it will suffice to solve for
the velocity scalar potential:

´∇Φ “ u (6.44)

Consider a sinusoidal perturbation of the z-position of the interface: ξpx, tq. We require that the boundary
conditions of the problem at z Ñ ˘8 be that the fluid retains its initial ρ, U far away from the perturbed
interface.

Now consider the momentum equation:

Bu

Bt
` u ¨∇u “ ´1

ρ
∇P ` g (6.45)

ùñ
Bu

Bt
`∇

ˆ

1

2
u2

˙

“ ´
1

ρ
∇P ` g, ∇ˆ u “ 0 (6.46)

ùñ ´∇BΦ
Bt
`∇

ˆ

1

2
u2

˙

“ ´∇
ˆ

P

ρ

˙

´∇Ψ (6.47)

We may now integrate both sides with respect to space to require that:

´
BΦ

Bt
`

1

2
u2 `

P

ρ
`Ψ “ f (6.48)

where f is a constant of integration.

Now we note that we may perturb the x-velocity of the half-planes by perturbing the velocity scalar potential
with functions φ, φ1:

Φ “ Ux` φ (6.49)

Φ1 “ ´U 1x` φ1 (6.50)

Now we require that the fluid be incompressible, so ∇ ¨ u “ 0 and:

34



Soon Wei Daniel Lim Astrophysical Fluids (Cambridge NatSci (Physical), Part II), Week 6

∇2φ “ 0 (6.51)

∇2φ1 “ 0 (6.52)

Note further that far away from the interface, we can require that φ, φ1 vanish so that Φ “ Ux,Φ “ U 1x and
hence the velocity field far away is the same as that of the unperturbed initial system.

The change in the velocity scalar potential perturbation with z-position is related to the displacement (to
first order):

´
Bφ

Bz

ˇ

ˇ

ˇ

ˇ

z“0

“
Dξ

Dt
“
Bξ

Bt
` U

Bξ

Bt
(6.53)

´
Bφ1

Bz

ˇ

ˇ

ˇ

ˇ

z“0

“
Dξ

Dt
“
Bξ

Bt
` U 1

Bξ

Bt
(6.54)

Consider the exponential ansatz ξpx, tq “ Aeipkx´ωtq, φ “ Ceipkx´ωtq ` jz, φ1 “ C 1eipkx´ωtq ` j1z. Note that
we add the jz term to account for the velocity component along the z-axis. The vanishing of the Laplacian
of φ, φ1 gives:

´k2 ` j2 “ 0 (6.55)

´k2 ` pj1q2 “ 0 (6.56)

The sign of j is determined by the boundary conditions. Now we know that φÑ 0 as z Ñ ´8 and φ1 Ñ 0
as z Ñ8 so that the velocity field attains the unperturbed value. This gives:

j “ k (6.57)

j1 “ ´k (6.58)

Substituting the form of φ, φ1 into the equations in p6.53´ 6.54q gives:

´kC “ ´iωA` UikA (6.59)

kC 1 “ ipkU 1 ´ ωqA (6.60)

Now we have too many unknowns. We appeal to the momentum equation (suitably rearranged and taking
the gravitational potential at the perturbed interface to be Ψ “ gξ):

P “ ´ρ

ˆ

´
Bφ

Bt
`
u2

2
` gξ

˙

` ρf (6.61)

P 1 “ ´ρ1
ˆ

´
Bφ1

Bt
`
pu1q2

2
` gξ

˙

` ρ1f 1 (6.62)

Since we claimed that the pressure is continuous across the interface, we equate these two expressions to
obtain:

´ρ

ˆ

´
Bφ

Bt
`
u2

2
` gξ

˙

` ρf “ ´ρ1
ˆ

´
Bφ1

Bt
`
pu1q2

2
` gξ

˙

` ρ1f 1 (6.63)

ùñ ´ρ

ˆ

´
Bφ

Bt
`
u2

2
` gξ

˙

“ ´ρ1
ˆ

´
Bφ1

Bt
`
pu1q2

2
` gξ

˙

`K, K ” ρ1f 1 ´ ρf (6.64)
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Far away from the interface, |z| " 0, we may set uÑ U, u1 Ñ U 1, φ “ φ1 “ ξ Ñ 0, which gives us:

1

2
U2ρ “

1

2
pU 1q2ρ1 `K (6.65)

and this uniquely defines K. We may also replace u2 and pu1q2 in p6.64q by including its dependence on φ:

u “ ´∇φ “ U ´
Bφ

Bx
(6.66)

u “ ´∇φ1 “ U 1 ´
Bφ1

Bx
(6.67)

ùñ u2 « U2 ´ 2U
Bφ

Bx
to first order (6.68)

ùñ pu1q2 « pU 1q2 ´ 2U 1
Bφ1

Bx
to first order (6.69)

Much messy algebra later, substituting the exponential ansatz (to move into the Fourier domain), and
cancelling terms,

ρiωC ´ ρUikC ` ρgA “ ρ1iωC 1 ´ ρ1U 1ikC 1 ` ρ1gA (6.70)

and simplifying the amplitudes, we obtain the dispersion relation:

ρpkU ´ ωq2 ` ρ1pkU 1 ´ ωq2 “ kgpρ´ ρ1q

which can be written in terms of the phase velocity:

vp “
ω

k
“
ρU ` ρ1U 1

ρ` ρ1
˘

d

g

k

ρ´ ρ1

ρ` ρ1
´
ρρ1pU ´ U 1q2

pρ` ρ1q2
(6.71)

6.3.2 Surface Gravity Waves

Consider fluids that are initial at rest in the previous section. Then U “ U 1 “ 0. Also assume that ρ1 ă ρ
so that the lighter fluid is above the heavier fluid. Then the dispersion relation simplifies:

vp “
ω

k
“ ˘

d

g

k

ρ´ ρ1

ρ` ρ1
(6.72)

which gives a real ω for real k (dispersive waves).

Now consider the case where ρ1 ą ρ so that the heavier fluid is sitting on the lighter fluid. Note now that
for real k, we obtain imaginary ω and hence we have exponentially growing perturbations. This is called the
Rayleigh-Taylor instability.

Now consider ρ ą ρ1 so that the heavier fluid is below, but consider non-zero x-velocities. The term in the
square root can be negative if the wavenumber is sufficiently large:

k ą
rρ2 ´ pρ1q2sg

ρρ1pU ´ U 1q2
(6.73)

Then if the gravitational field is zero, the RHS vanishes, and the inequality is satisfied for all k. Hence
the fluid is unstable with respect to perturbations for all spatial scales (all k). For non-zero g, then there
is a cut-off spatial scale for the instability to occur. This instability is known as the Kelvin-Helmholtz
instability.
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Chapter 7

Week 7

7.1 Friday 26 Feb 2016

7.1.1 Thermal instabilities and the Field Criterion

Consider temperature perturbations (WLOG consider small increase in temperature ∆T ). The unperturbed
state hence corresponds to thermal equilibrium 9Qcool “ 0.
Case A: Constant pressure Since the pressure perturbations will be evened out on a timescale much
shorter than the thermal perturbations, we may make the assumption that the pressure is constant through-
out the fluid. Then consider the cooling function change as a result of the temperature perturbation:

9Qcool Ñ 9Qcoolp0q `
B 9Qcool
BT

ˇ

ˇ

ˇ

ˇ

ˇ

p

∆T (7.1)

If the last term is negative, then we expect that the system will be unstable since a slight heating will result
in further heating. This is a runaway process. Hence the condition for instability is:

B 9Qcool
BT

ˇ

ˇ

ˇ

ˇ

ˇ

p

∆T ă 0

Case B: Non-constant pressure We ignore gravity for this analysis. Assume u0 “ 0, 9Q0 “ 0,∇P0 “

0,∇ρ0 “ 0, and assume adiabatic processes P “ Kργ . Let the fluid have the same initial adiabatic depen-
dence ∇K0 “ 0.

Bρ

Bt
`∇ ¨ pρuq “ 0 (7.2)

Bu

Bt
` u ¨∇u “ ´1

ρ
∇P (7.3)

Then consider the pressure perturbation due to density and K fluctuations:

P “ Kργ ùñ dP “ ργdK `
γP

ρ
dρ (7.4)

The ideal gas relationship allows us to find the relationship between changes in pressure and temperature:

P “
R˚ρT
µ

ùñ dP “
Pdρ

ρ
`
R˚ρdT
µ

(7.5)

Combining the equations for the pressure differentials, we obtain:

dK “ ρ1´γp1´ γq

„

P

ρ2
dρ`

R˚
µp1´ γq

dT



(7.6)
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Note that:

P

ρ2
dρ “ ´PdV (7.7)

which can be seen by taking ρ “ 1{V . Note further that the second term is:

dξ

dT
“ CV “ ´

R˚
µp1´ γq

(7.8)

hence using the first law of thermodynamics, dQ “ dξ ´ pdV , so:

dK “ ´ρ1´γp1´ γqdQ (7.9)

ùñ
dK

dt
“ ρ1´γp1´ γq 9Qcool (7.10)

Now consider the Lagrangian/Eulerian perturbations (same as the initial unperturbed state is isotropic)
∆ρ,∆u, which result in the perturbations ∆K,∆ 9Qcool. Apart from the usual continuity and momentum
equations, there is the additional relation:

B∆K

Bt
“ ´

γ ´ 1

ργ´1
0

∆ 9Qcool (7.11)

The resultant perturbation in ∆ 9Qcool can be written in terms of pressure and density dependence:

∆ 9Qcool “
B 9Qcool
BP

ˇ

ˇ

ˇ

ˇ

ˇ

ρ

∆P `
B 9Qcool
Bρ

ˇ

ˇ

ˇ

ˇ

ˇ

P

∆ρ (7.12)

Define the following parameters:

A˚ “
γ ´ 1

ργ´1
0

B 9Qcool
BP

ˇ

ˇ

ˇ

ˇ

ˇ

ρ

(7.13)

B˚ “
γ ´ 1

ργ´1
0

B 9Qcool
Bρ

ˇ

ˇ

ˇ

ˇ

ˇ

P

(7.14)

ùñ
B∆K

Bt
“ ´A˚∆P ´B˚∆ρ (7.15)

Making an exponential ansatz:

∆ρ “ ρ0e
ik¨x`qt (7.16)

∆u “ u0e
ik¨x`qt (7.17)

∆K “ K0e
ik¨x`qt (7.18)

where q plays the role of iω and q ą 0 implies a perturbation that grows in time; an instability. Bashing
through the math and solving for the relation between the wavenumber k and q:

q3 `A˚ργ0q
2 ` k2γ

P0

ρ0
q ´B˚k2ργ0 “ 0 (7.19)

This can be solved to obtain the general conditions for real and positive q roots. If B˚ ą 0, then there will
be a real, positive root (note that all three roots cannot be negative because the last term in the cubic will
be positive in that case). Hence the condition for instability is:

γ ´ 1

ργ´1
0

B 9Qcool
Bρ

ˇ

ˇ

ˇ

ˇ

ˇ

P

ą 0 ùñ ´
R˚T 2

µP

B 9Qcool
BT

ˇ

ˇ

ˇ

ˇ

ˇ

P

ą 0 ùñ
B 9Qcool
Bρ

ˇ

ˇ

ˇ

ˇ

ˇ

P

ă 0 (7.20)

which is the same condition as in the constant pressure case. This condition is known as the Field criterion.
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7.1.2 Example: Bremmstrahlung

Parametrize the cooling function as:

9Qcool “ AρTα ´H (7.21)

where the cooling component has temperature dependence while the heating component proceeds at a con-
stant rate. Evaluating the Field Criterion:

B 9Qcool
BT

ˇ

ˇ

ˇ

ˇ

ˇ

P

“
pα´ 1qAPµ

R˚
Tα´2 (7.22)

and we observe that the thermal instability occurs when:

α ă 1 (7.23)

For Bremsstrahlung, α “ 1{2, so the fluid will be thermally unstable.

7.2 Monday, 29 Feb 2016

7.2.1 Viscous flows

The continuity equation still holds:

Bρ

Bt
` Bjpρujq “ 0 (7.24)

We update the momentum equation:

Bρui
Bt

“ ´Bjσij ` ρgi (7.25)

where gi “ ´BiΨ. The stress tensor is:

σij “ ρuiuj ` Pδij ` σ
1
ij (7.26)

where we add the extra σ1ij term to represent the contribution from the viscous terms. Call it the viscous
stress tensor.

7.2.2 Shear stress thought experiment - Molecular viscosity

Consider linear shearing flow in the ith direction. Let there be a velocity gradient in the j direction. Then
due to the differential flow velocities, there will be a momentum flux cross individual fluid layers given by
ρuivj where vj is the velocity of the random motions of the fluid molecules. We expect that vj will be

proportional to
a

kBT {m. The net momentum flux into a streamline is given by the contributions from the
streamlines immediately above and below it:

F “ ρrui ´ pui ` Bjulδlqsα

c

kBT

m
“ ´ρpBjuiqδlα

c

kBT

m
(7.27)

The separation between streamlines δl should be on the order of the mean free path λ “ 1
nσ . Approximating

the molecules as hard spheres, we set σ “ πa2. Then, letting ρ be the mass density of the molecules, we
obtain:
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δl “
m

ρπa2
(7.28)

ùñ F “ ´ρpBjuiq
m

ρπa2
α

c

kBT

m
(7.29)

Substituting this ansatz for the molecular viscosity into the momentum equation, and noting that the stress
tensor components are precisely the momentum flux, we obtain:

Bpρuiq

Bt
“ ´Bjpρuiuj ` Pδijq ` Bj

” α

πa2

a

mkBT pδjuiq
ı

` ρgi (7.30)

We take α to be 1
2 since it is on order unity. Call η “ α

πa2

?
mkBT , the shear viscosity. Observe that the

shear viscosity is independent of density.

7.2.3 Navier-Stokes Equation

Write the viscosity tensor as:

σ1ij “ ´η

ˆ

Bjui ` Biuj ´
2

3
δijBkuk

˙

´ ζδijBkuk (7.31)

The first term proportional to η corresponds to the shear viscosity. The second term is called the bulk
viscosity contribution which is due to compression.

For an isotropic substance, we require σ1ij “ σ1ji. Note further that the terms along the diagonal will only
contain bulk viscosity terms because the term in the parenthesis will vanish.

The momentum equation becomes:

Bpρuiq

Bt
“ ´Bjρuiuj ´ BjPδij ` Bj

„

η

ˆ

Bjui ` Biuj ´
2

3
δijBkuk

˙

` ζδijBkuk



` ρgi (7.32)

Using the continuity equation to combined the LHS term and the first term on the RHS, we obtain the
Navier-Stokes equation in component form:

ρ

ˆ

Bui
Bt
` ujBjui

˙

“ ´BjPδij ` Bj

„

η

ˆ

Bjui ` Biuj ´
2

3
δijBkuk

˙

` ζδijBkuk



` ρgi

In vector form, and assuming isothermal, incompressible conditions, we have:

Bu

Bt
` pu ¨∇qu “ ´1

ρ
∇P ´∇Ψ`

η

ρ
r∇2u`

1

3
∇p∇ ¨ uqs

η{ρ is called the kinematic viscosity ν.

Fully ionized plasma example - Braginskii-Spitzer shear visoscity The main interactions are Coulom-
bic. The mean free path varies as T 2, so the shear viscosity coefficient goes as η9

?
mT 5{2. This form is

known as the Braginskii-Spitzer shear viscosity.

7.3 Wednesday 2 March 2016

7.3.1 Vorticity in viscous flows

Make the following assumptions: ζ “ 0, η “ constant. Assume fluid is barotropic P “ P pρq. Then the
Navier-Stokes equation gives:

Bu

Bt
` pu ¨∇qu “ ´1

ρ
∇P ´∇Ψ`

η

ρ
r∇2u`

1

3
∇p∇ ¨ uqs (7.33)
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Recall that the definition of vorticity is w “ ∇ˆu. Then take the curl of the entire Navier-Stokes equation.
Examine the curl of each of the terms

∇ˆ pu ¨∇uq “ ∇ˆ
ˆ

1

2
u2 ´ uˆ p∇ˆ u

˙

“ ´∇ˆ puˆwq (7.34)

∇ˆ∇Ψ “ 0 (7.35)

∇ˆ
ˆ

1

ρ
∇P

˙

“ ∇
ˆ

1

ρ

˙

ˆ∇P ` 1

ρ
∇ˆ∇P “

ˆ

´
1

ρ2
∇ρ

˙

ˆ∇P ` 1

ρ
∇ˆ∇P “ 0 (7.36)

Hence we have:

Bw

Bt
“ ∇ˆ puˆwq ` η∇ˆ 1

ρ
∇2u (7.37)

where we note that ∇ ˆ∇u2 “ 0. Note that the first two terms correspond to Kelvin’s vorticity theorem.
We assume that the kinematic viscosity ν “ η{ρ is constant. Since the viscosity is already a constant, we
require that the density also be a constant. The viscous term can be evaluated explicitly:
Hence we have:

Bw

Bt
“ ∇ˆ puˆwq ` η

ρ
∇2w

Observe that the presence of the viscous term allows vorticity to be generated even if the initial vorticity is
zero. Vorticity can also be damped by the viscous term.

7.3.2 Energy dissipation in incompressible viscous flows

Consider an incompressible fluid pBiuiq “ 0 with total kinetic energy:

Ekin “

ż

1

2
ρu2dV (7.38)

Ignore gravity.
Consider the time derivative:

B

Bt

ˆ

1

2
ρu2

˙

“ uiBtpuiρq (7.39)

“ ´uiBjσij (7.40)

“ ´uiBjpρuiujq ´ uiBiδijP ´ uiBjσ
1
ij (7.41)

then some magic happens...

“ ´Bi

„

ρui

ˆ

1

2
u2 `

P

ρ

˙

` ujσ
1
ij



` σ1ijBjui (7.42)

Several important magic formulae include:

1

2
Bjpρujuiuiq “

ρ

2
uiuiBjuj ` ujBjp

ρ

2
uiuiq “ ujuiBjpρuiq (7.43)

σ1ij “ σ1ji (7.44)

To obtain the rate of change of total kinetic energy, we integrate over the entire fluid:

BEkin
Bt

“ ´

ż

Bi

„

ρui

ˆ

1

2
u2 `

P

ρ

˙

` ujσ
1
ij



dV `

ż

σ1ijBjuidV (7.45)

“ ´

¿

S

„

ρu

ˆ

1

2
u2 `

P

ρ

˙

` u ¨ σ1


¨ da`

ż

σ1ijBjuidV (7.46)
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Observe that the first surface integral corresponds to the work done by the ram pressure, thermal pressure
and σ1 over the surface. We implement the condition that the velocity vanishes at infinity. Then considering
all space, the first surface integral vanishes. The second volume term corresponds to the rate of dissipation
of kinetic energy due to viscous forces. Hence we have:

BEkin
Bt

“

ż

σ1ijBjuidV (7.47)

“
1

2

ż

σ1ijpBjui ` BiujqdV, symmetric matrix (7.48)

“ ´
1

2

ż

η pBjui ` Biujq
2
dV, σ1ij “ ´η pBjui ` Biujq (7.49)

Observe that the integrand is negative definite. Hence the kinetic energy decreases monotonically. In the
absence of viscosity, kinetic energy is conserved. Note that this viscous effect takes place in the shock,
thereby changing the energy and entropic content of fluid elements crossing the shock.

7.3.3 Example: Viscous flow in pipe

Consider a pipe with radius R0. Let the flow be steady and in the z direction: u “ p0, 0, uzq in cylindrical
coordinates. Let the fluid be incompressible and neglect gravity. By symmetry, uz varies with the axial
radius and has to vanish at the edge of the pipe. The Navier-Stokes equation in this case is:

0 “ ´
1

ρ
∇P ` ν

“

∇2u
‰

(7.50)

ùñ
1

ρ

dP

dz
“ ν

1

R

d

dR

ˆ

R
duz
dR

˙

(7.51)

Since the LHS and RHS are functions of different coordinates, they must individually be constants. This
implies that the gradient of pressure is a constant. Define ∆P to be the decrease in pressure across the pipe
(this adds a minus sign).

1

ρ

∆P

l
“ ´ν

1

R

d

dR

ˆ

R
duz
dR

˙

(7.52)

Integrating and implementing the boundary conditions at the pipe circumference:

u “
∆P

4νρl
pR2

0 ´R
2q (7.53)

The mass flux through the pipe can be obtained through integrating the cross section:

J “

ż R0

0

2πρuRdR “
π∆P

8η
R4

0 (7.54)

Observe that in the limit ν Ñ 0, the flow rate is unbounded for finite pressure drop. This means that in
inviscid flows, there can be no pressure gradient.
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Week 8

8.1 Friday 4 Mar 2016

8.1.1 Accretion Disks

Let the objects in the disk move with Keplerian angular velocity Ω “
b

GM
R3 which arises from the balance

of centrifugal and gravitational forces. Observe that the angular velocity varies with radius, indicating that
concentric layers are shearing against each other. The shear flow results in momentum transfer towards
the center of the disk, and this corresponds to mass transfer as well. Proceed in cylindrical coordinates
pR,φ, zq and assume that the disk is axisymmetric: df

dφ “ 0 for all parameters fpR, θ, zq. Assume hydrostatic
equilibrium along the z-axis: uz “ 0. Note that the azimuthal velocity uφ will be very close to the Keplerian
angular velocity and will dominate the radial velocity uR. Also assume that the bulk viscosity ζ “ 0 so we
do not have any shocks.

Then the Eulerian continuity equation gives:

Bρ

Bt
`

1

R

B

BR
pRρuRq `

1

R

B

Bφ
pρuφq `

Bpρuzq

Bz
“ 0 (8.1)

ùñ
Bρ

Bt
`

1

R

B

BR
pRρuRq “ 0 (8.2)

The Navier-Stokes equation (and not the momentum equation) gives (assuming uR, uφ do not have z-
dependence):

ρ

ˆ

Buφ
Bt

` uR
Buφ
BR

`
uRuφ
R

˙

“ η

ˆ

B2uφ
BR2

`
1

R

Buφ
BR

´
uφ
R2

˙

`
Bη

BR

ˆ

Buφ
BR

´
uφ
R

˙

(8.3)

Define the kinematic viscosity ν “ η
ρ and the column density Σ “

ş

ρdz. Define also the mass-average
kinematic viscosity:

ν̃ ”

ş

ρνdz
ş

ρdz
“

ş

ηdz

Σ
(8.4)

Let ν̃ replace ν in the fluid equations:

ùñ
BΣ

Bt
`

1

R

B

BR
pRΣuRq “ 0 (8.5)

Σ

ˆ

Buφ
Bt

` uR
Buφ
BR

`
uRuφ
R

˙

“ ν̃Σ

ˆ

B2uφ
BR2

`
1

R

Buφ
BR

´
uφ
R2

˙

`
Bpν̃Σq

BR

ˆ

Buφ
BR

´
uφ
R

˙

(8.6)
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Combining,

Ruφ
BΣ

Bt
` uφ

B

BR
pRΣuRq “

1

R

B

BR

ˆ

ν̃ΣR3 dΩ

BR

˙

´RΣ

ˆ

Buφ
Bt

` uR
Buφ
BR

`
uRuφ
R

˙

(8.7)

ùñ
B

Bt
pRΣuφq `

1

R

B

BR

`

ΣR2uφuR
˘

“
1

R

B

BR

ˆ

ν̃ΣR3 dΩ

dR

˙

(8.8)

Note that the first term corresponds to the rate of change of the angular momentum (per unit area). The
second term corresponds to the advection of angular momentum radially (i.e. net rate of angular momentum
loss per unit area due to advection). Advection: transfer due to mass flow. The RHS is the net torque
exerted (per unit area) due to viscous processes. The net viscous torque dGpRq exerted on an annulus is
hence obtained by multiplying the surface area:

dGpRq “ 2πRdR
1

R

B

BR

ˆ

ν̃ΣR3 dΩ

dR

˙

(8.9)

ùñ GpRq “ 2πν̃ΣR3 dΩ

dR
(8.10)

For a Keplerian orbit, the azimuthal velocity is approximately constant:

Buφ
Bt

« 0 (8.11)

This allows us to solve for the radial velocity:

uR “
B
BR

`

ν̃ΣR3 dΩ
dR

˘

RΣ B
BR pR

2Ωq
(8.12)

and using the Keplerian angular velocity,

uR “ ´
3 B
BR

`

ν̃ΣR1{2
˘

ΣR1{2
(8.13)

Knowing uR allows us to calculate the surface (column) density by plugging it into the continuity equation:

BΣ

Bt
“

3

R

B

BR

„

R1{2 B

BR

´

ν̃ΣR1{2
¯



(8.14)

The above is known as the viscous diffusion equation for the accretion disk.

8.1.2 Analysis of solutions

Consider a constant kinematic viscosity. Let the mass of the disk be contained at some radius R0 initially.
Note that the diffusion equation will cause the density to spread out in time. However, the spreading is not
symmetric; most of the mass will flow inward. However, there will be some mass flowing outward, and this
mass will carry the majority of the angular momentum outward.

Define the radial viscous timescale tv “
R
uR

. It can be shown that the viscous timescale is on the order of

tv „
R2

ν̃ “ RR
uφ

so that uR “
ν̃
R . The Reynolds number R is defined:

R “
Ruφ
ν̃

(8.15)

In protostellar disks, the Reynolds number is very high: 1014, so the viscous time is greater than the Hubble
time. Hence the molecular viscosity does not operate in protostellar disks. There are, however, other
mechanisms that implement an effective viscosity to decrease the viscous time.

44



Soon Wei Daniel Lim Astrophysical Fluids (Cambridge NatSci (Physical), Part II), Week 8

8.2 Monday 7 Mar 2016

8.2.1 Steady Thin Disks

Recall the continuity equation written in terms of the column/surface density Σ “
ş

ρdz:

BΣ

Bt
`

1

R

B

BR
pRΣuRq “ 0 (8.16)

For a steady disk, there are no time-dependences, which allows us to integrate once:

RΣuR “ c1 (8.17)

We know the constant mass accretion rate with circular symmetry is related to the radial velocity and surface
density:

9m “ ´2πRΣuR (8.18)

and hence c1 “ ´
9m

2π . Under the assumption that the azimuthal velocity is equal to the Keplerian velocity,
we also have a relation for the radial velocity:

uR “ ´
3 B
BR

`

ν̃ΣR1{2
˘

ΣR1{2
(8.19)

Hence upon substitution of p8.17q, we obtain a differential equation. Impose the boundary condition that:

ν̃Σ “ 0, R “ R˚ (8.20)

where R˚ represents the outer radius of the disk. Solving the differential equation on the domain R ă R˚

by separation of variables, we hence obtain the dependence:

ν̃Σ “
9m

3π

«

1´

ˆ

R˚
R

˙1{2
ff

(8.21)

Observe that the kinematic viscosity is related to the mass inflow rate.

8.2.2 Viscous dissipation and luminosity

Define the dissipation power Fdiss “ ´
BEkin
Bt . In component form:

Fdiss “ ´

ż

σ1ijBjui
dV

2πRdR
(8.22)

“
1

2

ż

η pBjui ` Biujq
2
dz, substituting viscous stress tensor and symmetrizing (8.23)

“

ż

ηR2

ˆ

dΩ

dR

˙2

dz (8.24)

Recall that the viscous torques go as GpRq9R dΩ
dR . This is consistent with the form of equation p8.24q so

that the dissipation is due to the viscous torques. Performing the integration over the z-direction, using
the definition of the surface density, and substituting out the viscosity for the kinematic viscosity, we hence
obtain:

Fdiss “ νΣR2

ˆ

dΩ

dR

˙2

(8.25)

“
3GM

4πR3
9m

«

1´

ˆ

R˚
R

˙1{2
ff

, Ω “

c

GM

R3
(8.26)
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Integrating over all the disc area, we obtain the total power emitted:

ż

A

Fdiss “

ż 8

R˚

Fdiss2πRdR “
GM 9m

2R˚
(8.27)

Note that the total power can be interpreted as the rate of gravitational potential energy loss due to the
transfer of mass inwards. However, note that the factor of 2 in the denominator implies that only half of the
gravitational potential energy flow goes to the total power emitted (i.e. radiated away as luminosity). The
other half of the energy flow goes to the kinetic energy of the inflowing material.

Estimating temperature of accretion disks We implement the Optically thick limit. This means
that the radiation interacts many times with the fluid so that it attains a well-defined temperature and a
Maxwellian distribution. Define the effective temperature as a function of radius Teff pRq. We match the
blackbody emission flux with the viscous dissipation Fdiss. There is a factor of 2 because the area of the
disk has a top and bottom surface:

σBTeff pRq
4 “

3GM 9m

4πR3

«

1´

ˆ

R˚
R

˙1{2
ff

(8.28)

In the limit of large radii, we neglect the R-dependent term in the parenthesis and hence obtain:

Teff „ R´3{4 (8.29)

which is called the characteristic power law for disks.

We may also obtain the total radiated flux at frequency f using the Planck distribution:

F pfq “

ż Rout

R˚

2h

c2
f3

ehf{kBTeff ´ 1
2πRdR (8.30)

8.2.3 Plasmas and Magnetohydrodynamics

Assume that we can describe the motion of charged particles using fluid equations. That is, assume that we
can define a fluid element and that the particles collide. Consider positively and negatively charged particles
with masses and velocities m`,m´,u`,u´. Mass conservation requires:

Bn`
Bt

`∇ ¨ pn`u`q “ 0 (8.31)

Bn´
Bt

`∇ ¨ pn´u´q “ 0 (8.32)

Define the center of mass velocity and total density:

u “
m`n`u` `m´n´u´

m`n` `m´n´
(8.33)

ρ “ m`n` `m´n´ (8.34)

Then we may combine the two mass conservation equations:

Bρ

Bt
`∇ ¨ pρuq “ 0 (8.35)

Also define the total charge and current densities:

Q “ n`e
` ` n´e

´ (8.36)

j “ e`n`u` ` e
´n´u´ (8.37)
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so that charge conservation can be written as:

BQ
Bt
`∇ ¨ j “ 0 (8.38)

Now consider the Lorentz force:

F “ epE ` uˆBq (8.39)

The momentum equation for each species will then have to include the Lorentz force:

m`n`

ˆ

Bu`
Bt

` u ¨∇u`
˙

“ e`n` pE ` u` ˆBq ´ f`∇P (8.40)

m´n´

ˆ

Bu´
Bt

` u ¨∇u´
˙

“ e´n´ pE ` u´ ˆBq ´ f´∇P (8.41)

where f˘ is the fraction of the pressure applied onto the positive and negative particles respectively. Note
that the u in the u ¨∇u` term refers to the center of mass velocity. The combined momentum equation can
be written:

ρ

ˆ

Bu

Bt
` u ¨∇u

˙

“ QE ` j ˆB ´∇P (8.42)

8.3 Wednesday, 9 March 2016

8.3.1 Magnetohydrodynamics and Maxwell’s Equations

We rewrite the continuity equation in terms of the current and charge densities:

BQ
Bt
`∇ ¨ j “ 0 (8.43)

The momentum equation is:

ρ

ˆ

Bu

Bt
` u ¨∇u

˙

“ QE ` j ˆB ´∇P (8.44)

To form a closed set of equations, we introduce Ohm’s Law:

j “ σ pE ` uˆBq (8.45)

where σ is the electrical conductivity. We also include Maxwell’s equations:

∇ ¨B “ 0 (8.46)

∇ ¨E “ Q
ε0

(8.47)

∇ˆB “ µ0j `
1

c

BE

Bt
(8.48)

∇ˆE “ ´BB
Bt

(8.49)

where the speed of light is c “ 1?
µ0ε0

.
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8.3.2 Non-relativistic treatment of plasmas

First consider the dimensions of the parameters. The ratio E{B has units of velocity, which we consider to be
the characteristic velocity. Observe that we may compare the sizes of the displacement current contribution
to that of the curl of the magnetic field:

ˇ

ˇ

1
c2
BE
Bt

ˇ

ˇ

|∇ˆB|
„
u2

c2
(8.50)

In the non-relativistic limit, we consider that the characteristic velocity u is much smaller than the speed
of light, and hence this ratio is small. We hence neglect the displacement current contribution and write an
approximate equation:

∇ˆB “ µ0j (8.51)

We also consider that the curl equations give (approximately):

E

l
„
Q
ε0

(8.52)

B

l
„ µ0j (8.53)

ùñ
Q

ε0µ0j
„
E

B
(8.54)

ùñ
|QE|
|j ˆB|

„
u2

c2
! 1 (8.55)

ùñ Q ! j

u
(8.56)

We are hence justified in assuming charge neutrality.

8.3.3 Flux freezing approximation

Assume that the electrical conductivity σ is a constant in time and space. Take the curl of the magnetic
field curl equation and simplify using Ohm’s Law to get:

∇ˆ p∇ˆBq “ ∇ˆ pµ0jq (8.57)

“ µ0σ r∇ˆE `∇ˆ puˆBqs (8.58)

“ µ0σ

„

´
BB

Bt
`∇ˆ puˆBq



(8.59)

“ µ0σ

„

´
BB

Bt
`∇ˆ puˆBq



(8.60)

ùñ
BB

Bt
“ ∇ˆ puˆBq ` 1

µ0σ
∇2B (8.61)

Note that this equation looks similar to Helmholtz’s vorticity equation. The second term hence corresponds
to the advection of the magnetic field lines by the fluid. The third term plays the role of the “viscosity”
term and diffuses the magnetic field lines in space. Hence the finite electrical conductivity (in a non-perfect
conductor) allows for the diffusion of the magnetic field lines. We may, however, assume that the plasma is
a good conductor and take σ Ñ8:

BB

Bt
“ ∇ˆ puˆBq (8.62)
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Then the flux of the magnetic field will hence be conserved in co-moving surfaces with the fluid. The mag-
netic flux hence moves along with the fluid in a Lagrangian manner. This approximation is known as the
Flux freezing approximation.

Another implication of the high conductivity approximation can be obtained by examining Ohm’s Law:

j “ σpE ` uˆBq (8.63)

and since σ Ñ8 but the current density j is finite, we obtain that the term in the parenthesis must vanish:

E ` uˆB “ 0 ùñ E ¨B “ 0 (8.64)

where the last implication was obtained by taking the dot product of both sides of the equation with B.

8.3.4 Ideal MHD equations

To summarize the previous analysis, we write the Ideal MHD equations under the non-relativistic, charge-
neutral, high conductivity regime, where the electric field has been completely substituted with the magnetic
field:

Bρ

Bt
`∇ ¨ pρuq “ 0 (8.65)

ρ

ˆ

Bu

Bt
` u ¨∇u

˙

“ j ˆB ´∇P (8.66)

∇ˆ puˆBq “ BB

Bt
(8.67)

∇ˆB “ µ0j (8.68)

∇ ¨B “ 0 (8.69)

P “ Kργ , γ “
5

3
(8.70)

8.3.5 Magnetic Pressure

We proceed qualitatively to obtain a condition where the magnetic pressure is significant compared to the
thermal pressure (hence requiring an MHD treatment). Recall the Lorentz force:

FL “ e pE ` uˆBq (8.71)

We neglect the electric field term and define a magnetic force density fmag that is given by:

fmag “ j ˆB (8.72)

Then by the Maxwell equation for the curl of the magnetic field, we obtain:

fmag “
1

µ0
p∇ˆBq ˆB ùñ fmag “

1

µ0

ˆ

´∇
ˆ

B2

2

˙

` pB ¨∇qB
˙

(8.73)

Define the magnetic pressure corresponding to the first term on the RHS:

pmag “
B2

2µ0
(8.74)
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The second term pB ¨∇qB corresponds to the magnetic tension per unit area due to the magnetic field lines.
The tension operates along the direction of magnetic field lines.

Proceed by dimensional analysis. Recall that the ram pressure went as 1
2ρu

2, the thermal pressure went

as ρc2s and now we have defined a magnetic pressure that goes as B2

2µ0
. We define a characteristic velocity

associated with the pressure gradients driven by magnetic fields in the plasma by writing:

1

2

B2

µ0
„

1

2
ρv2
A ùñ vA “

d

B2

ρµ0
(8.75)

where we call vA the Alfven velocity. We may also define the Alfven velocity as a vector pointing along
the field lines:

vA “ B
1

?
ρ0µ0

(8.76)

Note that if the magnetic pressure is high enough, it can suppress star formation by reducing the density of
collapsed regions and smoothing out the shocks.

8.3.6 Plasma Waves

Consider an ideal fluid with constant initial density, uniform initial B0. Consider a small perturbation in
exponential form proportional to eipk¨x´ωtq.

Case 1: Longitudinal MHD waves k K B. The velocity of these waves go as
a

c2s ` v
2
A.

Case 2: k ‖ B. There are two types of solutions. The first is ordinary sound waves that propagate
with velocity cs. This corresponds to waves propagating along the field lines, and hence are not affected
by the magnetic field. The second solution is associated with the magnetic tension, which requires a non-
isotropic magnetic field so that the tension term is non-vanishing. These are transverse waves with particle
perturbation velocities perpendicular to the Alfven velocity. We call these pure MHD waves, propagating
with velocity vA.
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