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Chapter 1

Week 1

1.1 Tuesday 6 Jan 2015

Fine structure constant α = e2

~c ≈ 1/137.

More constants ~c = 1973eV · Å = 197.3MeV · fm. mp ≈ mn ≈ 940MeV/c2. me = 0.511MeV/c2

Blackbody Radiation Ultraviolet catastrophe: Expected that the number of modes (per unit frequency) as a function
of frequency increases with frequency, thereby expect that the frequency spectrum will demonstrate an increasing function.
Actual blackbody spectrum tapers off at higher frequencies.

Planck hypothesis Energy of radiation is quantised in terms of ~ω.

Photoelectric effect Energy of emitted electron depends on frequency of light and not intensity of light. Ee = ~ω − φ,
for a fixed work function φ that depends on the metal.

Types of light-matter interactions

1. Photoelectric effect: γebound → efree

2. Compton scattering γe→ γe

3. Bremsstrahlung e→ γe

4. Pair annihilation e+e− → γγ

5. Pair production γγ → e+e−

Compton scattering

∆λ = λe − λinc =
h

mec
(1− cos θ)

Compton wavelength h
mec

= 2.43× 10−12m, reduced Compton wavelength has ~ instead.

Rutherford scattering Differential cross section (as a function of scattered angle): dσ
dθ ∼

1
E2
α

sin θ
sin4(θ/2)

.

Atomic stability Why don’t accelerating electrons radiate all their energy and fall in? Bohr postulated quantisation

using de Broglie wavelength (quantisation of angular momentum L = n~). Gives rn = n2 ~2

me2 = n2a0, En = −Ry
n2 , Ry =

mee
4

2~2 ≈ 13.6eV . Note CGS. Also vn = e2

n~ = 1
nαc not a very appreciable fraction of the speed of light.

Atomic spectral lines To check Franck-Hertz experiment.

1.2 Lecture 08 Jan 2015

Photoelectric effect hν = w0 + eVstop, so plotting Vs against ν gives a slope of h
e .
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Virial theorem E = KE + PE = PE
2 =⇒ KE = −PE2 . Note that this is different from the harmonic oscillator virial

theorem (KE=PE) because the potential shape is different.

Hydrogenic atom/ion With Z protons. Modified (semi-classical) formulae:

En =
−Z2

n2
Ry

vn =
Z

n
αc

Classical electron radius Recall re = e2

mec2
.

Length scales re : λc : a0 = 1 : 1
α : 1

α2 , where λc is the Compton wavelength. Recall that α = e2

~c .

Rydberg atoms Excited atoms with one or more electrons with very high quantum numbers. Since rn goes as n2, they
have very large atomic radii.

de Broglie wavelength Dispersion relation: ω = ~k2
2m , p = h

λ . Note that for a relativistic electron: E2 = (pc)2 + (mc2)2.
Replace E = ~c and p = ~k. For pc >> mc2, then E = pc.

Bragg Scattering 2d sin θ = mλ, d is the spacing between planes and θ is measured with respect to the plane (not the
normal to the plane!). Use cos θ for the normal to the plane.
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Chapter 2

Week 2

2.1 Lecture 13 Jan 2015

Fundamental Wavefunctions ψk(x, t) = Aei(kx−ωt) = Aei(px−Et)/~. Not normalizable. Has to be superimposed to form a
wavepacket.

As a probability P (x, t) = |Ψ(x, t)|2, probability per unit space.

As a travelling wave: ψk(x, t) = ψk(x− vt, 0) where v = vp = ω
k = p

2m . But the velocity of a classical particle is p
m .

Wave Packets as a superposition of de Broglie waves:

Ψ(x, t) =

∫ ∞
−∞

A(k)ei(kx−ωt)dk =

∫
dkA(k)ψk(x, t)

Note that Ψ(x, t) can be normalised
∫∞
−∞ |Ψ(x, t)|2dx = 1.

Group velocity of wave packet Recall that E = p2

2m =⇒ ~ω = (~ω)2

2m =⇒ vg = ~k
m = p

m = vclassical.

As a Fourier transform When t = 0, Ψ(x, t = 0) =
∫∞
−∞ dkA(k)eikx. Define ψk(x) = 1√

2π
eikx, so that

∫∞
−∞ ψk(x)ψ∗k(x)dx =

δ(k − k′) (delta function normalization). Hence we can write

Ψ(x, t = 0) =

∫ ∞
−∞

dkA(k)ψk(x) =⇒ A(k) =

∫ ∞
−∞

Ψ(x, t = 0)ψ∗k(x)dx

In 3D:

Ψ(~r, 0) =

∫∫∫
d~kA(~k)

1√
2π
e−i

~k·~r

Gaussian wavepacket

A(k) = ce−(k−k0)2/(2∆k)2e−i(k−k0)x0

First term is a Gaussian envelope, second term is the fast oscillation. By normalisation, c = 1√
∆k(2π)1/4

. Observe that

∆k =
√
〈(k − k0)2〉 =

√
〈k2〉 − 〈k〉2 =

√
〈k2〉 − k2

0.

In position space, we have:

Ψ(x, 0) =

∫ ∞
−∞

dkA(k)
eikx√

2π
=

1√
∆x(2π)1/4

e−(x−x0)2/(2∆x)2eik0(x−x0)

and we also have ∆x = 1
2∆k .
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Uncertainty Apply de Broglie relation to obtain ∆k = ∆p
~ and combine with previous ∆x∆k = 1

2 so that:

∆p∆x =
~
2

Note that after t = 0, we have an inequality instead of perfect equality since the wave packet spreads and does not remain
a Gaussian.

∆x∆p ≥ ~
2

Method of stationary phase Rewrite ψk(x, t) = 1√
2π
ei(kx−ωt) = 1√

2π
eiφk(x,t) and the interference is constructive if φk

does not change very much with k =⇒ ∂φ
∂k

∣∣∣
k0

= 0 =⇒ ∂
∂k (kx− ωt) = 0 =⇒ x− ∂ω

∂k

∣∣
k0
t = 0 =⇒ x− vgt = 0.

Dispersion relations For light:

ω = ck, vφ = c, vg = c

For de Broglie waves:

ω =
~k2

2m
, vφ =

vclass
2

, vg = vclass

For Relativistic particles:

ω =
E

~
=

√
p2c2 +m2c4

~
, vφ =

E

p
=

√
c2 +

(
mc2

p

)2

> c, vg =
dE

dp
=
pc2

E
= βc < c

Radioactive decay Recall that N = N0e
−t/τ . The Fourier transform of the exponential is a Lorentzian in frequency

space. Then we know that there is a spread in frequency space (∆ω) and this leads to an uncertainty in energy.

2.2 Lecture 15 Jan 2015

Momentum operator p̂ = ~
i
∂
∂x . Eigenfunctions are Aei(px)/~.

Energy operator Ê = i~ ∂
∂t . Eigenfunctions are Ae−iEt/~.

Hamiltonian Ĥ = p̂2

2m + V (x̂).

Position operator x̂ is a multiplicative operator. Eigenfunctions of this operator are delta functions δ(x− x0).
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Chapter 3

Week 3

3.1 Lecture 20 Jan 2015

Angular momentum Particle on a ring. Operator: L̂ = ~
i
∂
∂θ . Uncertainty principle: ∆θ∆L ≥ ~

2 . Boundary condition:

ψ(θ) = ψ(θ+2π). Classical variables: L = MR2θ̇, E = L2

2MR2 . TDSE: Ĥ = −~2

2MR2
∂2

∂θ2 with solutions Ψ(θ, t) = 1√
2π
eiLθ/~e−iωt.

To satisfy boundary conditions, we require that L
~ = m,m ∈ Z,m = 0 is allowed. m = 0 indicates that the particle is uni-

formly likely to be anywhere on the hoop. m < 0 is also allowed, and after tacking on time dependence, moves in the opposite

direction as m > 0. Call m the magnetic quantum number. Then Em = (m~)2

2MR2 . Note that a single solution has magnitude
that is constant everywhere. Localisation is achieved by taking a linear superposition Ψ(θ, t) =

∑
m=0,±1,±2... amΨm(θ, t).

Expectation for non-normalizable de Broglie “wave functions”

〈p〉 =

∫∞
−∞Ψ(x, t)∗p̂Ψ(x, t)∫∞
−∞Ψ(x, t)∗Ψ(x, t)

Expectation for wave packets Let Ψ(x, t) =
∫∞
−∞ dkA(k)Ψk(x, t). Then 〈p〉 =

∫∞
−∞ dk|A(k)|2~k.

3.2 Lecture 22 Jan 2015

Franck-Hertz Experiment Electrons released through thermionic emission, accelerated to a grid held at positive potential,
passes through the grid, flows through a mercury vapour, impinges on a negative potential plate (with associated ammeter
back to the positively charged grid). If the electron elastically scatters off the mercury atom or inelastically collides with the
mercury atoms (thereby losing some energy), it may not be able to reach the negatively charged collector plate. The question
is to verify if energy is transferred (to the mercury atom) in a quantised manner or continuous manner. The measured current
drops at regular intervals of accelerating potential when the energy is high enough to transfer a quantum of energy to the
mercury atom.

Bra-Ket notation Let |ψ〉 be the state of a physical system. Then ψ(x) = 〈x|ψ〉 represents a wave, and 〈n|ψ〉 is a
column vector. Note that the representation is basis-independent.

Inner product 〈φ|ψ〉 =
∫∞
−∞ φ∗(x)ψ(x)dx. Note that 〈ψ|ψ〉 = 1 by normalization.

Expectation value 〈Â〉 ≡ 〈ψ|A|ψ〉 =
∫
dxψ∗(x)Âψ(x). Note also the conjugate: 〈φ|ψ〉 = 〈ψ|φ〉∗.

Operators Consider the momentum operator: 〈p〉 = 〈ψ|p|ψ〉 = 〈ψ|pψ〉 because p̂|f〉 = |g〉, the operator acting on a ket
gives another ket. Integrating by parts (and ignoring the boundary term), we note that 〈ψ|pψ〉 = 〈pψ|ψ〉 = 〈ψ|pψ〉∗. Hence
we have that 〈ψ|pψ〉 is purely real.

Hermiticity Operators corresponding to observable quantities are always Hermitian. To each operator Â, there exists a
Hermitian conjugate Â† such that 〈ψ|Âφ〉 = 〈Â†ψ|φ〉 for all ψ, φ in the Hilbert space corresponding to the physical system
in study. A Hermitian operator is such that Â = Â†.

Matrix Elements Call 〈φ|ψ〉 matrix elements. Note that 〈n|Â|m〉 is an off-diagonal matrix element and the diagonal
elements have m = n. Note further that (M∗)T = M†. If there are off-diagonal elements, then the state will make transitions
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between states over time (off-diagonal elements govern time-evolution and transitions between states).

Time evolution of expectation values

d

dt
〈Â〉 =

∫
dx
(
∂tψ
∗Âψ + ψ∗∂tÂψ + ψ∗Â∂tψ

)
=

∫
dx

(
−(Ĥψ)∗

i~
Âψ + ψ∗∂tÂψ + ψ∗Â

Ĥψ

i~

)
, by TDSE

=
1

i~

[
〈ψ|ÂĤ|ψ〉 − 〈Ĥψ|Âψ〉

]
+ 〈 ˆ̇A〉

=
1

i~

[
〈ψ|ÂĤ|ψ〉 − 〈ψ|Ĥ†Âψ〉

]
+ 〈 ˆ̇A〉

=
1

i~

[
〈ψ|ÂĤ|ψ〉 − 〈ψ|ĤÂψ〉

]
+ 〈 ˆ̇A〉

=
1

i~

[
〈ψ|ÂĤ − ĤÂ|ψ〉

]
+ 〈 ˆ̇A〉

=
1

i~

[
〈ψ|[Â, Ĥ]|ψ〉

]
+ 〈 ˆ̇A〉

=
1

i~
〈[Â, Ĥ]〉+ 〈∂Â

∂t
〉

Canonical Commutation relation Consider [x̂, p̂]. Consider its operation on a general function. Then we have:

[x̂, p̂] = i~

Note that when operators do not commute, then we have an uncertainty relation.

Ehrenfest’s Theorem

d

dt
〈Â〉 =

1

i~
〈[Â, Ĥ]〉+ 〈∂Â

∂t
〉

Consider the operator Â = 1. It obviously commutes with the Hamiltonian and has zero time derivative. Hence 〈Â〉 = 0.
This means that the normalisation of a wave function does not change in time =⇒ probability is “conserved”.

Consider the Hamiltonian operator. Clearly, it commutes with itself and has no time dependence (for time-invariant
potentials). Hence 〈Ĥ〉 = 0.

Consider the position operator. Note that the commutator is distributive and we can calculate [x̂, V (x̂)] = 0, [x̂, Ĥ] =
1

2m [x̂, p̂2] = i~
m p̂ and we have d

dt 〈x〉 = 1
m 〈p̂〉, analogous to classical mechanics.

Consider the momentum operator. Then we have: [p̂, p̂
2

2m ] = 0 but [p̂, V (x̂)] 6= 0 because we know that the momentum
does not commute with position. We write:

[p̂, V (x̂)]ψ(x) = pV ψ − V pψ

=
~
i

[V ψ′ + V ′ψ − V ψ′]

=
~
i
V̂ ′

Putting this into Ehrenfest’s theorem, we obtain:

d

dt
〈p〉 = −

〈
∂V

∂x

〉
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Chapter 4

Week 4

4.1 Tuesday 27 Jan 2015

Uncertainty relation from commutators

∆A∆B ≥ 1

2

∣∣∣〈[Â, B̂]
〉∣∣∣

Cauchy-Schwartz inequality

|〈φ|ψ〉| ≤ |ψ||φ| =
√
〈ψ|ψ〉

√
〈φ|φ〉

Spin Uncertainty

[Ŝx, Ŝy] = i~Ŝz =⇒ ∆Sx∆Sy ≥ |〈Sz〉|
~
2

Stationary states If Ĥ does not have dependence on time, then by Ehrenfest’s theorem, d
dt 〈Ĥ〉 = 0. Also note that

x̂, p̂ are not explicitly dependent on time, although their expectation values may. Note further that energy eigenstates are
stationary in the sense that |Ψ(~r, t)|2 is time-independent. Hence electrons in atomic wave functions don’t accelerate, leading
to the stability of atoms.

Parity operator Define P̂f(x) = f(−x). In 3D, P̂f(~r) = f(−~r). In spherical coordinates, the parity operator performs
the following operation:

r → r

θ → π − θ
φ→ φ+ π

Eigensystem of the Parity operator Note that P̂2|ψ〉 = p2|ψ〉 = |ψ〉 =⇒ p2 = 1 =⇒ p = ±1. Hence there are two
eigenvalues and correspondingly two eigenfunctions. When p = 1, |ψ〉 is unchanged, so call it an even function. For p = −1,
we have an odd function. Hence the eigenfunctions are even and odd functions of space. Hence we may write:

P̂f±(x) = ±f±(x)

where f+ is an even function and f− is an odd function. Note that any function can be written as a linear superposition
of an even and an odd function.

Projectors Consider a projector in parity: Π̂± ≡ 1
2

(
1± P̂

)
. Note that Π̂±f(x) = 1

2 (f(x)± f(−x)) = f±(x). This

operator hence projects out the even or odd operator of a general function. Note that Π̂2
± = f±(x) as well. Projection

operators, when applied multiple times, gives the same answer as if it were applied once:

Π̂n = Π̂, n ≥ 1
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Application of Projection Operators If the potential is even, then the parity operator commutes with the Hamiltonian.

Proof Let φ(x) satisfy the TISE: Ĥφ = Eφ. Apply the parity operator to both sides: P̂Ĥφ = P̂Eφ = EP̂φ. But note that

Ĥ = −~2

2m
∂2

∂x2 + V (x) is invariant under a change x→ −x if V (x) is even. Hence P̂Ĥφ = Ĥ(P̂φ). Combining EP̂φ = Ĥ(P̂φ).

But this is precisely an eigenvalue equation, and we note that P̂φ is an eigenstate of Ĥ with the same eigenvalue E. Note

further that any linear combination of φ and P̂ will also be an eigenstate of Ĥ with the same eigenvalue. Hence φ±P̂φ
2 = Π̂±φ

also describe eigenfunctions of Ĥ with the same energy E.

Eigenfunctions of commuting operators If there are two operators that commute, then it is possible to find simul-
taneous eigenfunctions of both operators. Hence if two (Hermitian?) operators commute, their matrix representations can
be simultaneously diagonalised. Mathematically, a set of diagonalisable matrices (of which Hermitian matrices are a subset)
commutes iff the set is simultaneously diagonalisable. For example, since the parity operator and Hamiltonian operator
commute in the infinite square well case, the energy eigenstates are also parity eigenstates (alternate between even and odd).

Conservation laws Consider a constant zero potential. Then consider the wave function displaced by an amount δx.
Write the Taylor expansion:

φ(x+ δx) =

∞∑
n=0

1

n!

dnφ

dxn

∣∣∣∣
x=0

(δx)n

Writing the derivative using the momentum operator, we obtain:

φ(x+ δx) =

∞∑
n=0

(δx)n

n!

(
i

~
p̂

)n
φ(x) = eiδxp̂/~φ(x)

Call eiδxp̂/~ the displacement operator D̂(δx). Then, noting that each power of p̂ commutes with the Hamiltonian, D̂(δx)
also commutes with the Hamiltonian. Then we have:

E(D̂φ) = Ĥ(D̂φ)

and D̂φ is also an eigenfunction of Ĥ with the same energy E. Then this means that we can take the original wave
function, displace it in the position axis, and obtain another eigenfunction with the same energy. This corresponds to space-
translation invariance (symmetry) and conservation of linear momentum.

d
dtĤ = 0 corresponds to time-translational invariance, which is the conservation of energy.

Noether’s theorem Correspondence between symmetry and conservation laws. Consider an operator Â that commutes

with the Hamiltonian. Then we can write a unitary displacement operator D(δa) = eiδaÂ/~ applied results in an eigenfunction

with the energy unchanged. The unitary time translation operator Û = eiδtĤ/~ gives Uψ(x, t) = ψ(x, t+ δt).

4.2 Recitation 27 Jan 2015

Axioms of QM

1. States: A complete description of a physical system. A ray in a Hilbert space.

2. Observable: A Hermitian operator

3. Time evolution: Governed by the Schrodinger equation.

4. Measurement.

Hilbert space: A vector space over the complex numbers with an inner product, and is complete in the norm.

Ray: Equivalence class of vectors. Define a vector multiplied by a complex constant to be equivalent to the vector itself.
Identity

|φ〉 =
∑
i

|i〉〈i|φ〉
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4.3 Thursday 29 Jan 2015

Symmetries and Commutators Recall we may write the TDSE as

|Ψ(t+ dt)〉 = eidtĤ/~|Ψ(t)〉

The evolution operator Û = eidtĤ/~ is unitary in the sense that it preserves normalisation. Note that we can write the
operator in Taylor expansion form to obtain that [Û , Ĥ] = 0, giving time-translation invariance symmetry.

Momentum Note that [p̂, Ĥ] = 0 under the assumption that V (x) = constant. The eigenstates are de Broglie waves, and
by Ehrenfest’s theorem, we have d

dt 〈p〉 = 0. In this case, the position displacement operator can be written as D̂ = eidxp̂/~,
which commutes with the Hamiltonian as well. When applied to the wave function,

|Ψ(x+ dx)〉 = eidxp̂/~|Ψ(x)〉

This indicates spatial displacement invariance (homogeneity).

Angular momentum Consider [L̂, Ĥ] = 0. Then we can get simultaneous energy and angular momentum eigenstates.

Now consider the Hamiltonian: Ĥ = p̂2

2m + V (~r). The first term in the Hamiltonian has a dot product of p̂ and hence is

invariant under rotations. If we insist that V (~r) is independent of angle, then we will get that d
dt 〈~L〉 = 0, and angular

momentum is conserved. Hence symmetry under rotations implies conservation of angular momentum. Define the angular

displacement operator R̂ = eid
~θ·~L/~. Then [R̂, Ĥ] = 0, which is a condition of isotropy in space.

Parity The parity operator commutes with the Hamiltonian [P̂ , Ĥ] = 0. The associated conservation law is that parity
is conserved. A system in a particular state of parity will remain in that state of parity under time evolution.

Types of symmetries Time, linear space, angular space are continuous symmetries (and conservation laws) of nature.
However, parity is a discrete symmetry.

Relativistic systems Recall that we can perform Lorentz boosts that preserve the dot products between four-vectors.
Under this symmetry, there exists a set of Lorentz invariant quantities (such as mass). The boost operator commutes with
the Hamiltonian.

More discrete symmetries Time direction, charge conjugation (particles to antiparticles and vice versa).

TISE solutions in 1D Define U(x) = 2m
~2 V (x), E = 2mE

~2 . Then we have the ODE:

φ′′ + [E − U(x)]φ = 0

Case 1a: Uniform potential E > U0, classically allowed, and U(x) = U0 everywhere. Then φ(x) = Aeikx+Be−ikx, k2 =
E − U0.

Case 1b: Uniform potential E < U0, classically disallowed, U(x) = U0 everywhere. Then φ(x) = Aeκx +Be−κx, κ2 =
U0 − E . Observe that all φ(x) cannot be normalised. Hence there is no quantum state.

Case 2: Potential step Let U(x) = U0θ(x) where θ is the Heaviside step function. The boundary conditions ensure that
the exponentially growing solution is zero and the only wave function in the x > 0 region is the exponentially decaying wave
function. Then we require that both the φ(x) and φ′(x) functions are continuous everywhere. Note that in the classically
forbidden region, we will only have one exponential term (the one that does not blow up at the infinities). The wave will be
reflected in such a way that the boundary condition at the interface allows for exactly the single exponential term alone (this
is quantisation!). We can use the WKB solution to write φ = e

∫
κ(x)dx or φ = e−

∫
κ(x)dx in the classically disallowed region.
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Chapter 5

Week 5

5.1 Lecture 03 Feb 2015

Quantum Harmonic Oscillator

(
−~2

2m

∂2

∂x
+

1

2
mω2x2

)
ψ(x) = Eψ(x)

Dimensionless version Define E = ~ω = E , where E is a unitless “energy”. Define x =
√

~
mω z where z is the unitless

“length”. Define t = τ
ω , where τ is a dimensionless “time”. Then we have:

(
−1

2

∂2

∂z2
+

1

2
z2

)
ψ(z) = Eψ(z)

ψ′′(z) = (z2 − 2E)ψ(z)

Asymptotic solutions at x → ±∞. Observe that at large z, ψ′′ = z2ψ. This has solution ψ(z) = e−z
2/2. Then we

make the ansatz: ψ(z) = e−z
2/2
∑∞
n=0 anz

n. Substituting this into the ODE, we obtain:

∞∑
n=0

[
n(n− 1)anz

n−2 − 2nanz
n + (2E − 1)anz

n
]

= 0

Re-indexing,

∞∑
n=0

[(n+ 2)(n+ 1)an+2z
n − 2nanz

n + (2E − 1)anz
n] = 0

Then we obtain the recursion relation:

(n+ 2)(n+ 1)an+2 − 2nan + (2E − 1)an = 0, n ≥ 0

=⇒ an+2 =
2n+ 1− 2E

(n+ 2)(n+ 1)
an

But we want normalizable solutions. Hence we need to cut the polynomial off for some n. Then we require 2n+1−2E = 0
for some n. Otherwise, we note that for large n,

an+2

an
=

2

n

which forms an infinite series that increases as ez
2

, which, hence multiplied by e−z
2

, reaches infinity at z → ±∞.

The polynomials for E = p + 1
2 , p ∈ Z, p ≥ 0 described by the recursion relation are the Hermite polynomials. Then we

have solutions that look like:
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ψn = CnHn

(x
b

)
e−x

2/2b2 , b =

√
~
mω

where Cn is there to normalise the wave function. Note that these are Hamiltonian eigenstates (by construction) and are

also parity eigenstates (Hermite polynomials are either even or odd). In fact, P̂ψn(x) = (−1)nψn(x).

Normalizing,

|Cn|2 =
1

2nn!
√
π

Wavepackets in the QHO Note that the QHO wave packets disperse as they propagate from one end to another but
they collect back to the initial position (reflected in the position axis), then bounce back to the original position and shape.
These are called coherent states and are unique to the quantum harmonic oscillator.

Alternative solution to QHO Recall that the TDSE can be written as Ĥψ(x) = Eψ(x). Then write the Hamiltonian
as Ĥ = H~ω, where H is a dimensionless operator. Define the generalised particle position operator Q̂ =

√
mω
~ x̂ and the

generalized momentum operator: P̂ = p̂√
mω~ . Then we can write: H = 1

2 (P 2 + Q2). Note that all these are Hermitian

operators. Also, we have the canonical commutation relationship: [Q,P ] = i, which can be re-written as P = −i ∂∂Q . Define

the operator a = 1√
2
(Q+ iP ) and the adjoint a† = 1√

2
(Q− iP ). These operators are not Hermitian. Expressing Q and P in

terms of a,

Q =
1√
2

(a+ a†)

P =
−i√

2
(a− a†)

Then the Hamiltonian is:

H =
1

2
(aa† + a†a)

The commutator for a and a† is:

[a, a†] = 1

So the Hamiltonian is:

H =
1

2
+ a†a

Define the operator N̂ = a†a. We want to find the eigenvalues and eigenstates of N̂ , and by extension we have the
eigensystem for the Hamiltonian.

Note that 〈H〉 = 1
2 〈P

2〉+ 1
2 〈Q

2〉 ≥ 0. We also note that:

〈ψ|N |ψ〉 = 〈ψ|a†a|ψ〉 = 〈aψ|aψ〉 ≥ 0

Hence the expectation value of N̂ is non-negative. Now to examine the eigenvalue equation:

N |n〉 = n|n〉

where |n〉 is the eigenstate labelled by n (shorthand). Note that

Na|n〉 = a†aa|n〉 = (aa† − 1)a|n〉 = a(a†a− 1)|n〉 = a(n− 1)|n〉

12



Hence we observe that a|n〉 is an eigenstate of N with eigenvalue n− 1. Hence it must be proportional to the eigenstate
|n− 1〉. It can also be shown that a†|n〉 = c′n|n+ 1〉.

Now by repeated application of a, we can reduce the eigenvalue. But we note that this cannot continue indefinitely
because the expectation value of N is non-negative. Let the lowest state be |n0〉. Then a|n0〉 = 0. Hence n0 = 0. Then the
allowed values of n are non-negative integers.

Let cn be such that |n〉 is normalized. Then 〈n|a†a|n〉 = n〈n|n〉 = |cn|2〈n− 1|n− 1〉 =⇒ cn =
√
n. Hence:

a|n〉 =
√
n|n− 1〉

a†|n〉 =
√
n+ 1|n+ 1〉

N |n〉 = n|n〉

Returning to the Hamiltonian,

Ĥψn = (N̂ +
1

2
)~ωψn

Hence the eigenvalues of the Hamiltonian are En = (n+ 1
2 )~ω, and the eigenstates are |ψ(t)〉 = |n〉e−i(n+ 1

2 )ωt.

5.2 Recitation 03 Feb 2015

Noether’s theorem Define a symmetry as an operation that does not change the things we observe about it (i.e. the
eigenvalues of Hermitian operators). Note that the operation |ψ〉 → |ψ′〉 can be represented by the operation of a unitary
operator: |ψ′〉 = U |ψ〉, UU† = I. Consider a unitary matrix implementing symmetry R1 and another of R2. Then we have

U(R1)U(R2) = U(R2 ◦ R1). Note that the time evolution of a unitary operator is given by U(R)e−iĤt/~, which can also be

written as e−itĤ/~U(R). This is the requirement that the unitary operator commutes with the Hamiltonian. If the symmetry
is continuous, U can be expanded in the form U = eiεQ where we call Q the charge. Q commutes with the Hamiltonian,
and Q is the conserved quantity. Consider momentum. It commutes with the Hamiltonian (clearly, since it commutes with
itself). Then we define the operator U = eiap = ea~(∂/∂x). Note that when operating on a wave function, we can expand the
operator in a Taylor series to obtain U(p)ψ(x) = ψ(x+ a~).

5.3 Lecture 05 Feb 2015

Summary Recall the QHO solution in “number” space:

Ĥ =
p̂2

2m
+

1

2
mω2x̂2

with the generalised coordinates and momenta:

Q̂ =

√
mω

~
x̂

P̂ =
p̂√
mω~

=⇒ Ĥ =
1

2
(Q̂2 + P̂ 2)

[Q̂, P̂ ] = i

and defined the creation and annihilation operators:

13



Q =
1√
2

(a+ a†)

P =
−i√

2
(a− a†)

=⇒ a =
1√
2

(Q+ iP )

=⇒ a† =
1√
2

(Q− iP )

=⇒ [a, a†] = 1

Hence we may write the hamiltonian as:

Ĥ = ~ω(a†a+
1

2
)

and define the number operator:

N = a†a

=⇒ H = ~ω(N +
1

2
)

with associated eigenstates:

N |n〉 = n|n〉

such that the hamiltonian eigenstates are

H|n〉 = ~ω(n+
1

2
)|n〉

Now we note the effect of the individual raising or lowering a operators:

a†|n〉 =
√
n+ 1|n+ 1〉

a|n〉 =
√
n|n− 1〉

We require a ground state with an expectation value that is non-negative 〈N〉 ≥ 0, and such that the annihilation operator
operating on it gives the zero element:

a|a0〉 = 0

Call the ground state n = 0. Then |n〉 are the QHO eigenstates, and are stationary states. Call this a state of n quanta.

QHO wave packets Recall that a travelling wave packet starting from one end of the quadratic potential well coheres
back at the other end even though it disperses in the middle. We examine this phenomena in number space. Write the
general wave packet as a linear superposition of energy eigenstates:

|φ0(t = 0)〉 =
∑
m

am|m〉

Note that in coordinate space, we can write: ψm(x) = cmHm(x)e−x
2/2b2 , b =

√
~
mω , but we do not need to know this

explicitly.

We then apply the bra on both sides:

〈n|φ0〉 =
∑
m

am〈n|m〉

14



The eigenstates are orthonormal by construction, hence we have that the sum is just an. Hence we can write:

|φ0〉 =
∑
m

|m〉〈m|φ0〉

Recall that 〈m|ψ0〉 is just a number:

〈m|ψ0〉 =

∫ ∞
−∞

dxψ∗m(x)φ0(x, t = 0)

Then we have the identity:

∑
m

|m〉〈m| = I

We can also insert the time dependence:

|φ0(t)〉 =
∑
m

|m〉e−iEmt/~〈m|φ0(t = 0)〉 = e−iτ/2
∑
m

|m〉e−imτ 〈m|φ0(t = 0)〉, τ = ωt

where we let τ be the unitless time. We pick times where τ = pπ, p ∈ Z. Then e−imτ = e−impπ = 1 if p is an even integer.
Then at those times, the wave function is back to the initial conditions. Hence the motion is periodic. If p is an odd integer,
and m is odd, then e−ipmπ = −1. Then all the odd m terms have their sign flipped. But the eigenstates of the Hamiltonian
are also parity eigenstates with parity eigenvalue (−1)m. Hence if m is odd, then the eigenstate is an odd function. Hence if
we flip the sign of all the odd functions and not touch the even functions, we will get φ(x, τ = pπ) = φ(−x, t = 0). Hence we
will have a wave packet that is flipped in the x-axis.

Charged particle Consider the EM radiation emitted by a particle in QHO well. Recall that the power of an oscillating
dipole is given as:

P =
2

3c2
|d̈|2, d = qx, d̈ = qẍ

In QM, we construct the operator corresponding to 〈d̈〉 to be q d
2

dt2 〈x〉. Note that if the wave function is a parity wave
function like in the QHO eigenstates, then 〈x〉 =

∫
ψ∗(x)xψ(x)dx = 0 because the magnitude squared will always be even.

Hence there will not be any radiation if the charge distribution is symmetric.

On the other hand, if the particle is not in an energy eigenstate, it may have a non-zero dipole moment:

P =
2q2

3c3
d2

dt2
|〈ψ|x|ψ〉|2, |ψ〉 =

∑
n

cn|n〉

Hence:

〈ψ|x|ψ〉 =
∑
n,m

cnc
∗
m〈m|x|n〉e−i(En−Em)t/~

We can split this into the diagonal and non-diagonal term, and note that the matrix is going to be symmetric under the
inversion m↔ n.

∑
n

|cn|2〈n|x|n〉+ 2
∑
n>m

〈m|x|n〉 [<(cnc
∗
m) cos [(En − Em)t/~] + =(cnc

∗
m) sin [(En − Em)t/~]]

Clearly, the diagonal terms are going to be zero under the time derivative. But the diagonal terms have non-zero derivative
because of the time dependence. Observe that 〈m|x|n〉 is a transition from |n〉 to |m〉 with ∆E = En − Em. It will emit or
absorb a photon of the energy difference. Write using the raising and lowering operator (recalling that Q = x

b ):
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〈m|Q|n〉 =
1√
2
〈m|a+ a†|n〉 =

1√
2

[
〈m|a|n〉+ 〈m|a†|n〉

]
=

1√
2

[√
n〈m|n− 1〉+

√
n+ 1〈m|n+ 1〉

]
=

1√
2

[√
nδm,n−1 +

√
n+ 1δm,n+1

]
Note that for 〈m|x|n〉 to be non-zero, m is either n− 1 or n+ 1. Hence changes must be changes in ±1. The parity hence

changes in such a transition. This is called the Parity Selection Rule.

Now consider the dipole operator: d = qbQ. We can write the operator as a matrix:

〈m|Q|n〉 = Qmn

Qmn =
1√
2

[√
nδm,n−1 +

√
n+ 1δm,n+1

]
This is the operator in number basis space. Note that the matrix is symmetric and the elements are real. Recall that the

Hermitian conjugate of a matrix is the conjugate transpose. Hence a real symmetric matrix is Hermitian.
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Chapter 6

Week 6

6.1 Tuesday Lecture 10 Feb 2015

Zero-point energy All binding potentials have a zero-point energy.

Total energy in EM field:

E =

∫
d~k

(
n+

1

2

)
~ω(~k)

where we treat n to be the number of photons occupying each mode (the occupation number). Hence at the ground state,
T = 0, the energy becomes the integral of the zero point energy (clearly diverges).

Relation between infinite square well and QHO Note that the ground state energy of the square well is ~2π2

2mL2 . The

characteristic oscillator length is b =
√

~
mω . Then we can replace L = b.

Coulomb potential Wavefunctions vanish at r = 0.

6.2 Tuesday Recitation 10 Feb 2015

Symmetries and conservation laws Consider a unitary operator U : |ψ〉 → |ψ′〉, UU† = I.

Time symmetry: Should not matter if I do the operation and then wait time t, or wait time t and do the operation.

Ue−itĤ/~|ψ〉 = e−itĤ/~U |ψ〉

which only holds when [Ĥ, Û ] = 0. For continuous symmetries, we can perform a first order approximation to write:

U = I− iεQ̂+O(ε2) =⇒ U = e−iΘQ̂/~

Then for Q to be a conserved quantity, [H,Q] = 0. Then Q is a conserved quantity that generates a symmetry.

Conversely, if an operator Q̂ commutes with the Hamiltonian, then the operator generates a symmetry. Write U =

e−iΘQ̂/~.
Translational invariance Consider a free particle with the Hamiltonian Ĥ = p2

2m . Then [p̂, Ĥ] = 0. Hence we can

define the unitary operator for the symmetry U(a) = e−iap̂/~. This operator becomes a translation in space. Hence we have
translational invariance.

Time translation The Hamiltonian commutes with itself. Then we write the operator that generates the symmetry

U = e−iĤt/~ which translates the wave function in time.

Change of basis Recall that ψ(x) = 〈x|ψ〉. Then we can write |ψ〉 =
∫
dxψ(x)|x〉. To find the components,

〈x′|ψ〉 =
∫
dx′ψ(x)〈x′|x〉 = ψ(x′).

17



In momentum eigenstates Let the identity be written in momentum eigenstates:

I =

∫
dp|p〉〈p|

Then,

|ψ〉 =

∫
dxψ(x)

∫
dp|p〉〈p|x〉

We can obtain the inner product for the momentum and position:

〈p|x〉 =
1√
2π~

e−ip̂x̂/~

which comes from solving the differential equation:

−i~ ∂

∂x
〈x|p〉 = p̂〈x|p〉

Hence we can write:

|ψ〉 =

∫
dp

(∫
dx√
2π~

e−ip̂x̂/~ψ(x)

)
|p〉 =

∫
dpF(p)|p〉

where we define the Fourier transform:

F(p) =

∫
dx√
2π~

e−ip̂x̂/~ψ(x)

Quantum Harmonic Oscillator Recall the Hamiltonian: Ĥ = p2

2m + 1
2mω

2x2 and the ladder operators:

a =

√
mω

2~
(x̂+

i

mω
p̂)

a† =

√
mω

2~
(x̂− i

mω
p̂)

which can also be written as:

x̂ =

√
~
mω

(a+ a†)

p̂ = i

√
mω~

2
(a† − a)

The commutator [a, a†] = 1. So the Hamiltonian becomes:

Ĥ = ~ω(a†a+
1

2
)

We can show that

Ĥ(â|ψ〉) = (−~ω + E)â|ψ〉

where Ĥ|ψ〉 = E|ψ〉. Then we see that â is a lowering operator.

Similarly,

Ĥ(â†|ψ) = (~ω + E)â†|ψ〉
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Chapter 7

Week 7

7.1 Tuesday 17 Feb 2015

Hilbert space

• Linear: If |f〉, |g〉 are states in the Hilbert space, then a|f〉+ b|f〉 is also a state in Hilbert space.

• Dual space. For every |f〉 there exists a dual 〈f | that defines an inner product 〈f |f〉 ∈ C.

• Norm. We can define the norm of a state 〈f |f〉 =
∫
dx〈f |x〉〈x|f〉. Recall that f(x) = 〈x|f〉, so 〈f |x〉 = f∗(x). We can

write it in momentum space as well:
∫
dk〈f |k〉〈k|f〉.

• Completeness:
∫
dx|x〉〈x| = I,

∫
dk|k〉〈k| = I.

Levi-Civita tensor

εink =


0, i = j, j = k, i = k

+1, i, j, k = (1, 2, 3), (2, 3, 1), (3, 1, 2)

−1, i, j, k = (1, 3, 2), (2, 1, 3), (3, 2, 1)

Photon spatial wave function For one photon, write Ψ(~r) = Nei
~k·~r = N〈x|kx〉〈x|ky〉〈z|kz〉. For a linear superposition

(i.e. wavepacket), Ψ =
∫
d~kf(~k)ei

~k·~r. Ψ for a wavepacket lives in a Tensor Product Hilbert Space, which is spanned by∑
(|x〉〈x|)⊗ (|y〉〈y|)⊗ (|z〉〈z|) =

∑1,2,3
i,j,k |xixjxk〉〈xixjxk| where |xyz〉 = |x〉|y〉|z〉.

Polarisation Direction of the electric field in vacuum is transverse to the direction of motion, which comes from the
∇ · ~E = 0 =⇒ ~k · ~E = 0 =⇒ ~E ⊥ ~k. Now write the polarisation of the wave function as a function multiplying the spatial
wave function. Note that the polarisation is not a spatial wave function since it does not depend on position. Then the wave
function of a single photon travelling in the z direction is:

Ψ = ΨpolΨspatial = (a|x〉+ b|y〉)Neikzz

Polarization space

Right circular polarisation:
1√
2

(|x〉+ i|y〉)

Left circular polarisation:
1√
2

(|x〉 − i|y〉)

Longitudinal polarisation: |z〉

Spin and Angular Momentum For spin-1 particles like the photon, the right handed circular polarisation 1√
2
(|x〉+i|y〉)

is an eigenstate of the angular momentum operator with l = 1,m = +1 and Lz = ~. Left handed circular polarisation is
an eigenstate of the angular momentum operator with l = 1,m = −1, Lz = −~. Longitudinal polarisation corresponds to
l = 1,m = 0, Lz = 0.
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For spin-1/2 particles like the electron and proton, Ψelectron = ΨspinΨspatial. We write Ψspin as a linear superposition of
|l = 1/2,m = +1/2〉, |l = 1/2,m = −1/2〉, which we call spinors.

In general, for N particles, the wave function (include polarisation), lives in (R3S3)N space, where the R3 refers to the
polarisation state and the S3 is the spatial wave function.

7.2 Recitation

Tensor product Consider 2x2 matrices A and B:

A⊗B =

(
AB11 AB12

AB21 AB22

)
So you get a 4x4 matrix.

Multiple qubits Consider a quit, which has two states: up and down. Let the first Hilbert space have a basis spanH1 =
{| ↑1〉, | ↓1〉} and a second Hilbert space be spanH2 = {| ↑2〉, | ↓2〉}. Hence the tensor product of these two spaces is all
possible products:

H1 ⊗H2 = {| ↑↑〉, | ↑↓〉, | ↓↑〉, | ↓↓〉}

where the double kets indicate the tensor product of the individual kets.

Entanglement When the Hilbert space cannot be written as a tensor product of individual Hilbert spaces.

Approximations using QHO Given a particular Hamiltonian with a particular potential with a minimum at x0.

V (x) = V (x0) + (x− x0)V ′(x0) + (x− x0)2 1

2!
V ′′(x0) + . . .

at the minimum, we are only interested in the coefficient of the second derivative:

mω2 =
∂2V

∂x2

∣∣∣∣
x=x0

so we can write: V (x) = 1
2mω

2(x− x0)2 for small oscillations.

Dimensional analysis Note that the wave function has units 1/
√
L. A philosophical comment: Nothing physical can

depend on something with dimensions. For example, the raising and lowering operators do not have dimension.

7.3 Thursday 19 Feb 2015

Operators as combinations of bra-kets Note that we can write Â =
∑
n |an〉an〈an|, a linear combination of eigenkets,

eigenbras and eigenvalues.

Postulates of quantum mechanics

1. A physical system has observables and to each observable we can assign an operator. This gives an eigenvalue equation:
Â|an〉 = an|an〉, which gives a set of eigenvalues and associated eigenstates.

2. The state of any physical system can be written as a linear superposition of eigenstates of any observable operator.
|ψ〉 =

∑
n cn|an〉. The eigenstates of the operator define a Hilbert space in which the physical system wavefunction

lives, and the eigenstates span that space. Corollary: In general, there will be several such observables in the physical
system. Consider the operators that commute with the Hamiltonian. Then we can obtain a complete set of commuting
observables (CSCO) - this includes the Hamiltonian itself {Ĥ, Â, B̂, . . .} - which commute pairwise with each other.
The spectrum of the CSCO can be written as a linear combination of kets {|En, am, bl, . . .〉} which will completely span
the Hilbert space of the system |ψ〉. Note further that different states may be associated with same values of En (i.e.
am, bl are different), and we call these degenerate states. Once we specify the eigenvalues of every one of the CSCO,
then there is no more degeneracy, and the state is unique.
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3. In between measurements, the wavefunction evolves predictably according to the time-dependent Schrodinger Equation:

i~∂|Ψ〉∂t = Ĥ|Ψ〉. Then if |Ψ(0)〉 =
∑
n cn|En, am, bl, . . .〉, then |Ψ(t)〉 =

∑
n cn|En, am, bl, . . .〉e−iEnt/~. A perfect

measurement will give a result which is one of the eigenvalues associated with the operator, and the probability of
obtaining this measurement is |cn|2 (this is the Born probability hypothesis).

Collapse of wavefunction Suppose we have two observables: Ĥ|n〉 = En|n〉, Â|an〉 = an|an〉. Then after a measurement
of the energy, obtaining an eigenvalue En, the state of the system is |ψ〉 = |n〉. If [Ĥ, Â] = 0, then the operators can share
the same set of eigenstates (i.e. they can be simultaneously diagonalized).

Proof that two operators can share eigenstates if they commute Consider Â|an〉 = an|an〉. Operate on both
sides with B̂, a commuting operator. Then we have that:

B̂Â|an〉 = B̂an|an〉
ÂB̂|an〉 = B̂an|an〉 since they commute

hence we see that B̂|an〉 is an eigenket of Â with eigenvalue an. Now assume there are no degeneracies. Then it follows
that B̂|an〉 must be proportional to |an〉. Call the proportionality constant bm. Then we see that B̂|an〉 = bm|an〉, so |an〉 is
also an eigenket of B̂ with eigenvalue bm.

Non-commuting observables If [Â, B̂] 6= 0, then we need to write the eigenkets of each operator as a linear superposi-
tion of the eigenkets of the other operator: |bm〉 =

∑
n cn|an〉. Hence when an observation is made, the system collapses into

a linear superposition of eigenkets of the other operator, thereby perturbing the system, and hence the order of observables
matters.

Hamiltonian in momentum basis Consider Ĥ = i~ ∂
∂t . In position space, x̂ = x, p̂ = ~

i
∂
∂x . In momentum space,

p̂ = p, x̂ = ~
i
∂
∂p , and the wavefunction in the momentum basis is 〈p|ψ〉. Hence Ĥ in momentum space can be written as:

Ĥ =
p̂2

2m
+ V̂

now we need to write V̂ in momentum space. Recall in coordinate space, 〈x|Ĥ|ψ〉 = 〈x| p
2

2m + V (x)|ψ〉 = 〈x|−~
2

2m
∂2

∂x2 |ψ〉+

V (x)〈x|ψ〉 = −~2

2m
∂2

∂x2 〈x|ψ〉+ V (x)〈x|ψ〉. Now in momentum space,

〈k|Ĥ|ψ〉 = 〈k| p
2

2m
+ V (x)|ψ〉

= 〈k| p
2

2m
+ IV (x)I|ψ〉

= 〈k| p
2

2m
+

(∫
dk′′|k′′〉〈k′′|

)
V (x)

(∫
dk′|k′〉〈k′|

)
|ψ〉

= 〈k| p
2

2m
|ψ〉+

∫
dk′′dk′〈k|k′′〉〈k′′|V (x)|k′〉〈k′|ψ〉

= 〈k| p
2

2m
|ψ〉+

∫
dk′′dk′δ(k′ − k′′)〈k′′|V (x)|k′〉ψ(k′)

= 〈k| p
2

2m
|ψ〉+

∫
dk′〈k|V (x)|k′〉ψ(k′)

= 〈k| p
2

2m
|ψ〉+

∫
dk′dxdx′〈k|x〉〈x|V (x)|x′〉〈x′|k′〉ψ(k′) using the same identity trick above

= 〈k| p
2

2m
|ψ〉+

∫
dk′dxdx′〈k|x〉V (x)δ(x− x′)〈x′|k′〉ψ(k′)

Now note that 〈x′|k′〉 = 1√
2π
eik

′x′
and 〈k|x〉 = 1√

2π
e−ikx, which is either the position or momentum space representation

of a de-Broglie wave. Hence we may write (after performing the x′ integral by noting that there was a delta function):

〈k|Ĥ|ψ〉 = 〈k| p
2

2m
|ψ〉+

1√
2π

∫
dk′dxe−ikxV (x)eik

′xψ(k′)

=
~2k2

2m
+

∫
dk′√
2π
V (k − k′)ψ(k′)
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Matrix mechanics Given |ψ〉 =
∑
n cn|n〉 or

∫
dkc(k)|k〉, then the coefficients are: cn = 〈n|ψ〉, c(k) = 〈k|ψ〉, which is

the representation of |ψ〉 in a basis. We may hence represent the state using a column vector (for the discrete case):


〈1|ψ〉
〈2|ψ〉

...
〈nmax|ψ〉


Note that we may also use a column vector to represent an operator with infinite (continuous) spectra.

Two-state systems Consider a physical system with only two eigenstates (e.g. spin-1/2 particle in a magnetic field):

|1〉, |2〉. The magnetic moment of the electron in given by ~µ = 2µB ~S, where ~S is the spin. Then the Hamiltonian is given by

Ĥ = −~µ · ~B. Consider an operator Â that does not commute with the Hamiltonian. This operator has a set of eigenstates
that differs from the energy eigenstates. Define the energy eigenstates as |1〉, |2〉 with energy eigenvalues E1 and E2. We can
write the eigenstate of Â as a linear combination of energy eigenstates

|a1〉 = T11|1〉+ T12|2〉
|a2〉 = T21|1〉+ T22|2〉

We write this in matrix form with linear operator T :

T =

(
|a1〉〈1| |a1〉〈2|
|a2〉〈1| |a2〉〈2|

)
In the energy eigenbasis, the energy eigenstates are, by definition:

|1〉 =

(
1
0

)
|2〉 =

(
0
1

)
We may also write Â in its eigenbasis:

(
〈a1|A|a1〉 〈a1|A|a2〉
〈a2|A|a1〉 〈a2|A|a2〉

)
but in the energy eigenbasis, Â looks different:

Â =

(
2∑
i=1

|i〉〈i|

)
A

(
2∑
i=1

|i〉〈i|

)
= |1〉〈1|A|1〉〈1|+ |1〉〈1|A|2〉〈2|+ |2〉〈2|A|1〉〈1|+ |2〉〈2|A|2〉〈2|

Now bras are row vectors:

|ψ〉 =

(
〈1|ψ〉
〈2|ψ〉

)
⇐⇒ 〈ψ| = (〈ψ|1〉∗ 〈ψ|2〉∗)

Expectation Values Consider:

〈φ|Â|ψ〉 = (〈φ|1〉 〈φ|2〉)
(
A11 A12

A21 A22

)(
〈1|ψ〉
〈2|ψ〉

)
where Aij = 〈i|A|j〉.
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Chapter 8

Week 8

8.1 Tuesday 24 Feb 2015

Spectral representation of operator Â =
∑N
n=1 |an〉an〈an|.

Change of basis Consider the energy eigenbasis {|n〉}. Then the representation of operator A in the energy eigenbasis
is:

Â =

N∑
n′=1

|n′〉〈n′|
N∑
n=1

|an〉an〈an|
N∑

n′′=1

|n′′〉〈n′′|

=
∑
n′,n′′

|n′〉

(
N∑
n=1

〈n′|an〉an〈an|n′′〉

)
〈n′′|

=
∑
n′,n′′

|n′〉An′,n′′〈n′′|

where we define the transformation matrix:

An′,n′′ =

N∑
n=1

Tnn′anT
†
nn′′ = TAT †, Tnn′ = 〈n′|an〉

8.2 Tuesday 24 Feb 2015

Observables Note that Hermitian and self-adjoint are not the same thing in infinite dimensional Hilbert space. We require
the operator to be self-adjoint and bounded to be Hermitian. An operator is represented by a Hermitian operator. All the
eigenvalues are real, but if there degenerate eigenvalues, then we need to find an orthonormal basis for the degenerate subspace.

Spectral Decomposition Write the identity as I =
∑
|α〉〈α| =

∑
α Pα in terms of the orthonormal basis of some

Hermitian operator. The projection operator is defined to be |α〉〈α|. The projection operator is idempotent: P2
α = Pα.

Hence we can write the operator Â as a diagonal matrix Â =
∑
|α〉α〈α| which is diagonal in its eigenbasis. This statement

is only true iff A has no degenerate eigenvalues. More generally,

A =
∑
α

αPα

The projection operator usually projects onto a 1D subspace, but if there are degenerate eigenvalues ,then the projection
operator projects onto the larger dimensional subspace.

Operators that commute are simultaneously diagonalizable. More rigorously, if Â|α〉 = α|α〉 and [Â, B̂] = 0, then
Â(B̂|α〉) = α(B̂|α〉). If α is a non-degenerate eigenvalue of A, then |α〉 must be proportional to B̂|α〉 so |α〉 is also an
eigenvector of B̂. But if α is degenerate, then B̂|α〉 lies in the higher dimensional subspace.
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Complete Set of Commuting Observables In 1D, x̂ is a complete set of commuting observables because it never has
degenerate eigenvalues. Note that we need a CSCO so that the degeneracies in one observable can be distinguished using
another operator. It allows us to specify an orthonormal basis of the Hilbert space by eigenvalues. If we have an operator
with a completely non-degenerate spectrum, then it is a CSCO by itself (like the particle on the line with x̂).

Note about unitary operators A unitary operator can be thought of as a change of basis. Consider a Hilbert space
with two orthonormal bases: {|n〉} and {|m〉}. Then the operator Ŵ |n〉 = |m〉 that maps one basis element to the other is a
unitary operator. Using bras, 〈n|W † = 〈m|. Then we examine:

WW † =

(∑
n1

W |n1〉〈n1|

)(∑
n2

|n2〉〈n2|W †
)

=
∑
i,j

mi〉〈ni|nj〉〈mj | =
∑
i

|mi〉〈mi| = I

by orthonormality so 〈ni|nj〉 is the Kronecker delta. Hence W is a unitary operator, and we can always find a basis in
which a Hermitian is diagonal.

Measurement Measurement corresponds to obtaining an eigenvalue of a Hermitian operator. Measurement collapses
the wavefunction into the eigenfunction of that eigenvalue. The probability of obtaining the eigenvalue a is (given initial
state |Ψ〉):

P (a; Ψ) = 〈Ψ|Pa|Ψ〉

If a is non-degenerate, then the projection operator can be written as |a〉〈a|, so P (a; Ψ) = |〈Ψ|a〉|2. Hence upon measure-
ment, the state becomes the eigenstate (appropriately normalised):

|Ψ〉 → 1√
〈Ψ|Pa|Ψ〉

Pa|Ψ〉

and if a is non-degenerate, then:

|Ψ〉 → |α〉

Composition of observables The sum of observables is not necessarily and observable. But the product of observables
is not necessarily and observable. If they commute, then they are an observable and we can measure the two observables
simultaneously since the order does not matter.

8.3 Thursday 26 Feb 2015

Centre of Mass coordinates Consider the Hamiltonian for a two-body central-potential system:

Ĥ =
p̂2

1

2m1
+

p̂2
2

2m2
+ V (|~r1 − ~r2|)

Then we have the eigenvalue problem in the TISE:

ĤΨ(~r1, ~r2) = EΨ(~r1, ~r2)

Now we enter centre of mass coordinates in one dimension. Then let x be the position. Define x = x1 − x2, the
relative position, X = m1x1+m2x2

m1+m2
, the position of the CM. Define M = m1 +m2. Also define similar quantities for the

momentum: p = m2p1−m1p2
m1+m2

, P = p1 + p2. Then we have the inverse relations:

x1 =
m2x

M
+X

x2 =
−m1x

M
+X
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Recall that the momentum operator can be written p1 = ~
i
∂
∂x1

. Hence, replacing x1 with its representation in x and X
using the chain rule:

∂

∂x1
=

∂x

∂x1

∂

∂x
+
∂X

∂x1

∂

∂X

We can write the Hamiltonian in terms of the centre of mass coordinates:

Ĥ =
−~2

2µ

∂2

∂x2
− ~2

2M

∂2

∂X2
,

1

µ
=

1

m1
+

1

m2

Hence we want to solve the new eigenvalue equation in CM coordinates:

ĤΨ =

[
−~2

2µ

∂2

∂x2
− ~2

2M

∂2

∂X2
+ V (x)

]
Ψ(x,X) = EΨ(x,X)

Define:

Ĥx =
−~2

2µ

∂2

∂x2
+ V (x)

ĤX =
−~2

2M

∂2

∂X2

Now, noting the structure of the Hamiltonian, we claim that we can write the wavefunction as a product: Ψ(x,X) =
ψ(x)Φ(X).

Substituting this ansatz into the CM hamiltonian equation:

1

ψ(x)
Ĥxψ(x) = E

1

Φ(X)
ĤXΦ(X) = E − E

Now note that E − E is the kinetic energy of the centre of mass. Hence we write E − E = ~2k2

2M . Now we note that the
centre of mass equation is simply the TISE for the free particle, which has solutions which are de Broglie waves:

Φ(X) = CeikXe−iΩt,Ω =
~k2

2M

as for the relative motion, we have the equation:

[
−~2

2µ

∂2

∂x2
+ V (x)

]
ψ(x) = Eψ(x)

which is equivalent to a single particle with the reduced mass in a fixed potential.

Asymptotic states Consider wave functions far away from the interface.

Review: Classical EM Consider a charge distribution ρ, charge flux ~J . Then the total charge in a region is:

Q =

∫∫∫
ρdV

dQ

dt
= −

∫∫
~J · d~n = −

∫∫∫
(∇ · ~J)dV =⇒ ∂ρ

∂t
+∇ · ~J = 0
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Conservation of Probability Consider the Ψ∗ × TDSE − (TDSE)∗Ψ:

i~Ψ∗
∂

∂t
Ψ + i~

(
∂

∂t
Ψ∗
)

Ψ = − ~2

2m

[
Ψ∗

∂2

∂x2
Ψ− ∂2Ψ∗

∂x2
Ψ

]
=⇒ i~

∂

∂t
|Ψ|2 =

−~2

2m

∂

∂x

[
Ψ∗

∂Ψ

∂x
−Ψ

∂Ψ∗

∂x

]
Define the probability flux:

J(x) =
~

2mi

[
Ψ∗

∂Ψ

∂x
−Ψ

∂Ψ∗

∂x

]
=

~
m
=
(

Ψ∗
∂

∂x
Ψ

)

Note that for a deBroglie wave, Ψ = eikxe−iωt, J(x) = ~k
m |Ψ|

2. Hence we see that the flux is the probability multiplied
by some velocity (~k is the momentum). Combining with the previous relation, we obtain:

∂ρ

∂t
+
∂J

∂x
= 0, ρ(x) = |Ψ(x)|2

In 3D,

~J =
~

2mi
(Ψ∗∇Ψ−Ψ∇Ψ∗) =

~
m
= (Ψ∗∇Ψ)

and the 3D conservation:

∂ρ

∂t
+∇ · ~J = 0

Effect of phase on flux Write the complex wavefunction in exponential form:

Ψ(x, t) = |Ψ(x, t)|2eiφ(x,t), φ(x, t) = arg Ψ(x, t)

If we substitute the exponential form into the flux, we obtain that the flux arises from a changing phase φ(x, t) in position.

Potential step boundary conditions

Ji + Jr = Jt

R =

∣∣∣∣JrJi
∣∣∣∣ , T =

∣∣∣∣JtJi
∣∣∣∣

=⇒ 1−R = T

Tunnelling Consider a potential barrier of height V0 and width L:

T =
1

1 +
V 2
0

4E(V0−E) sinh2 κL
,
~2κ2

2m
= V0 − E > 0

In the limit of a tall barrier V0 >> E, T = 1
V0
4E sinh2 κL

. In the limit of a wide barrier, κL >> 1, T = 16 E
V0
e−2κL.

Note further that if E > V0, then κ is imaginary, and the denominator of T oscillators as E is varied. The peaks in
T (E) are Lorentzians and demonstrate resonant behaviour.
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Chapter 9

Week 9

9.1 Tuesday 3 Mar 2015

3D QM Hamiltonian:

Ĥ =
−~2

2m
∇2 + V (~r)

Consider positions ~r in the CM frame of reference.

QHO in 3D Consider V (~r) = V (|r|) = 1
2mω

2r2 = 1
2mω

2(x2 + y2 + z2). Then the system is symmetrical in permutations
of x, y, z. Since for a single dimension Ex = ~ω

(
nx + 1

2

)
, then for the 3D case, Enx,ny,nz = ~ω

(
nx + ny + nz + 3

2

)
and

we have a degeneracy possibility.

Central potentials and spherical coordinates Consider V (~r) = V (r).

Momentum and Angular Momentum Write ~p = ~pr + ~P⊥. Define the angular momentum ~L = ~r × ~p = r~p⊥. Hence

p2 = p2
r + L2

r2 =⇒ p2

2m =
p2r
2m + L2

2mr2 .

The radial momentum operator can be symmetrized to become Hermitian:

pr =
1

2

[
~r

|r|
· ~p+ ~p · ~r

|r|

]
Applying the chain rule to the Cartesian momentum operator:

∂

∂x
=
∂r

∂x

∂

∂r
+
∂θ

∂x

∂

∂θ
+
∂φ

∂x

∂

∂φ
etc.
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Hence we have the radial momentum operator in spherical coordinates:

p̂r =
~
i

1

r

∂

∂r
r

It is hermitian: p̂†r = p̂r, and commutes in the following manner:

[r̂, p̂r] = i~

[θ̂, p̂r] = 0

[φ̂, p̂r] = 0

[p̂θ, p̂r] = 0

[p̂φ, p̂r] = 0

Angular momentum operator Note that ~L = ~r × ~p is already Hermitian. The commutators are the following:

[Lx, Ly] = i~Lz

Index the position coordinates with 1, 2, 3 for x, y, z respectively. Then we can write the completely antisymmetric
Levi-Civita Tensor:

Li =
∑
j,k

Ei,j,krjpk

The square L2 = (~r × ~p) · (~r × ~p) = (Ei,j,krjpk)(Ei,j,krjpk) where we use the implied Einstein summation convention
(sum across repeated indices). Note that the Levi-Civita symbol has an identity:

EijkEilm = δjlδkm − δjmδkl

After much painful algebra, we have:

Lx = i~
(

sinφ
∂

∂θ
+ cot θ cosφ

∂

∂φ

)
Ly = i~

(
− cosφ

∂

∂θ
+ cot θ sinφ

∂

∂φ

)
Lz =

~
i

∂

∂φ

L2 = L2
x + L2

y + L2
z = −~2 1

sin2 θ

[
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

∂2

∂φ2

]

Hence we have that L2 depends only on θ, φ and pr depends only on r.

Hamiltonian in spherical coordinates for central force

Ĥ =

[
p2
r

2m
+ V (r)

]
+

L2

2mr2
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and we note that we can write the TISE solution as a separation of variables:

ψ(~r) = R(~r)Y (θ, φ)

=⇒ 2mr2

R

[
p̂rR

2m
+ (V − E)R

]
= λ~2,

L2Y

Y
= λ~2

for some dimensionless λ. We consider the angular part, which does not require us to know V (r).

L2Y (θ, φ) = λ~2Y (θ, φ)

we perform separation of variables again:

Y (θ, φ) = Θ(θ)Φ(φ)

to obtain the decoupled equations:

Φ′′

Φ
= −m2,

− sin2 θ

Θ(θ)

[
1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+ λΘ

]
= −m2

=⇒ Φ(φ) = eimφ

for constant m, the magnetic quantum number. We note that m~ is an eigenvalue for Lz since LzΦ(φ) = m~Φ(φ). Since
Lz is hermitian, m~ is real, hence −m2 is negative. Now impose the boundary condition: Ψ(r, θ, φ) is single-valued:
Ψ(r, θ, φ+ 2π) = Ψ(r, θ, φ) =⇒ m ∈ Z.

For the θ differential equation, make the change of variables x = cos θ, dx = − sin θdθ:

d

dx

[
(1− x2)

dΘ(x)

dx

]
+

(
λ− m2

1− x2

)
Θ(x) = 0

which is Legendre’s differential equation. The solutions are Legendre polynomials. We obtain convergent solutions
only when λ = l(l + 1), l ∈ Z, l ≥ 0, where l is the number of half-oscillations in the domain θ ∈ [0, π] and m =
−l,−l+ 1, . . . , 0, . . . ,+l. For a given value of l, there will be 2l+m values of m. The solutions will be standing waves
in θ.

Spin angular momentum has that m is half-integer. We cannot represent the spin angular momentum in coordinate
space, since it will not be single-valued.

9.2 Thursday 5 Mar 2015

Hamiltonian under central force Recall the TISE for central forces:

Ĥ =

(
p2
r

2m
+

L2

2mr2
+ V (r)

)
ψ = Eψ

with separable solutions ψ = R(r)Y (θ, φ).

Orbital angular momentum eigenequation

L2Ylm(θ, φ) = l(l + 1)~Ylm(θ, φ), l = 0.1, 2, . . .

where l is the order of the Legendre polynomial. Ylm = Plm(cos θ)eimφ is written in terms of the Legendre function (not
the same as the Legendre polynomial) with parameters l,m where m = −l,−l + 1, . . . , 0,+l. The first few functions
are:
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P00 = 1

P10 =
z

r
= cos θ

P1,±1 = ∓ sin θ =
√

1− cos2 θ

P20 =
1

2
(3 cos2 θ − 1)

P2,±1 = ∓1

2
sin θ cos θ

P22 = sin2 θ

Azimuthal angular momentum

LzYlm(θ, φ) =
~
i

∂

∂φ
Ylm(θ, φ) = m~Ylm(θ, φ)

Angular eigenfunctions are orthonormal Note that the azimuthal angular momentum eigenfunctions are the same as
that of the total orbital angular momentum, indicating that the operators can be simultaneously diagonalized and
commute.

∫
S

dΩY ∗lm(θ, φ)Yl′,m′(θ, φ) = δl,l′δm,m′

where we integrate over the surface of the sphere S. dΩ is the differential solid angle dΩ = d(cos θ)dφ such that∫
dΩ = 4π. Hence we may use completeness to obtain the coefficients of a linear combination:

f(θ, φ) =
∑
l,m

almYlm(θ, φ) ⇐⇒ alm =

∫
dΩY ∗lm(θ, φ)f(θ, φ)

Parity operator Note that Ylm(θ, φ) is also a parity eigenstate. Under parity, ~r → ~r, r → r, θ → π − θ, φ→ φ+ π. Then:

P̂Ylm(θ, φ) = (−1)lYlm(θ, φ)

hence even l corresponds to even parity, and odd l corresponds to odd parity.

Diatomic molecule has both rotational (angular) and vibrational (radial) degrees of freedom. The rotational motions are
excited at lower energies.

We can associate the classical moment of inertia with the molecule:

I =
∑
i

mid
2
i

where di is the perpendicular distance to the axis of rotation. We may also write the energies associated with the
different types of motion:

Centre of mass motion, kinetic energy: KE =
~2k2

CMS

2mtot

Rotational:
L2

2I

Vibrational:

(
n+

1

2

)
~ω
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Rigid rotator Ignore CM motion and vibrational motion. Then the eigenstate of the rotator will be Ylm(θ, φ) with associ-

ated energy Erot = l(l+1)~2

2I . Transitions between rotational eigenstates require the emission or absorption of a photon
of energy.

Rotational states are named l = 0, 1, 2, 3 are s,p,d,f respectively.

Radial solutions for central potential Consider the hamiltonian after substituting the angular solution:

−~2

2m

1

r2

d

dr

(
r2 d

dr
R(r)

)
+
l(l + 1)~2

2mr2
R(r) + V (r)R(r) = ER(r)

Define another radial function: R(r) = ul(r)
r , which depends on l. Then the ODE becomes:

[
−~2

2m

d2

dr2
+
l(l + 1)

2mr2
+ V (r)

]
ul(r) = Eul(r)

The central term l(l+1)
2mr2 is called the centrifugal barrier, which can be added to the central potential to give a new

effective central potential function.

[
−~2

2m

d2

dr2
+ Veff,l(r)

]
ul(r) = Eul(r)

Define the integer parameter nr to be the number of nodes in r over the infinite interval [0,∞). Then the solutions for
ul can be characterized by nr. Then we can write the full wavefunction to be:

ψ(~r) =
unr,l(r)

r
Ylm(θ, φ)

and we can label the state using the eigenvalues as:

ψ(~r) = 〈~r|nr, l,m〉

Note that the number of nodes in angular space is l −m.

Note that for the eigenfunction to be defined for all r, we require unr,l to vanish at r = 0 faster or as fast as 1
r so that

the pole from 1
r does not blow up. Note that u(r)

r can be finite as r → 0. Also at infinity, we require the eigenfunction
to vanish as r →∞ (obtain a bound state).

Normalization of wavefunction Since we have defined Yml(θ, φ) such that it is normalised on the surface of a sphere, we
just require that:

∫
|ψ(~r)|2d~r = 1, d~r = r2drdΩ = d3r∫

S

|Yml(θ, φ)|2dΩ = 1

=⇒
∫ ∞

0

|R|2r2dr = 1 =⇒
∫ ∞

0

|u(r)|2dr = 1

Coulomb potential Define V (r) = −e2
r . Let l be non-zero. Since l is non-negative, we have that the centrifugal part of the

effective potential is always positive. Then we will have a value of r such that the value of Veff,l is minimized.

Energies In the absence of an external magnetic field, the energy is only a function of nr and l, not on m.
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Spherical box Consider potential function V (r) =

{
0, r < a

∞, r > a
. Hence for r < a, the effective potential only contains the

centrifugal barrier. We write the TISE:

−~2

2m
u′′(r) +

l(l + 1)~2

2mr2
u = Eu

with boundary conditions:

u(a) = 0

u(0) <∞

In the regime of small r, we neglect the Eu term and obtain the Euler equation:

u′′ =
−l(l + 1)

r2
u

which has solutions:

u = c1r
l+1, u = c2r

−l

but the latter solution is singular at r = 0, hence we require only the first solution.

In the other regime where l = 0 or E >> l(l+1)~2

2mr2 , we want to solve the ODE:

u′′ + k2u = 0, E = −~2k2

2m

This is just a trigonometric function, and hence implementing the boundary condition at r = a, we obtain the quanti-
sation law k = nrπ

a . Hence the approximate form of the radial function is:

R =
u

r
= Crl sin

nrπr

a

More precisely, if we do not make the approximations, we have the Bessel ODE:

u′′ − l(l + 1)

r2
u+ k2u = 0

which have solutions that are linear combinations of functions:

R =
u

r
= Ajl(kr) +Bnl(kr)

the cosine-line functions nl will vanish when we implement the boundary conditions (they are singular at r = 0).

Principal Quantum Number Note that in the Coulomb potential, the energy is given by E = −Ry
(nr+l+1)2 . Note that

we have degeneracy when nr + l can remain the same when they individually change. Hence we define the principal
quantum number n = nr + l+ 1. Hence Enr,l,m = En = −Ry

n2 . Since nr is nonnegative and n is positive, the maximum

value of l is n− 1. Hence the total energy degeneracy is:
∑n−1
l=0 (2l+ 1)(2) = 2n2 where we include the 2 to account for

spin.
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Chapter 10

Week 10

10.1 Tuesday 10 Mar 2015

Hydrogen Atom Write the Hamiltonian as:

Ĥ =
p2
N

2mN
+

p2
e

2me
− Ze2

|~re · ~rn|

Move into the CM frame:

~r ≡ ~re − ~rN
Mtot = mn +me ≈ mn

µ =
memN

me +mN
≈ me

Write the wavefunction in separable form:

Ψ(~R,~r, t) = ΨCM (~R, t)Ψrel(~r, t)

where ΨCM (~R, t) is the solution to the free particle wave packet with ECM = ~2k2

2mtot
. Then we have the ODE for the

relative wavefunction:

(
−~2∇2

rel

2µ
− Ze2

r

)
Ψ(~r, t) = ErΨ(~r, t)

Separating variables and solving for the time aspect (for the spatial eigenfunctions):

Ψrel(~r, t) = ψ(~r)e−iErt/~

Factor the eigenfunction further into the angular and radial coordinates:

ψ(~r) = Rnr,l(r)Yl,m(θ, φ) =
u(r)

r
Yl,m(θ, φ)

where we impose the normalisation condition:

∫
S

|Yl,m(θ, φ)|2dΩ = 1∫ ∞
0

|u(r)|2dr = 1
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then u(r) satisfies the ODE:

[
−~2

2µ

d

dr2
− Ze2

r
+
l(l + 1)~2

2mr2

]
unr,l(r) = Erunr,l(r)

Now define:

~2k2

2µ
= |Er|

where Er is the binding energy which is negative for bound states. Also define dimensionless coordinate ρ = kr. Then
the ODE can be written in the dimensionless form:

u′′ − l(l + 1)

ρ2
u+

(
λ

ρ
− 1

)
u = 0, λ =

2µZe2

~2k

where the derivatives are taken with respect to ρ instead of r. This is a Laguerre equation. The solution looks like:

u(ρ) = e−ρρl+1
∞∑
j=0

ajρj

where the summation is a polynomial. In general, the solution will blow up as ρ→∞ unless we cut off the polynomial
at some finite number jmax:

u(ρ) = e−ρρl+1

jmax∑
j=0

ajρj

Then the energies will depend on jmax, which is some non-negative integer. Note that u(ρ) will have jmax nodes
between (0,∞) (does not include the node at zero). We also have a constraint for λ:

2µZe2

~2k
= 2(nr + l + 1)

and hence the energy is:

Er =
−~2k2

2µ
=

−µZ2e4

2~2(nr + l + 1)2
=
−Z2Ry

n2
, n ≡ nr + l + 1

where n is the number of radial nodes plus the number of angular nodes plus one. We can write the Rydberg as:

µe4

2~2
=

1

2
(µc2)

e4

~2c2
= Ry

where α = e2

~2c2 .

Dirac Equation For relativistic particles:

ĤΨ = p̂cΨ = EΨ

where p̂ =
√

(pc)2 + (mc2)2.
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Spin The eigenvalue equation is

Ŝ2|s,ms〉 = s(s+ 1)~2|s,ms〉

it also commutes with the z-component of the angular momentum and hence share the same eigenstates:

Sz|s,ms〉 = ms~|s,ms〉

where ms ∈ [−s, s] in integral units. Hence there are 2s + 1 possible values of s. Note that s can be integral or
half-integral.
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Final Review

Dirac notation 〈x|p〉 = 1√
2π~e

ipx/~. Do proof.

〈x|p̂|p〉 = p〈x|p〉

=
~
i

∂

∂x
〈x|p〉

Equate and solve.

Commutator relations [p, f(x̂)] = ~
i f
′(x).

Delta function δ(k) = 1
2π

∫∞
−∞ dxeikx.

Virial Theorem 2〈T 〉 = 〈r · ∇V 〉.

Delta function potential in infinite square well Consider a potential well of length 2a, centred at the origin, with a
delta function wδ(x) at the origin.

Note that all the odd solutions have a wavefunction value of zero at the origin, and hence there is no discontinuity in
the first derivative there. The odd solutions are just the solutions to the infinity square well.

Gamma function Γ(n+ 1) =
∫∞

0
dxxne−x = n!, n ∈ Z.
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