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Chapter 1

Week 1

1.1 Tuesday 31 Mar 2015

Random Walk Let the step length be l, probability of right step p and probability of left step q. Want to calculate
probability of finding drunk a distance of x = ml away from the origin after N total steps.

Stirling’s Approximation N ! ≈
√

2πNNNe−N . lnN ! ≈ N lnN −N .

Poisson Distribution Consider the Binomial distribution with nr << N, p << 1, where nr is the number of steps taken
to the right. Then using first order approximations, (1− p)N−nr ≈ e−pN .

Upper limits for null experiments Let zero events be observed in a time interval. Pick a confidence level 1 − α. Then
the 1− α confidence level for the event rate given that zero events are observed in the time interval T is the non-zero
rate Ṅ such that PṄ (0 events in T) = α.

1.2 Tuesday 31 Mar 2015 Recitation

Quantum states and phase space A quantum state in phase space occupies a volume of around ~.

1.3 Thursday 2 Apr 2015

Interval distribution between Poisson events Consider radioactive decay with the mean number of decays in a small
time interval ∆t as µ = Ṅ∆t, µ << 1. Then the probability of getting a single event in that time interval is:

Pµ(1) =
µ1e−µ

1!
≈ µ

to first order, and the probability of obtaining zero events is just 1− µ. Then the probability of having m consecutive
time steps with zero events followed by one event is:

(1− µ)mµ

and the total time elapsed before the event occurs is m∆t. Note that time is a continuous variable. Then we define the
probability of obtaining a time interval between t and t+ ∆t to be:

P (t)∆t

where P (t) is a probability density. Then we equate this to the previously obtained result:

P (t)∆t ≈ (1− µ)t/∆tµ

=⇒ P (t) ≈ Ṅ(1− µ)t/∆t

=⇒ P (t) ≈ Ṅe−µt/∆t
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Taking the limit as ∆t→ 0,

P (t) = Ṅe−Ṅt

Note that the interval distribution is an exponential.

Gaussian approximation to the binomial Consider a random walk with a large number of time steps N but the proba-
bility of taking a step in each direction being close to 1

2 so that nr ≈ nl. Then nr − nl is small. Define m = nr − nl.
Now expand the binomial distribution in terms of m

N << 1.

Rewrite the Binomial distribution in terms of m:

nr =
N +m

2

nl =
N −m

2

PN (m) =
N !(

N+m
2

)
!
(
N−m

2

)
!
p(

N+m
2 )q(

N−m
2 ) ≡ g(N,m)p(

N+m
2 )q(

N−m
2 )

where we define the function g accordingly. It will be more efficient to examine the logarithm of g, since we can use
the Stirling approximation for lnN !

lnN ! ≈ 1

2
ln 2π + (N +

1

2
) lnN −N

Furthermore, noting that m is small compared to N ,

ln
N ±m

2
≈ lnN ± m

N
− m2

2N2
− ln 2

to second order. After simplifying:

g(N,m) =

√
2

πN
2Ne−m

2/2N

Noting that p ≈ q ≈ 1
2 , the factor behind the g-term is just approximately 2−N . Then we have that:

PN (m) =

√
2

πN
e−m

2/2N

Note that m has even parity, hence we can define s = m
2 , which will be an integer. Then:

PN (s) =

√
2

πN
e−2s2/N

In the limit where s→ 0, we can introduce the probability density with σ2 ≡ N
4 :

P (x) =
1√

2πσ2
e−x

2/2σ2
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Average or Mean values Consider the average value of nr:

〈nr〉 =

N∑
nr=0

(
N

nr

)
pnrqN−nrnr

= p
∂

∂p

∑
nr

(
N

nr

)
pnrqN−nr

= p
∂

∂p
(p+ q)N

= Np(p+ q)N−1

= Np, p+q has to be unity

〈n2
r〉 =

N∑
nr=0

(
N

nr

)
pnrqN−nrn2

r

= p
∂

∂p

[
p
∂

∂p

∑
nr

(
N

nr

)
pnrqN−nr

]

= p
∂

∂p

[
p
∂

∂p
(p+ q)N

]
= p

∂

∂p

[
Np(p+ q)N−1

]
= p

[
N(p+ q)N−1 +Np(N − 1)(p+ q)N−2

]
= Np+N(N − 1)p2

= Np(1 + (N − 1)p)

= Np(1− p+Np)

= Npq +N2p2

=⇒ V ar(nr) = Npq
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Chapter 2

Week 2

2.1 Tuesday 7 April 2015

Basic Postulate of Statistical Mechanics An isolated system in “equilibrium” is equally likely to be in any of its “ac-
cessible” states. Equilibrium: when the probability of finding the system in a given accessible state is independent of
time. “Accessible” state: those allowed by constraints imposed on the system.

Derivation of Thermodynamics Consider the states of some closed system with a large number of particles.

Quantum 3D Square well Recall the energy of quantum states:

E =
~2π2

2mL2
(n2
x + n2

y + n2
z)

Configuration Set of states specified by the quantum numbers (or other numbers).

Ensembles Set of all possible configurations consistent with external constraints.

Spin-1/2 system Consider N total spin-1/2 particles in the system, each with magnetic moment m. Then define:

N = n+ + n−

s =
n+ − n−

2
, spin excess

with n+ being the number of states aligned with the external magnetic field B. Then the energy of the system (alignment
with the field is low energy) is:

Etot = −2smB

Then the number of states corresponding n+ out of N spins is:

g(N,n+) =
N !

(n+)!(N − n+)!
≈
(

2

πN

)1/2

2Ne−2s2/N

Combination of two systems Consider two systems with initial energies Ei1, E
i
2 brought into thermal contact. Define

E = E1 + E2 =constant. By conservation of energy, we expect that the sum of the system spin excesses s = s1 + s2

will be constant. We want to find the total number of accessible states in the combined system.

gtot(N, s) =

N/2∑
s1=−N/2

g(N1, s1)g(N2, s− s1)
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which we can simplify to obtain:

gtot(N, s) =

N/2∑
s1=−N/2

(
4

π2N1N2

)1/2

2N exp

(
−2s2

1

N1
− 2(s− s1)2

N2

)

But we note that the most probable configuration will dominate the sum. We want to find s1, which we call sm, such

that
2s21
N1

+ 2(s−s1)2

N2
is minimised. Applying the first derivative condition, we require that:

sm =
N1s

N

which gives:

exp

(
−2s2

m

N1
− 2(s− sm)2

N2

)
= exp

(
−2s2

N

)
Hence we write:

gtot(N, s) ≈
(

4

π2N1N2

)1/2

2N exp

(
−2s2

N

)
Note that we can see how much this term dominates the other terms by looking at the ratio:

f =
g(N1, sm + δs)g(N2, s− sm − δs)

g(N1, sm)g(N2, s− sm)
= exp

(
−2δs2N

N1N2

)
Notice that this ratio vanishes very rapidly as δs increases when N is large.

Approximating exponentials Note that e−x = 10−x/ ln 10.

2.2 Recitation 07 Apr 2015

Rotations and Spin-1/2 Consider the 2D rotation:

(
x′

y′

)
=

(
cos θ − sin θ
sin θ cos θ

)(
x
y

)
All transformations can be written in terms of a first order approximation, for instance position:

ψ(x+ a) ≈ ψ(x) + a
∂

∂x
ψ(x) = ψ(x) +

ia

~
p̂ψ(x)

Rotations in 3D A rotation in the z-axis in 3D can be written as:

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 ≈ I + θ

 0 −1 0
1 0 0
0 0 0


to first order in θ. Then we define:
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 0 −1 0
1 0 0
0 0 0

 =
i

~
L̂z

and similarly, we define momentum operators:

 0 0 0
0 0 −1
0 1 0

 =
i

~
L̂x 0 0 −1

0 0 0
1 0 0

 =
i

~
L̂y

Then we have the commutation relations:

[Lx, Ly] = i~Lz

and the cyclic permutations also give two other relations.

2.3 Thursday 9 Apr 2015

Most Probable Configuration - General Case Consider 2 isolated systems A1 and A2 with a thermally conducting
barrier between them. Let A1 have N1 particles and A2 have N2 particles. Let the total energy E = E1 + E2 be a
constant. Then the total number of states for the combined system is:

gtot(N,V,E) =
∑
E1

g(N1, V1, E1)g(N2, V2, E − E1)

The most probable configuration corresponding to E1 = Em1 will dominate the sum. This corresponds to the first order
conditions:

∂

∂E1
[g1(E1)g2(E − E1)] = 0 =⇒ −g1(Em)g′2(E − Em) + g′1(Em)g2(E − Em) = 0

=⇒ g′1(Em)

g1(Em)
=
g′2(E − Em)

g2(E − Em)

=⇒ d

dE1
ln g1(E1)

∣∣∣∣
Em

=
d

dE2
ln g2(E2)

∣∣∣∣
E−Em

Fundamental Entropy Define σ = ln g(E, V,N). This is related to the classical entropy S = kBσ. Then the condition for
equilibrium can be written as:

(
∂σ1

∂E1

)
N1,V1

=

(
∂σ2

∂E2

)
N2,V2

Fundamental Temperature Define:

1

τ
=

(
∂σ

∂E

)
N,V

which is related to the absolute temperature: τ
kB

= T . Hence in terms of classical thermodynamics:

1

T
=

(
∂S

∂E

)
N,V
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Equilibrium, Entropy and Thermodynamics We want to consider what g(E) ≈ g1(E1)g2(E2) (or rather the logarithm)
looks like near equilibrium. We want to Taylor expand g(E) near Em1 . Define x1 = E1 − Em1 , x2 = E2 − Em2 . Then:

ln g1(E1) = ln g1(Em1 ) +
∂ ln g1

∂E1
x1 +

1

2
x2

1

∂2 ln g1

∂E2
1

+ . . .

= ln g1(Em1 ) +
1

τ1
x1 −

1

2
λ1x

2
1 + . . .

where we define λ1 = −∂
2 ln g1
∂E2

1
. We perform the same expansion for g2 to obtain:

ln g2(E2) = ln g2(E − Em1 ) +
1

τ2
x2 −

λ2x
2
2

2
+ . . .

where we define λ2 = −∂
2 ln g2
∂E2

2
. Hence we combine the approximations and apply the equilibrium condition τ1 = τ2 to

obtain:

ln gtot ≈ ln g1(E1)g2(E2) ≈ ln[g1(Em1 )g2(E − Em1 )]− 1

2
(λ1 + λ2)x2

where we note that x2 = (E − E1)− (E − Em1 ) = −x1 = x. Then we define λ0 = λ1 + λ2 so:

ln gtot = ln[g1(Em1 )g2(E − Em1 )]− λ0

2
x2 =⇒ gtot = g1(Em1 )g2(E − Em1 )e−

λ0
2 (E−Em1 )2

which peaks at E1 = Em1 like a Gaussian with standard deviation 1√
λ0

.

Figuring out the width of the Gaussian We want to find g(E) so that we can find λ = −∂
2 ln g
∂E2 . We proceed by consid-

ering the quantum square well (in 3D). Consider N1 particles in a box and a second box with N2 = N1. Let the boxes
be in thermal contact and let them reach thermal equilibrium. Then the energies are given by:

E =
~2π2

2mL2
(n2
x + n2

y + n2
z)

The number of states between n and n + dn (where n =
√
n2
x + n2

y + n2
z) is given by the volume of the thin spherical

shell quadrant:

g(n)dn =
1

8
(4πn2)dn

Hence the density of states as a function of energy is given by:

dE =
~2π2

2mL2
2ndn =

~2π2

mL2

√
2mL2E

~2π2
dn =

√
2E~2π2

mL2
dn

ρ(E) =
π

2

2mL2E

~2π2

dn

dE
=
mL2E

~2π

√
mL2

2E~2π2
=
π

4

(
2mL2

~2π2

)3/2√
E

The total number of states is given by the integral of the density of states up to the energy E.
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g(E) =
π

6

(
2mL2

~2π2

)3/2

E3/2

Note that the number of states for a system with N distinguishable particles is hence:

g(E) ∝
[
E3/2

]N
and hence:

ln g(E) =
3N

2
lnE + constant

Hence we have:

λ = −∂
2 ln g

∂E2
=

3N

2E2

Returning to the combined system with N1 = N2, we have:

λ1 = λ2 =
3N1

2(Em1 )2

where the most probable energy for each system is the same because the number of particles in each system is the same.
Hence we have:

λ0 = λ1 + λ2 =
3N1

(Em1 )2

and the width of the Gaussian approximation to the number of states is given by:

∆E1 =
1√
λ0

=
Em1√
3N1

and the fractional width is

∆E1

E1
=

1√
3N
2

where N = N1 + N2 = 2N1 is the total number of particles in the system. Note that the fractional width vanishes as
N increases to infinity.

Entropy at low energy QM predicts the existence of the ground state, which is a single or a few states. As the energy
increases, the degeneracy increases. Hence at low energy, the entropy σ = ln g goes to zero. For N distinguishable
particles in a box, we can write the entropy as:

σ ≈ 3N

2
ln

E

E0
, E0 =

(
6

π

)2/3 ~2π2

2mL2

Zeroth Law of Thermodynamics If τ1 = τ2 and τ2 = τ3 then τ1 = τ3. If two systems are in thermal equilibrium with a
third then they are in thermal equilibrium with each other.
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First Law of Thermodynamics Heat is energy.

Second Law of Thermodynamics For an isolated system approaching equilibrium, the entropy is nondecreasing. The
final entropy is greater or equal to the initial entropy.

Third Law of Thermodynamics As τ → 0, the entropy σ approaches a constant.

Classical vs Quantum Entropy Consider an isolated system of N particles in a volume V with energy E. This is called
the macrostate of the system, which is made up of a large number of microstates. In QM, micro states correspond to
volumes δxδpx ∼ ~ in phase space. Classically, the phase space is split into tiny volumes of dimension δxδpx ∼ δyδpy ∼
δzδpz ∼ h0 for some constant h0 so that the total number of accessible states is given by Volume in 6D phase space

h3
0

where

the available phase space volume is determined by N,V,E. Explicitly, we can write the multiplicity as:

gclassical =

∫∫∫
available phase space

dx1dy1dz1dpx1dpy1dpz1 · · · dpzN
[h0]3N

and so the entropy is given by:

σclassical = ln[

∫∫∫
· · · ]− 3N lnh0

hence there is a fixed constant that cannot be removed unless we look at changes in entropy alone.
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Chapter 3

Week 3

3.1 Tuesday 14 Apr 2015

Contact with reservoir Consider a subsystem As in thermal contact with a heat reservoir AR held at fixed τ . The sub-
system is called the canonical ensemble with Ns, V, τ fixed. Let the number of particles be Ns and NR respectively.
Let the systems be isolated. We want to find the probability Ps(Ei) that As is in one of its accessible states Es = Ei
(exactly one of the associated states if the energy level is degenerate).

Because of the isolation, we have Etot = Es + RR = constant. By the Basic Postulate, all states are equally likely.
Hence:

Ps(E1) = PR(Etot − E1) ∝ gR(Etot − E1)

But since Es = E1 << Etot hence we can expand the logarithm of the multiplicity function about Etot:

ln gR(Etot − E1) = ln gR(Etot)− E1
∂ ln gR(Etot)

dE
+ . . . = ln gR(Etot)− E1

1

τ
+ . . .

=⇒ gR(Etot − E1) ≈ gR(Etot)e
−E1/τ

Now since we know that the probabilities must sum to 1, we can solve for K and hence have the probability:

Ps(E1) =
e−E1/τ∑

states e
−Es/τ

hence states where the energy is small compared to τ have a high probability, and if the energy is large compared to τ
then the probability is low.

Partition function Define Z ≡
∑
states e

−Es/τ where the summation includes the degeneracy. We can perform the sum by
including the degeneracy explicitly:

Z =
∑
i

g(Ei)e
−Ei/τ

Example: Partition function for hydrogen atom Recall that the energy levels in the hydrogen atom is given by En =
−R
n2 . We may redefine the energy so that the exponent in the exponential is negative: En = R− R

n2 :

Z =

∞∑
n=1

e(−R− R
n2 )/τ

Now recall that the Bohr radius scales as rn = a0n
2 so the volume scales as n6. Since the volume is finite, there is a

maximum value of n and hence the summation is not infinite. The partition function is defined for a finite volume, but
the hydrogen wavefunctions extend to infinity.
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Average energy from partition function Define U = 〈Es〉, the average energy of the subsystem. Then:

U =
∑

states

EiPs(Ei)

=
∑

states

Ei
e−Ei/τ∑

states e
−Es/τ

=
1

Z

∑
states

τ2 ∂e
−Ei/τ

∂τ

=
1

Z
τ2 ∂

∂τ

∑
states

e−Ei/τ

=
τ2

Z

∂Z

∂τ

= τ2 ∂ lnZ

∂τ

Example: Maxwell-Boltzmann Distribution Consider a non-interacting particle with E =
p2x+p2y+p2z

2m and a room with
many atoms (i.e. the reservoir). Then we want to find the distribution of velocities for a given temperature T . Now
we assume that the momentum values are continuous (classical) so we can integrate over all states instead of summing
over all states. Then the probability density is given by:

P (momentum between p and +dp)d3p ∝ e−p
2/2mτdpxdpydpz = e−p

2/2mτp2 sin θdθdφdp

in spherical coordinates. Integrating and writing in terms of velocities:

P (v) = 4π
( m

2πτ

)3/2

e−mv
2/2τv2

and this is the Maxwell-Boltzmann distribution.

Free atom in uniform gravitational field Now the energy is E = p2

2m +mgz. We note that there will be a z dependence.
Hence we want the probability of finding an atom with momentum between p and p+dp and between z and z+dz.
Then we have:

P (z, p)d3rd3p ∝ d3rd3pe−( p
2

2m+mgz) 1
τ ∝ e−mgz/τd3re−p

2/2mτd3p

∝ P (z)P (p)dpdz

P (v, z) = 4π
( m

2πτ

)3/2

v2e−mv
2/2τ

(mg
τ

)
e−mgz/τ

Note that this is a Maxwell-Boltzmann distribution multiplied by a position dependence P (z) = mg
τ e
−mgz/τ . The

position dependence gives the Law of Atmospheres.

P (z) = c0e
−z/H

where H = kT
mg is the scale height of the atmosphere for the density to drop by 1

e compared to the value on the ground.

Example: Earth’s Atmosphere Let the atmosphere be filled with nitrogen gas, atomic weight 28. At room temperature,
kT ≈ 1

40eV . Hence the scale height is estimated to be H = 9km.

Retention of Planetary Atmospheres The mean velocity can be calculated to be 〈v〉 =
√

8τ
πm so lighter atoms are moving

faster. The average value of the z-position can also be calculated to be 〈z〉 = H = τ
mg so the lighter the gas the higher

the scale height is. Hence the lighter the gas is, the more likely it is to escape. The system will have to re-equilibrate
as the atoms leave.
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More Thermodynamic Quantities Pressure = -Work/Change in Volume = −
(
∂U
∂V

)
. For a reversible change in volume,

∆σ = 0, then we define:

P = −
(
∂U

∂V

)
N,σ

3.2 Thursday 16 Apr 2015

Irreversible change If the imposition or removal of constraint can “never” restore the initial state, the change is irreversible
∆σ > 0.

Reversible change During movement of constraint, the system is always infinitesimally “near” equilibrium. The entropy
change is zero ∆σ = 0.

Thermodynamic Identity Consider the total derivative of the entropy:

dσ(U, V ) =

(
∂σ

∂V

)
U

dV +

(
∂σ

∂U

)
V

dU

then for a reversible change dσ = 0 hence we require that such a macroscopic change δV , δU has the relation:

(
∂σ

∂V

)
U

(δV )σ = −
(
∂σ

∂U

)
V

(δU)σ

=⇒
(
∂σ

∂V

)
U

= −
(
∂σ

∂U

)
V

(
∂U

∂V

)
σ

= −1

τ
(−p)

=⇒ p = τ

(
∂σ

∂V

)
U

Hence the thermodynamic relation can be written as (for constant N):

dσ =
p

τ
dV +

1

τ
dU

=⇒ τdσ = pdV + dU

Helmholtz Free energy We know that at equilibrium, U is minimum. But at equilibrium, the second law says that the
entropy is at a maximum. Hence when we define:

F = U − τσ

Then F is clearly a minimum at equilibrium. Returning to the thermodynamic identity, we can re-write the free energy
as:

dF = dU − σdτ − τdσ = −σdτ − pdV

=⇒ σ = −
(
∂F

∂τ

)
V

, p = −
(
∂F

∂V

)
τ

Relation between F and Z Note that we can write the free energy:

F = U − τσ = U + τ

(
∂F

∂τ

)
V

=⇒ U = τ2

[
F

τ2
− 1

τ

(
∂F

∂τ

)
V

]
= −τ2

(
∂(F/τ)

∂τ

)
V
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But we know that:

U = τ2

(
∂ lnZ

∂τ

)
V

Hence equating the expressions,

lnZ = −F
τ

+ α

Substituting this into:

σ = −
(
∂F

∂τ

)
V

= ln z + τ

(
∂(ln z)

∂τ

)
V

+ α

At τ → 0, we require that:

z → g0e
−E0/τ

the ground state and its multiplicity. Hence we have:

ln z = ln g0 −
E0

τ

and for the entropy to equal to the multiplicity of the ground state at τ = 0, then we require that α = 0 and hence:

F = −τ logZ

Key Relations

F = U − τσ minimum at equilibrium when τ, V,N constant

G = U − τσ + pV minimum at equilibrium when τ, p,N constant

H = U + pV minimum at equilibrium when σ, p,N constant

Independent variables in thermodynamics If the number of particles are allowed to vary, the thermodynamic relation
becomes

dU = τdσ − pdV + µdN

where µ is the chemical potential.

Two-state system Consider a particle with two states, a ground state E = 0 and an excited state E = E0 and let the
excited state be three-fold degenerate. Now let the particle be in thermal equilibrium with a heat reservoir at a fixed
temperature τ . We want to find σ. Assume the volume is constant. Hence we can use the Helmholtz free energy:

F = −τ logZ = −τ log
[
e0 + 3e−E0/τ

]
= −τ log[1 + 3e−E0/τ ]

σ = −
(
∂F

∂τ

)
V,N

= ln(1 + 3e−E0/τ ) +
3(E0/τ)e−E0/τ

1 + 3e−E0/τ
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Ideal Gas Consider N non-interacting particles in volume V, in contact with a reservoir at τ . We want to find the thermo-
dynamic variables p, σ, U in terms of N, τ . Now for the single particle, we have the partition function:

Zclass1 =
∑
states

e−Ei/τ

Now the number of states given by the total phase volume divided by the size of a unit cell. Let the unit cell in phase
space be given by h3

0. Then we have:

Zclass1 =
V

h3
0

∫
p

d3~p exp

[
−

(
p2
x + p2

y + p2
z

2mτ

)]
=
V

h3
0

(√
2πmτ

)3

and for N particles, we just take the single particle partition function to the power of N . Then we have the variables:

F = −τ logZN = −τN
[
log

V

h3
0

(2πmτ)3/2

]
p = −

(
∂F

∂V

)
τ

=
τN

V

σ = N log

[
V

h3
0

(2πmτ)3/2 +
3

2

]
Gibbs’ Paradox Consider a box with a partition that splits the box into a section with N1, V1 and N2, V2. Then consider

the entropy of the box without and with the partition:

σinitial − σfinal = −N ln 2 < 0

and hence we have a decrease in entropy. Doesn’t make sense!
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Chapter 4

Week 4

4.1 Tuesday 21 April 2015

Entropy of ideal gas Recall that the classical calculation of the ideal gas in 3D gives:

σIG = N ln

[
V

(
2πmτ

h2
0

)3/2
]

+
3N

2

Hence if we consider a single system and split it into two (N → N/2, V → V/2), the final entropy is:

σF = 2 · N
2

ln

[
V

2

(
2πmτ

h2
0

)3/2
]

+ 2 · 3(N/2)

2

hence the change in entropy is:

σF − σI = − ln 2 < 0

which violates the second law. But the above process is reversible. Hence we needed ∆σ = 0. Gibbs attempted to fix
this by introducing an additional factor of N !:

ZN =
ZN1
N !

Then the entropy of the ideal gas becomes:

σIG = N ln

[
V

N

(
2πmτ

h2
0

)3/2
]

+
5N

2

Note that when the same partitioning happens, the entropy does not change. Further note that when calculating the
average energy from the partition function, the N ! term drops out, hence this additional factor has no effect. It does
not affect the pressure either.

Effect of N! The additional factor does not have a classical explanation. However, in quantum mechanics, this is a reason-
able factor because the particles are indistinguishable. Hence this is a quantum mechanical effect in the macroscopic
world.

Low temperature issues However, this equation does not seem to hold as τ < 0, because the entropy will become negative
(and even reach negative infinity if τ = 0), which does not make physical sense.

Recall that the internal energy of the ideal gas is:
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U =
3

2
Nτ

Hence we may write the entropy as a function of energy as:

σIG = N ln

[
V

N

(
2πm(2U/3N)

h2
0

)3/2
]

+
5N

2

Quantum mechanically, we know that there is a ground state which represents the minimum amount of energy the
system can have. This energy will be positive. Hence the entropy cannot go to negative infinity.

We now examine the condition for negative entropy:

N

V
>

(
2πmτ

h2
0

)3/2

=⇒ σ < 0

But quantum mechanically, we know that there is a lower bound for h0, which is on the order of Planck’s constant.
Hence we will obtain a “Quantum Gas” if the density N

V exceeds the RHS, which we call the quantum concentration
nQ. Numerically, for T = 300K and helium gas, the quantum concentration is about 8 × 1030m−3 which is about
several orders of magnitude larger than RTP concentration. The corresponding pressure to the quantum concentration
is 3× 105 atmospheres.

Description of Quantum Gases Since the particles are indistinguishable, we need to use particle distributions in a given
energy state. The spin of the particle is key to determining the occupation number in each state, based on the spin-
statistics theorem from QFT.

Spin Statistics Theorem Half-integer spin particles are fermions, that is, they are governed by Fermi-Dirac statistics. Each
state may have either 1 or 0 particles. Integer spin particles are bosons, that is, they are governed by Bose-Einstein
statistics, and each state can have any number of particles.

Photon Gas: Blackbody Radiation The spin of the particles is 1. Hence each state can have any number of particles.
Consider an “empty” box with no matter, heated to a temperature τ . Let the box have a small hole. We view the
system as a perfect gas (i.e. non-interacting) of identical photons with energies Ei = ~ωi. Alternatively, we can view
the walls as harmonic oscillators with energies

(
i+ 1

2

)
~ωi, i = 1, 2, 3 . . ..

Begin by calculating the partition function.

Z =
∑
states

e−βEi , β =
1

τ

Note the following:

• There are two polarization states per photon.

• The eigenfrequencies are given by the boundary conditions. Assume a simple cube of length L. Then the eigenfre-
quencies are:

ωi =
miπc

L
, m2

i = n2
x + n2

y + n2
z

and the eigenfunctions are:

ψ = sin
nxπx

L
sin

nyπy

L
sin

nzπz

L

• The energy of the state depends on the occupation numbers. However, the occupation numbers are not fixed since
there are no conservation laws for the number of photons

17



Hence we need to evaluate the following partition function:

Z =
∑
n1,...

exp

(
−β
∑
r

nrEr

)
=

∞∑
n1=0

∞∑
n2=0

· · · exp (−β(n1E1 + . . .))

But we note that we can just write it as a product:

Z =

∞∏
r=1

∞∑
nr=0

e−βnrEr =

∞∏
r=1

1

1− e−βEr

=⇒ lnZ = −
∞∑
r=1

ln(1− e−βEr )

Now we can evaluate the other parameters:

U = τ2 ∂ lnZ

∂τ
=

∞∑
r=1

Er
eEr/τ − 1

=

∞∑
r=1

~ωr
e~ωr/τ − 1

To evaluate this sum, note that if we have an arbitrary sum:

∑
r

f(mr) ≈
1

8

∫ ∞
0

4πm2dmf(m)

Hence we may calculate the energy, taking into account that there are two polarization modes (letting m = Lω
πc , dm =

Ldω
πc ):

U =

∞∑
r=1

~ωr
e~ωr/τ − 1

=

∞∑
r=1

f(ωr) =
2 · 4

8

∫ ∞
0

π

(
L

πc

)3

ω2dωf(ω)

U =

∫ ∞
0

L3

π2c3
~ω3

e~ω/τ − 1
dω =

L3~
π2c3

π4

15(~/τ)4
=

L3π2

15c3~3
τ4 =

V π2

15(~c)3
τ4

Now we can write the total energy as the integral of the spectral energy density:

U

V
=

∫ ∞
0

u(ω, τ)dω =⇒ u(ω, τ) =
~

π2c3
ω3

e~ω/τ − 1

4.2 Thursday 23 Apr 2015

Photon/Boson Gas Recall that the average occupancy of the energy level Ei is given by:

〈ni〉 =

∑
n1

∑
n2
· · ·nie−

∑
r nrEr/τ

Z

= −τ ∂ lnZ

∂Ei

with the partition function being:

lnZ = −
∞∑
r=1

ln(1− e−Er/τ )
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Hence substituting this into the average occupancy:

〈ni〉 = τ
e−Ei/τ (1/τ)

1− e−Ei/τ
=

1

e~ωr/τ − 1

which is consistent with the average energy of the photons:

U =
∑
r

~ωr
eβ~ωr − 1

=
∑
r

Er〈nr〉

Photon Pressure Recall that p = −
(
∂F
∂V

)
τ

where F = −τ lnZ. Then we have:

p = τ

(
∂ lnZ

∂V

)
τ

where the ωr was dependent on V, the dimensions of the box.

ωr =
nrπc

L
=
nrπc

V 1/3

Hence we use the chain rule to write:

p = τ
∑
r

∂

∂ωr

(
−
∑
r

ln(1− e−~ωr/τ )

)
∂ωr
∂V

= τ
~
τ

∑
r

−e−~ωr/τ

1− e−~ωr/τ
nrπc(−1/3)

V 4/3

= ~
∑
r

1

e~ωr/τ − 1

−ωr
3V

=
∑
r

~ωr
e~ωr/τ − 1

1

3V

=
U

3V

Hence the photon gas equation of state is:

P =
U

3V

Compare this to the ideal gas, where we had U = 3
2Nτ and pV = Nτ which gives us:

P =
2U

3V

Black Body Radiation: Wien’s Law Recall that we had the Spectral energy density:

u(ω, τ) =
~

π2c3
ω3

e~ω/τ − 1

The peak of this function in frequency corresponds to:

19



~ωmax = 2.82τ

which is called Wien’s law. We can also derive this in terms of wavelength. Note however that λmax 6= 2πc
ωmax

. This is
because:

u(λ, τ) = u(ω, τ)

∣∣∣∣dωdλ
∣∣∣∣

and hence u(λ, τ) is not necessarily maximized at ωmax. In terms of wavelengths, we have:

λmaxT = 2.9× 10−3m ·K

Radiation Intensity We will define the energy flux through a small hole of unit area and call this the radiation intensity.

I(ω, τ) =
Energy

Unit area, Unit Time, Unit Frequency

We want to integrate the energy coming out from the hole across all possible angles in the right half space. Let θ
represent the angle from the horizontal.

I(ω, τ) =

∫
u(ω, τ)vz

dΩ

4π
, vz = c cos θ

=

∫ 2π

0

dφ

∫ π/2

0

c cos θ
sin θdθdφ

4π
u(ω, τ)

=
c

4
u(ω, τ)

Total energy Flux We integrate over all frequencies to get the total energy flux:

J(τ) =

∫
u(ω, τ)dω

=
c

4

∫
u(ω, τ)dω

=
cU

4V

=
π2

60~3c2
T 4

= σBT
4

where σB is the Stefan-Boltzmann constant.

Kirchoff’s Law Characterises how good a blackbody is able to emit and absorb radiation. A perfect blackbody absorbs all
EM radiation.

Note that for an object to be in thermal equilibrium, it has to absorb radiation at the same rate that it emits it. Then
we can characterize the emissivity of a blackbody by comparing its rate of emission e or absorption to that of a perfect
blackbody. We also define the reflectivity r = 1− e. e = 1 if the object is a perfect blackbody.

Phonon Gas describes the elastic oscillations of a solid. We can use this model to estimate the heat capacity of the system:

Cv =

(
∂U

∂τ

)
V

For a periodic elastic solid, the normal modes give the eigenfrequencies. There is a cut-off frequency corresponding to
the maximum mode - the zig-zag mode with a maximum wavelength equal to 2a, the separation between “beads”.
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Debye Model We treat three types of oscillations: 2 transverse and one longitudinal. We treat it like an ideal photon gas
with no interparticle interactions. Then the partition function is:

Z =
∑
n1

∑
n2

· · · e−β
∑rmax
r=1 nrEr

Then the average occupancy is the same as in the photon gas:

〈ni〉 =
1

e~ωi/τ − 1

Then the average energy is:

U =

rmax∑
r=1

〈nr〉~ωr

which we can integrate using the density of states ρ(ω):

rmax∑
r=1

=

∫ ωmax

0

f(ω)ρ(ω)dω

Recall that for the harmonic oscillator,

ωr =
nrπv

L

where v is the velocity. We assume that the longitudinal velocity is the same as the transverse velocity. Then the
density of states, which is the number of modes between n and n + dn (n is large hence we index it as a continuous
variable) is given by:

ρ(n)dn =
1

8
4πn2dn(3)

where the 1/8 comes from considering only the positive octant and the 3 comes from the three possible polarizations.
The index n can also be written as

n =
ωL

πv
=⇒ dn =

Ldω

πv

and we substitute this into the expression for the energy:

U =

∫ ωmax

0

dω
~ω

e~ω/τ − 1

3π

2

(
L

πv

)3

ω2

=
3L3τ4

2π2v3~3

∫ xmax

0

x3

ex − 1
dx

Now we know that the total number of modes is given by 3N , the total number of degrees of freedom. This means that:

3N

V
=

∫ ωmax

0

ρ(ω)dω

and hence we obtain that ωmax =
(

6Nπ2

V

)1/3

v
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Chapter 5

Week 5

5.1 Tuesday 28 Apr 2015

Phonon Energy Recall that the phonon energy could be written as:

U =
3V τ4

2π2v3~3

∫ xmax

0

x3dx

ex − 1
, x =

~ω
τ

where xmax is finite because there is a maximum frequency corresponding to a finite number of particles in the zig-zag
mode. We write:

xmax =
~ωD
τ

=
kθD
τ

where ωD is the Debye frequency and θD is the Debye temperature. Now we implement the constraint on the density
of states:

∫ ωD

0

ρ(ω)dω =

∫ ωD

0

3V ω2

2π2v3
dω =

V ω3
D

2π2v3
= 3N

=⇒ ωD =

(
6Nπ2

V

)1/3

v

where N is the number of atoms.

Now we can calculate Cv by taking the derivative:

Cv =

(
∂U

∂τ

)
V

We consider low temperature and high temperature limits. When τ → 0, we have xmax >> 1 and hence we approximate
it to infinity.

U =
3V τ4

2π2v3~3

∫ ∞
0

x3dx

ex − 1
=

3V τ4

2π2v3~3

π4

15
=
V π2τ4

10v3~3

=⇒ CV =
2V π2τ3

5v3~3

as τ →∞, we Taylor expand the denominator:

U =
3V τ4

2π2v3~3

∫ xmax

0

x3dx

(1 + x+ . . .)− 1
≈ 3V τ4

2π2v3~3

∫ xmax

0

x2dx =
V τ4x3

max

2π2v3~3
= 3Nτ

=⇒ CV = 3N
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Chemical Potential Recall the different kinds of ensembles:

• Microcanonical Ensemble: (N,V,U) are held fixed and the properties of the system are obtained from the number
of microstates g(N,V, U). Properties can be obtained from σ = ln g.

• Canonical Ensemble: (N,V, τ) are held fixed. Properties can be calculated from the partition function Z =∑
states e

−Ei/τ .

• New: Grand Canonical Ensemble (GCE): (V, τ, µ) are fixed. Properties come from the Grand Partition function
Z.

Derivation First consider the canonical ensemble and let the macrostate vary. Then:

dσ =

(
∂σ

∂U

)
V,N

dU +

(
∂σ

∂V

)
U,N

dV +

(
∂σ

∂N

)
V,U

dN

=
1

τ
dU +

P

τ
dV + ξdN

where we define:

ξ =

(
∂σ

∂N

)
V,U

so that we have the thermodynamic identity:

dU = τdσ − pdV − ξτdN

Now define:

µ = −ξτ

so that the identity becomes:

dU = τdσ − pdV + µdN

µ = −τ
(
∂σ

∂N

)
V,U

What is the Chemical Potential? Consider the free energy:

F = U − τσ =⇒ dF

= dU − τdσ − σdτ
= τdσ − pdV + µdN − τdσ − σdτ
= µdN − pdV − σdτ

=⇒ µ =

(
∂F

∂N

)
V,τ

Hence µ is the free energy to add or remove 1 particle. For instance, in an ideal gas at fixed τ ,
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ZclassN =
(nQV )N

N !
, nQ =

( mτ

2π~2

)3/2

=⇒ F = −τ lnZ = −τN ln(nQV ) + τ lnN !

= −τN lnnQV + τN lnN − τN

=⇒
(
∂F

∂N

)
V,τ

= −τ lnnQV + τ lnN + τ − τ

= −τ ln
nQV

N

= τ ln
n

nQ

Chemical Potential in Equilibrium Consider a system with a fixed U, V,N and place a mesh to split the system into
two parts (System 1 and System 2), with volumes V1, V2. The two systems can exchange U, V,N . At equilibrium, the
most probable state dominates: σ = ln g is maximum and dσ = 0. Now the total infinitesimal entropy change is:

dσ = dσ1 + dσ2

Now the total energy, total volume and total particles is conserved:

d(U1 + U2) = 0 =⇒ dU1 = −dU2

d(V1 + V2) = 0 =⇒ dV1 = −dV2

d(N1 +N2) = 0 =⇒ dN1 = −dN2

and hence:

dσ = 0 =

(
1

τ1
− 1

τ2

)
dU1 −

(
P1

τ1
− P2

τ2

)
dV −

(
µ1

τ1
− µ2

τ2

)
dN1

and hence for the entropy change to vanish for arbitrary changes dU1, dV1, dN1, we hence require at equilibrium:

τ1 = τ2

P1 = P2

µ1 = µ2

Example: Elevated half-system Now consider the situation where half the system is elevated with respect to the other
half. Let System 2 be h above System 1 in uniform gravitational field g. Let V1 = V2, N1 = N2, τ1 = τ2. Note that µ
has dimensions of energy. Hence it takes more energy to add a particle to 2 as compared to 1. Note that the internal
energy of system 2 is:

U2 =
3

2
Nτ +Nmgh

=⇒ F2 − F1 = (U2 − U1)− τ2σ2 + τ1σ1 = Nmgh

This difference in free energy to add a particle is the external chemical potential.

The total chemical potential is the sum of the contributions from internal and external chemical potentials:

µtot = µinternal + µexternal
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Grand Partition Function (Gibbs Sum) Consider a small system S that can exchange particles and energy with a large
reservoir R. We want to calculate the probability that the system is in a particular combination of energy and number
of particles: Es, Ns. Note that the total energy and number of particles is a constant:

ET = Es + ER

NT = Ns +NR

The probability that the system has Es, Ns is the same as the probability that the reservoir has ET − Es, NT − Ns,
which is proportional to the multiplicity of the reservoir with that parameters. We perform a Taylor expansion of the
multiplicity function for the reservoir:

ln gR(ER, NR) ≈ ln gR(ET , NT ) + (−Es)
(
∂ ln gR
∂ER

)
ET

+ (−Ns)
(
∂ ln gR
∂NR

)
NT

= ln gR(ET , NT )− Es
1

τ
−Ns

−µ
τ

and exponentiating both sides,

gR(ER, NR) ≈ gR(ET , NT ) exp

(
−Es
τ

+
µNs
τ

)
= gR(ET , NT ) exp (β(µNs − Es))

Hence the probability is (using the normalization by summing over all states):

Ps(Es, Ns) =
eβ(µNs−Es)∑

states

∑N
Ns=0 e

β(µNs−Es)

where the states refer to energy states, hence we also need to sum over all Ns. We can also write:

Z =
∑

states

∑
Ns

λNse−Es/τ , λ = eβµ

where Z is the grand partition function. Something here is called the absolute activity. The thermodynamic average
of a quantity is hence given by:

〈A〉 =

∑∑
AλNse−Es/τ

Z

and if A = Ns, then:

〈Ns〉 =
λ

Z
∂Z
∂λ

Application of chemical potential Consider a system of ideal gas connected by a small hole in a heat bath with tem-
perature τ . Partition the system into two halves, one above the other. Let the total height of the box be L. Hence
V1 = V2, τ1 = τ2. Let there be a gravitational field g. We want to find the ratio of the particles in the top box as
compared to that of the bottom box. Now for equilibrium we require µ1 = µ2. We know that:

µtot = µideal + µexternal = µideal +mgz

and the ideal chemical potential for the ideal gas is:

µideal = τ ln
n

nQ
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Hence:

µtot(z) = τ ln
n(z)

nQ
+mgz

But at equilibrium, the chemical potential is constant everywhere. Hence µtot(z) = constant. Hence solving for n(z),

n(z)

nQ
=
n(0)

nQ
e−mgz/τ

Real Chemical Equilibrium Consider hydrogen and oxygen becoming water. Abusing notation,

2H2O − 2H2 −O2 = 0

In general, we have the stochiometric constraint:

∑
i

aiXi = 0

Now the condition for equilibrium at a constant temperature and volume is given by:

dF = 0 =⇒
∑
i

(
∂F

∂Ni

)
V,τ

dNi = 0

Note that the partial derivative is the chemical potential. This means that if dN reactions occur, and component i
changes by dNi = aidN , then the equilibrium condition is:

∑
i

µiaidN

and since dN is arbitrary, the condition for equilibrium is:

∑
i

µiai = 0

5.2 Thursday 30 Apr 2015

Example of Chemical Equilibrium Consider room temperature 300K. We want to find how many electron-positron
pairs exist due to Blackbody radiation giving γ + γ → e+ + e−. The stoichiometric equation is 2Nγ −Ne+ −Ne− = 0.
From the chemical equilibrium condition,

∑
i

µiai = 0 =⇒ 2µγ − µe+ − µe− = 0

But blackbody photons have zero chemical potential because the number of photons is not fixed. Hence:

µe+ = −µe−

Since the temperature is high, we approximate the electrons as an ideal gas.
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µe± = τ ln
ne±

nQ
+me±c

2

and imposing the chemical equilibrium condition (considering µext = mec
2 because it takes the rest mass energy to add

a particle):

µe+ = −µe− =⇒ τ ln
ne±

nQ
+mec

2 = −τ ln
ne±

nQ
−mec

2

=⇒ n−e n
+
e

n2
Q

= e2mec
2/τ

Now assuming that there is no initial charge in the room, we also require that:

n+
e = n−e = n

and hence:

n = nQe
mec

2/τ , nQ =
(meτ

2π~2

)3/2

which gives a numerical value of practically zero because of the exponential dependence.

Quantum Gas Consider two identical particles in a 1D well. The Hamiltonian of the system is:

Ĥ = − ~2

2m

(
∂2

∂x2
1

+
∂2

∂x2
2

)
− (V (x1) + V (x2))

which has solutions:

Φ12 =
2

L
sin

n1πx1

L
sin

n2πx2

L

and energy eigenvalues:

E12 =
π2~2

2mL2
(n2

1 + n2
2)

This wavefunction does not work for identical particles because it implies that we can tell the state that each particle
is in. The actual wavefunction must be a superposition of the original wavefunction with the wavefunction in which
the particles are switched:

Φ21 =
2

L
sin

n2πx1

L
sin

n1πx2

L
, E21 = E12 =

π2~2

2mL2
(n2

1 + n2
2)

and the 2-particle wavefunction should be an eigenstate of the exchange operator χ̂, which is defined as:

χ̂Φ12 = Φ21

The eigenstates of the exchange operator are:
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ΦS =
1√
2

(Φ12 + Φ21) symmetric state

ΦA =
1√
2

(Φ12 − Φ21) antisymmetric state

and the eigenvalues are:

χ̂ΦS = ΦS =⇒ λ = 1

χ̂ΦA = −ΦA =⇒ λ = −1

Note that if both particles are at the same energy level, n1 = n2, then Φ12 = Φ21 so ΦA = 0. Hence the antisymmetric
wavefunction cannot have two particles in the same state.

Also, due to relativistic quantum mechanics, all identical two-particle states must be in either ΦA,ΦS depending on
the spin.

Spin-statistics Theorem, Qualitatively :

• All particles are either Fermions or Bosons given by the intrinsic spin of the particle (Fermions have half-integer
spin when projected along a particular axis and Bosons have integer spin when projected along a particular axis
- includes zero)

• Consider the rotation operator R̂ which rotates the wavefunction about a certain axis for an angle:

R̂(δφ)f(φ) = f(φ+ δφ)

For a small rotation, we can perform a Taylor expansion:

R̂(δφ)f(φ) = f(φ) + f ′(φ)δφ+
δφ2

2!
f ′′(φ) . . . =

(
1̂ + δφ

∂

∂φ
+
δφ2

2!

∂2

∂φ2

)
f(φ)

=⇒ R̂(δφ)f(φ) = eδφ
∂
∂φ f(φ)

and since L̂z = −i~ ∂
∂φ we have R̂ = eiδφLz/~

and in general for a finite rotation ∆φ = nδφ:

R̂(∆φ) =
[
R̂(δφ)

]N
= e−∆φLz/~

We now make the leap of faith that this formulation is also true for intrinsic spin angular momentum. That is,
for the total angular momentum along the z-axis:

R̂(∆φ) = ei∆φJz/~

• We require that the exchange of particles is always accompanied by rotation of the space by 2π because space-time
and spin are intertwined in Relativistic Quantum Mechanics.

Combining the above arguments,

R̂(2π)Φspin half = ei(2π)(~/2)/~ = eiπ = −1

R̂(2π)Φspin integer = ei(2π)(n~)/~ = e2nπi = 1

Therefore, Fermions must be in the antisymmetric state ΦA, and Bosons must be in the symmetric state ΦS . Note that
if the particle is composed of multiple particles (composite), then we need to take the sum of the individual intrinsic
spins to determine if the particle is a Fermion or Boson, provided that the temperature is small compared to the rest
mass of the particle so that the particle does not break up into the constituent quarks or elementary particles.
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Examples of Fermions and Bosons Fermions: Electrons and protons (spin half), Delta particle (spin 3/2), Helium-3
(spin half), mercury-187 (spin 13/2). Bosons: Pion (spin 0), photon (spin 1), hydrogen molecule (spin 0 or 1, depending
on ortho or para hydrogen)

Physical analogy: “Social” behaviour of particles Consider three energy levels, and consider the distribution of par-
ticles under each model (classical, Boson, Fermion).

Under the classical model, the particles are distinguishable and there are 6 possible combinations where there is one
particle in each state, and 3 combinations where the particles are in the same state. Hence there are a total of 9
combinations.

For Bosons, there are three possibilities where the particles are in different states and three possibilities where the
particles are in the same state. Hence there are a total of 6 combinations.

For Fermions, there are only three possibilities where the particles are in different states. The particles cannot be in
the same state because the Fermions have an antisymmetric state and putting the particles in the same state results in
a symmetric state.

Statistical Mechanics of Bosons and Fermions Consider a single state with energy Ei in contact with a reservoir, and
let the system exchange energy and particles. We need the grand partition function:

Z =
∑
N

e(µN−NEi)/τ

since the total energy is Etot = NEi. For Fermions, N is either 0 or 1:

ZFD(Ei) =

1∑
N=0

e(µN−NEi)/τ

whereas for Bosons, N can take any integer value:

ZBE(Ei) =

∞∑
N=0

e(µN−NEi)/τ

5.3 Midterm Revision

Photon Partition Function

Z =
∑
r

e−βEr , Er =
∑
i

niεi

Z =
∑

n1,n2,...

exp

(
−β
∑
i

niεi

)

=

∞∑
n1=0

∞∑
n2=0

· · · exp

(
−β
∑
i

niεi

)

=

∞∏
j=1

∑
nj

e−βnjεj


=

∞∏
j=1

1

1− e−βεj

〈ni〉 = − 1

β

(
∂ lnZ

∂εi

)
β,εj

=
1

eβεi − 1
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Density of States in k-space Remember to multiply by 2 to account for polarization.

f(k)dk =
V k2dk

2π2

Energy in each mode

dEω = ~ωdNω = ~ω(〈ni〉f(ω)dω) = ~ω
1

eβ~ω − 1

V ω2dω

π2c3
dω = u(ω, T )dω × V

=⇒ u(ω, T ) =
~ω3

π2c3(eβ~ω − 1)

Photon Entropy

S =
4

45
π2k4

BV

(
T

c~

)3

σ =
4

45
π2τ3V

1

c3~3

Radiation Pressure
For an ideal gas of N particles, each of mass m, write:

pV =
1

3
Nm〈v2〉

=⇒ p =
1

3

M

V
〈c2〉 =⇒ p =

1

3

E

V
=

1

3
U(T )

Equipartition Theorem Each velocity component (linear or angular) has an average energy of kT2 = τ
2 associated with it.

Single Harmonic Oscillator

〈U〉 =
~ω
2

+
~ω

e~ω/kBT − 1
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Chapter 6

Week 6

6.1 Tuesday 5 May 2015

Statistic mechanics of Fermions and Bosons Consider a perfect gas with no inter-atomic interactions. Then the single-
state grand partition function (for a single state Ei, N number of particles) was:

ZFD =

1∑
Ns=0

exp

(
µNs −NsEi

τ

)

ZBE =

∞∑
Ns=0

exp

(
µNS −NsEi

τ

)

Now the Bose-Einstein summation should have an upper limit of the number of particles, but we can approximate it
to infinity.

Quantum gas of electrons in metals The concentration of electrons in a conducting metal exceeds that of the quantum
concentration, hence we need to consider such quantum effects in calculating the heat capacity.

Fermi-Dirac Occupation Number By definition:

fFD(Ei) = 〈Ns〉

=

∑1
Ns=0Nse

(µNs−NsEi)/τ

ZFD

=
e(µ−Ei)/τ

1 + e(µ−Ei)/τ

=
1

e(Ei−µ)/τ + 1

Consider the low-temperature behaviour τ → 0. Then:

lim
τ→0

[
1

e(Ei−µ)/τ + 1

]
=

{
1, Ei − µ < 0

0, Ei − µ > 0

The transition from zero to one at low temperature occurs at the Fermi energy, which is defined by EF = µ. The Fermi
energy represents the maximum energy level when all the lowest energy states are filled. We can solve for µ numerically
(as a function of temperature) by noting that:

∑
i

〈Ni〉 = N

=⇒
∑

states

f(Ei) =
∑

states

1

e(Ei−µ)/τ + 1
= N
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which gives µ(T ). The Fermi energy is then defined by:

EF = µ(τ = 0)

Bose-Einstein Occupation Number Proceed by definition:

fBE(Ei) = 〈Ns〉

=

∞∑
Ns=0

Nse
(µNs−EiNs)/τ

ZBE

=

∑∞
Ns=0Nsx

Ns∑∞
Ns=0 x

Ns
, x = e(µ−Ei)/τ

=
x d
dx

(
1

1−x

)
1

1−x

=
x

1− x

=
1

e(Ei−µ)/τ − 1

Note that for µ = 0, we obtain the photon gas occupancy number for blackbody radiation:

fphoton = fBE(µ = 0) =
1

eEi/τ − 1
=

1

e~ωi/τ − 1

We now examine the low-temperature limit as τ → 0. Then:

lim
τ→0

1

e(Ei−µ)/τ − 1
= 0, Ei > µ

But if µ / E0 for τ ' 0 for the ground state energy E0, we expect that all the particles will be in the ground state, so
that fBE(E0) = N :

fBE(E0) =
1

e(E0−µ)/τ − 1
≈ 1

1 + E0−µ
τ + . . .− 1

= N =⇒ µ = E0 −
τ

N

Clearly, as τ → 0, the ground state occupancy must go to the total number of particles, hence the chemical potential
has to be given by:

µ(τ) = E0 −
τ

N

Approach of Fermi/Bose gases to classical gas behaviour To get a classical gas, we want the probability of any state
being occupied to be small. That is,

fFD(Ei), fBE(Ei) << 1, ∀Ei

For the FD distribution, this occurs when:

Ei − µ
τ

>> 1 =⇒ τ << Ei − µ

32



which seems to indicate a low temperature. Does it? We examine the classical approximation (since we expect that
both Fermi and Bose gases will converge to behave like a classical gas under low occupancies):

fclass(Ei) = fFD(Ei; τ << Ei − µ) = fBE(Ei; τ << Ei − µ) = e−(Ei−µ)/τ

Solving for the chemical potential, we impose the condition that the sum of the expectation occupancies across all
states Ei must equal N, the number of particles. Then:

∑
i

〈Ni〉 = N =⇒
∑

eµ/τe−Ei/τ = eµ/τ
∑

e−Ei/τ = eµ/τZ1 = N

Hence the classical chemical potential is:

µ(τ) = τ ln
N

Z1
= τ ln

N

nQV
= τ ln

n

nQ

Hence when n << nQ, ln n
nQ

is a large negative number. The chemical potential of an ideal gas is highly negative. The

free energy goes down when we add a particle (adding a particle causes the entropy to increase, and since F = U − τσ,
F decreases). Hence the classical limit condition:

τ << Ei − µclass, ∀Ei

has the RHS actually subtracting a large negative number. Hence the RHS can actually be very large (and we can
ignore Ei), and the inequality holds as long as :

n << nQ =⇒ N

V
<<

( mτ

2π~2

)3/2

=⇒ τ >>
2π~2n2/3

m

We call the RHS the quantum temperature:

τQ =
2π~2n2/3

m

which has value of 0.01K for nitrogen at 1 atmosphere. Clearly, nitrogen behaves like a classical ideal gas at room
pressure.

Concluding topics for Ideal Gas :

• A classical gas with “internal” degrees of freedom (like real atoms with other forms of kinetic energy other
than translational). A molecule can have rotational and vibrational degrees of freedom. Consider the canonical
ensemble:

ZN =
(Zclass1 )N

N !

Zclass1 =
∑

e−Ei/τ

Recall that we derived

Zclass1 = nQV

by making the assumption that Ei =
P 2
i

2m (i.e. we only considered translational kinetic energy). More complicated
systems have other contributions to Ei. For instance:
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Ei = Etranslational + Eelectronic + Erotational + Evibrational

=
P 2

2m
+ (a few eV, not very important) +

~2J(J + 1)

2I
+ ~ω

Now the electronic energy levels are separated by a few eVs, which is not very important at room temperature,
which is associated with a thermal average energy of around 1

40eV . Vibrational energy levels are spaced by around
0.1eV , and hence are more significant than the electronic energy transitions. Rotational energy levels have a energy
difference of around 10−3 − 10−4eV , and hence are even more important that the vibrational energy transitions
at lower energies.

With all these energy contributions, we note that the partition function factors into the product of several individual
functions since their quantum numbers are independent:

Zclass1 =
∑

T,V,E,R

e−(ET+EV +EE+ER)/τ

=

(∑
T

e−ET /τ

)(∑
V

e−EV /τ

)(∑
E

e−EE/τ

)(∑
R

e−ER/τ

)
= ZT1 Z

V
1 Z

E
1 Z

R
1

= ZT1 (Zint1 ), Zint1 = ZV1 Z
E
1 Z

R
1

Hence when calculating the thermodynamic parameters, there are additional additive contributions from the other
degrees of freedom (logarithm turns products into sums).

F = FT + Fint

σ = σT + σint

µ = τ ln
n

nQ
− τ lnZint

• Heat Capacity of electrons in a metal. Recall that the heat capacity at constant volume for an ideal gas is just:

CV = τ

(
∂σ

∂τ

)
V

σideal = N

[
ln
nQ
n

+
5

2

]
=⇒ CV =

3

2
N

The heat capacity at constant pressure can also be calculated:

CP = τ

(
∂σ

∂τ

)
P

PV = Nτ =⇒ V =
Nτ

P

=⇒ σ(P ) = N

[
ln

nQ
N/(Nτ/P )

+
5

2

]
= N

[
ln
τnQ
P

+
5

2

]
=⇒ CP =

5

2
N

6.2 Thursday 7 May 2015

Fermi Energy Recall that the Fermi energy was defined at τ = 0, when all energy levels from the ground state were filled
up to EF . Consider a 3D quantum cube. Then the energy levels are:
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EnT =
n2
Tπ

2~2

2mL2
, n2
T = n2

x + n2
y + n2

z

then number of states is given by the volume of the sphere octant such that all the states are filled up to the “Fermi
Surface”. Analytically,

N =
1

8

4π

3
n3
max × 2

where the 2 should actually be more generally 2s+ 1, where s is the spin of the fermi system. Solving,

nmax =

(
3N

π

)1/3

If the spin is arbitrary, nmax =

(
6N

(2s+ 1)π

)1/3

EF = E(nT = nmax) =
~2

2m

(
3π2n

)2/3
, n =

N

V

Now we can calculate the total energy of the Fermi system at τ = 0:

U(τ = 0) = 2

nmax∑
nT=0

EnT ≈ 2

∫ nmax

0

EnT
4πn2

T

8
dnT =

3

5
NEF

This is a significant nonzero amount of energy at zero temperature.

Fermi Gas at nonzero temperatures Consider the thermal average energy:

U = 〈E〉 = 2
∑
nx

∑
ny

∑
nz

EnT fFD(EnT )

and for large N we can replace the sum with an integral. Consider the arbitrary function:

〈A(E)〉 = A(E)fFD(E)

=
2

8

∫ ∞
0

4πn2
T dnTA(E)fFD(E)

=

∫ π

0

A(E)fFD(E)ρ(E)dE

where ρ(E) is the density of states after making the change of variables. Analytically,

ρ(E) =
V

2π2~3
(2m)3/2E1/2

Note that for a general fermi gas, the total number of particles has to satisfy:

N =

∫ ∞
0

ρ(E)fFD(E)dE

which will indirectly give µ(τ) because fFD is dependent on τ . Note that ρ(E) is not dependent on τ , but only on the
energy structure of the system. Recall that:

fFD(E) =
1

e(E−µ)/τ + 1

hence this constraint yields µ(τ).
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Application of Fermi Gas Note that the equations describing a Fermi gas are only different from a Bose gas at low
temperatures.

• Explanation of Low Temperature heat capacity of Metals Recall that the Debye model used the elastic
oscillations of atoms in a solid to give the heat capacity at constant volume for phonons:

CphononsV =

(
2V π2

5~3v3

)
τ3 =

12π2N

5

(
τ

kθD

)3

which works very well for materials in which the primary contribution to the heat capacity are phonons. For
metals, this formula fails because a large contribution is from the electrons at high concentration.

Consider a metal that has 1 free conduction electron per atom. The density of electrons is much larger than
the quantum concentration, hence we cannot use classical means to explain the electron gas in the metal n ∼
1023cm−3, nQ ∼ 1018cm−3. Furthermore, the fermi energy for the electrons is around 8eV , indicating that room
temperature (corresponding to around 1

40eV ) is cold as compared to that of the Fermi energy. We call this a
degenerate system, or a degenerate Fermi gas.

To obtain the heat capacity, we need an expression for the internal energy:

U =
(2m)3/2V

2π2~3

∫ ∞
0

E3/2dE

e(E−µ(τ))/τ + 1

where we are using the formula from above with A(E) = E. We will like this expression to be evaluated for
E ≈ EF = µ(τ = 0). Change variables x = E

τ . Then:

U =
(2m)3/2V

2π2~3
τ5/2

∫ ∞
0

x3/2

e−αex + 1
dx, α =

EF
τ

Note that α >> 1, so there is an approximation (Sommerfeld?)

∫ ∞
0

φ(x)

ex−α + 1
≈
∫ α

0

φ(x)dx+
π2

6

dφ(x)

dx

∣∣∣∣
x=α

+
7π4

360

d3φ(x)

dx3

∣∣∣∣
x=α

+ . . .

and hence:

U =
(2m)3/2V

2π2~3
τ5/2

[
2

5

(
EF
τ

)5/2

+
π2

6

3

2

(
EF
τ

)1/2

+ . . .

]

note that the first term gives no temperature dependence, while the second term has a τ2 dependence:

U =
(2m)3/2V

5π2~3
E

5/2
F

[
1 +

5π2

8

(
τ

EF

)2

+ . . .

]

=
3

5
NEF

[
1 +

5π2

8

(
τ

EF

)2

+ . . .

]

Hence taking the partial with respect to temperature:

CelectronV =

(
∂U

∂τ

)
V

=
3π2N

4

τ

EF
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Compare this to the Debye heat capacity.

CphononsV =

(
2V π2

5~3v3

)
τ3 =

12π2N

5

(
τ

kθD

)3

Note that in both cases, the heat capacity scales as N , which makes sense since the heat capacity should be an
extrinsic variable. However, the electronic heat capacity only scales as τ , hence at small τ , it will dominate the
Debye phonon heat capacity. Hence we can write the total heat capacity as the sum of the two contributions:

CV = aτ3 + bτ
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Chapter 7

Week 7

7.1 Recitation 11 May 2015

Fermion Orbital Consider a single orbital that may be occupied by a fermion. The grand partition function is:

Z = 1 + λe−ε/τ

where λ is the activity. The thermal average occupancy of this orbital is given by the Fermi-Dirac distribution:

f(ε) =
1

e(ε−µ)/τ + 1

Fermi Energy Consider the chemical potential at zero temperature to be the Fermi energy.

Bose-Einstein distribution Proceed similarly and calculate the grand partition function:

Z =

∞∑
n=0

λne−nε/τ =
1

1− λeε/τ

and the occupation number is:

f(ε) =
1

e(ε−µ)/τ − 1

Classical limit In the limit of large ε−µ
τ (occupancy of each orbital is small),

f(ε) ≈ λe−ε/τ

Distribution from Partition function

〈N〉 = f = λ
∂

∂λ
logZ

Ideal gas in a centrifuge Consider a tube of length R spinning at angular frequency ω containing an ideal gas. We want
to find the concentration of the gas as a function of the radial coordinate r. We write the chemical potential taking
into account the potential energy due to the spinning (more like the rotational kinetic energy):

µ(r) = τ ln
n(r)

nQ
− mr2ω2

2
= µ(0)

where we have imposed the condition that the chemical potential is constant along the tube Then we have:

n(r) = n(0)emr
2ω2/2τ
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7.2 12 May 2015 Lecture

Fermi Gas in White Dwarfs Recall the Hertzsprung-Russell diagram, which plots the absolute magnitude (logarithm)
against he maximum wavelength (which represents the temperature from Wien’s law). The absolute luminosity is:

Labs = 4πR2
∗J

where J is the flux, σT 4. The mass of a white dwarf is about a solar mass, 2 × 1033g and has a very small radius of
2×109cm as compared to the solar radius of 7×1010cm. This translates into an average mass density of 6×104gcm−3.
The core temperature is around 107K which corresponds to energy units of τ ≈ 800eV . The star is stabilised through
gravitational contraction acting against electron degeneracy pressure.

pdV = dEgrav =⇒ P (4πR2)dR = d

[
−3

5

GM2

R

]
=

3

5

GM2

R2
dR =⇒ P =

3

5

GM2

4πR4

Consider an ideal gas with τ = 800eV . Then Pideal = Nτ
V . Let the core of the white dwarf be filled with iron atoms.

This gives us an estimate of:

Pideal =
(M/mFE)

4
3πR

3
τ ≈ 2.6× 1017dy/cm2

But the gravitational considerations gives a pressure of around 1.3× 1021dy/cm2., which certainly does not match the
ideal gas law.

Now consider the pressure associated with a quantum gas. Let there be a single electron for each bound proton. Then
the number of electrons (assuming a core of iron, and one neutron for each proton) is:

Ne− =
M∗
2mp

≈ 6× 1056

which gives a number density of Ne−
V = 2 × 1028cm−3 and a Fermi energy of EF = 30keV . Since the temperature is

much smaller than the Fermi energy, this should be treated as a degenerate Fermi gas. We now want to calculate the
effect of this electron degeneracy pressure. We do this by calculating the total energy U, then calculating the pressure
from:

P = −
(
∂U

∂V

)
τ,N

Note that when we compress a degenerate Fermi gas, the entropy is not going to change much because there are no
new states. Hence the process will be automatically isentropic. Since the energies are very high, we will need to use
the relativistic form of the energy. Recall that:

U = 2× 1

8

∫ nmax

0

EnT 4πn2
T dnT

The relativistic energy is:

E2
e = p2

ec
2 +m2

ec
4

where the de Broglie formula gives the momentum:

pe = ~ke, ke =
nTπ

L
=⇒ nT =

Lpe
π~
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Hence we perform the integrating using the momentum variable instead:

U = π

(
L

π~

)3 ∫ pmax

0

(p2
ec

2 +m2
ec

4)1/2p2
edpe, pmax = pF =

π~nmax
L

=⇒ pF = (3π2n)1/3~

Non-dimensionalizing the integral using x = pe
mec

,

U =
V

π2~3
(mec

2)(mec)
3

∫ xmax

0

(1 + x2)1/2x2dx

For highly relativistic particles, let x2 >> 1, hence we perform a binomial expansion and keep the first order term:

U =
V m4

ec
5

π2~3

∫ xmax

0

x3

(
1 +

1

2x2

)
dx

=
V m4

ec
5

π2~3

[
x4
max

4
+
x2
max

4

]
= V α

[
β4

V 4/3
+

β2

V 2/3

]
, α =

m4
ec

5

4π2~3
, β =

(3π2N)1/3~
mec

We may now take the volume derivative:

P = −
(
∂U

∂V

)
σ,N

=
αβ4

3V 4/3
− αβ2

3V 2/3
=
α1

R4
− α2

R2

where α1 = αβ4

3(4π/3)4/3
, α2 = αβ2

3(4π/3)2/3
.

At equilibrium,

α1

R4
− α2

R2
=

3M2G

20πR4
=⇒ R2 =

α1

α2

(
1− 3M2G

20πα1

)
Interestingly, the radius appears to vanish if the term 3M2G

20πα1
is unity. Note that the radius of the white dwarf decreases

with increasing mass. We estimate the maximum mass of the white dwarf to be:

Mmax =

√
20πα1

3G
=

√
m4
ec

5

4π2~3

[
(3π2N)1/3~

mec

]4
20π

3G

1

3(4π/3)4/3

=⇒ Mmax =

(
5~c
9πG

)3/2(
9π

8mp

)2

≈ 3.4× 1033g = 1.7mSun

where we note that N depends on the mass of the white dwarf. For the equation to be consistent, we shift the depen-
dence on Mmax to the LHS.

A more correct derivation takes into account the inhomogeneity of the density:

dP (r)

dr
=
−Gρ(r)Mi(r)

r2

where Mi is the internal radius:

Mi(r) =

∫ r

0

4πr2ρ(r)dr

Which gives the Chandrasekhar mass of 1.4 solar masses.
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7.3 Wednesday 13 May 2015 Section

Fermi Gas at low temperatures The ground state energy per particle is:

Utot
N

=
3

5
εF

which is large because the Fermions cannot go to a lower energy since all lower levels are filled.

Converting Sum to Integral

〈x〉 =
∑
n

Xnf(εn, τ, µ) ≈
∫
dεD(ε)f(ε, τ, µ)X(ε)

Heat Capacity of a Metal

∆U = U(τ)− U(0)

=

∫ ∞
0

dεD(ε)εf(ε, τ, µ)−
∫ εF

0

dεD(ε) · ε

Now the total number of particles is a constant:

N =

∫ ∞
0

dεf(ε, τ, µ(τ))D(ε) =

∫ εF

0

dεD(ε)

Multiplying this identity by εF and including this in the energy difference,

∆u =

∫ ∞
εF

dε(ε− εF )f(ε)D(ε) +

∫ εF

0

(εF − ε)(1− f(ε))D(ε)

we approximate the density of states to be the same as the density of states at the Fermi energy, and take the chemical
potential as a constant.

Cel =
∂U

∂τ
= D(εF )

∫ ∞
0

(ε− εF )
∂f

∂τ
dε =

1

2
π2N

τ

τF

Fermi Velocity and Momentum Let εF = 1
2mv

2
F =

p2F
2m .

Maximum Mass of Neutron Star Consider a Fermi gas with Fermi energy:

εF =
~2

2m
(3π2n)2/3

and total energy:

Utot =
3

5
NεF =

3

10

~2

m
(3π2)2/3N

5/3

V 2/3

Consider an isentropic compression of the neutron star:

p = −
(
∂U

∂V

)
σ,N

=
~2

5m
(3π2)2/3

(
N

V

)5/3

This is the neutron degeneracy pressure. Now we need to find the gravitational pressure:
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UG = −3

5

GM2

R
= −3

5

GM2

(3V/4π)1/3
, M = m ·N

Hence the gravitational pressure is:

pG = −
(
∂U

∂V

)
σ,N

= −G(m ·N)2

5(3/4π)1/3

1

V 4/3

Equating the pressures, we obtain that the critical density is:

(
9π4~2

m8

3

4π

1

V 2

)1/3

= Gρ1/3

Relating Partial Derivatives: Euler’s Triple Product Rule(
∂x

∂y

)
z

(
∂z

∂x

)
y

(
∂y

∂z

)
x

= −1

7.4 14 May 2015

Bose Gas Recall that for low temperature, the chemical potential of the Bose gas was:

µ ≈ E0 −
µ

N0
, N0 >> 1

and all the particles crowd into the ground state. We want to calculate the temperature at which this is important,
which will be when the particles in the excited states is small.

Nex =

∫ ∞
E1st excited

fBE(E)D(E)dE

D(E) =
V

4π2~3
(2m)3/2E1/2 for zero spin

Note that the density of states excludes the ground state because it vanishes at zero energy. Hence we let the ground
state be at zero energy and integrate from zero to infinity:

Nex =
V

4π2~3
(2m)3/2

∫ ∞
0

1

e(E−µ)/τ − 1
E1/2dE

=
V

4π2~3
(2m)3/2

∫ ∞
0

1

e(E−(E0−τ/N0))/τ − 1
E1/2dE, N0 >> 1

=
V

4π2~3
(2m)3/2

∫ ∞
0

τ3/2 x1/2

ex − 1
dx x =

E

τ

=
V

4π2~3
(2mτ)3/22.61

(π
4

)1/2

= 2.61
( mτ

2π~2

)3/2

V

= 2.61nQV

and hence the number of particles in the ground state is large if Nex < N0 which is equivalently when 2.61nQV < N0.
Define the Einstein temperature to be the temperature when equality occurs. Then:

τE =
2π~2

m

( n

2.61

)2/3
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For the density and mass of air, the Einstein temperature is 0.005K.

For liquid helium, n ≈ 1.8 × 1022cm−3 (does not change much with temperature). Then the Einstein temperature is
2.9K. Liquid helium is at 4.2K upon formation. To cool below 3K, we use evaporative cooling.

The pressure goes exponentially with the temperature:

p = p0e
−L0/τ

where Lo is the latent heat per particle.

Properties of Liquid Helium :

• Heat Capacity Recall that Cv =
(
∂U
∂τ

)
V

. As Liquid Helium is cooled, its heat capacity suddenly increases at
around 2.17K (the λ temperature) to infinity, then decreases as the temperature goes lower.

• Thermal Conductivity The thermal conductivity goes to infinity as the temperature drops below the λ point.
Infinity thermal conductivity means that the system cannot have any temperature gradient; the entire system is at
the same temperature. No bubbles will form. This system is called a superfluid. This fluid also has zero viscosity.

• Creep The liquid sticks better to glass than to each other (stronger interaction with glass than with each other).
Hence it will start climbing up the glass wall against gravity out of the container.

• Fountain Effect
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Chapter 8

Week 8

8.1 Monday 18 May 2015

Degenerate Quantum Gases Roughly when n ≥ nQ, which can be written as:

τ0 =
2π~2

m
n2/3

τ << τ0 =⇒ Degenerate quantum state

8.2 Tuesday 19 May 2015

Einstein Temperature Recall that the Einstein temperature for Bose condensation was:

TE =
1

kB

2π~2

m

( n

2.61

)2/3

Note that this temperature goes inversely proportional to m. For nitrogen at room pressure, n ≈ 2.5×1019cm−3, giving
a TE = 5mK, which is hard to achieve since almost all atomic species are either liquid or solid at that temperature.
To ensure that the sample does not become a liquid/solid, we have to decrease the density, which also decreases the
Einstein temperature. Hence a balance needs to be found.

Units BTU: energy to raise 1 pound of water by 1◦F at 63◦F . About 1055 joules.

Heat and Work To first order,

∆Q = CV ∆τ = τ

(
∂σ

∂τ

)
V,N

∆τ =⇒ ∆Q = τdσ

Where we use ∆Q instead of dQ because the heat is not a function of the independent variables of the system (state
function) and hence is not an actual derivative.

Thermodynamic identity Recall:

dU = τdσ − pdV = ∆Q− pdV + µdN

where pdV is the mechanical work done by the system and µdN is the chemical work done by the system.

Heat Engine Consider a reservoir at temperature τ1 that transfers q1 to an engine, which converts some of it to work
w. This process must be cyclic so the device must be returned to its initial state after each cycle. This means that
the engine entropy does not change over one cycle (state function). But since the reservoir has supplied heat q1 at
temperature τ1, its entropy must decrease. To ensure that the entropy of the whole universe is non-decreasing, we
require that the device releases heat to increase entropy elsewhere. Let the device transfer q2 to another reservoir at
temperature τ2. Then:
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q1 = w + q2

and the total change in entropy for the universe is:

−q1

τ1
+
q2

τ2
≥ 0

=⇒ −q1

τ1
+
q1 − w
τ2

≥ 0

Rearranging,

w

q1
≤
(

1− τ2
τ1

)
=
τ1 − τ2
τ1

We define the efficiency

η =
w

q1

so that:

η ≤ 1− τ2
τ1

a heat engine at maximum efficiency hence has:

w

q1
= 1− τ2

τ1

which represents the maximum efficiency of a heat engine operating between two reservoirs at fixed temperature. This
is a Carnot engine.

Maximum efficiency engine: Carnot Engine Consider a 4-step process. Begin with a volume of gas at τ1.

• Expand at constant τ1. Absorb q1 of heat.

• Expand adiabatically (constant entropy) to new temperature τ2 < τ1.

• Compress at constant temperature τ2. Release q2 of heat.

• Compress adiabatically (constant entropy) back to τ1.

To calculate the work done by the system, we return to the entropy of an ideal gas:

σ = N ln

[
V

N

( mτ

2π~2

)3/2
]

+
5N

2

and hence for a constant entropy, constant particle number process, V τ3/2 must be constant. Call this α0:

Viτ
3/2
i = Vfτ

3/2
f = α0

Using the equation of state:

P =
N

V

(α0

V

)2/3

=
Nα

2/3
0

V 5/3

Hence PV 5/3 is a constant for an adiabatic process. The efficiency of the Carnot cycle is 1− τ2
τ1

, the maximum Carnot
efficiency.
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Refrigeration Consider two reservoirs with τ2 < τ1. Let the τ2 reservoir transfer q2 to the device. Let w work be done on
the device, and let it release q1 to the τ1 reservoir. By the first law of thermodynamics:

q2 + w = q1

and considering the entropy:

−q2

τ2
+
q1

τ1
≥ 0

=⇒ −q2

τ2
+
q2 + w

τ1
≥ 0

=⇒ w

q2
≥ τ1

(
1

τ2
− 1

τ1

)
=
τ1 − τ2
τ2

=
τ1
τ2
− 1

=⇒ q2

w
≤ τ2
τ1 − τ2

Call γ = q2
w the quality or the coefficient of refrigeration.

8.3 21 May 2015

Expansion of Ideal Gas Recall for an ideal gas:

U =
3

2
Nτ, PV = Nτ dU = τdσ − PdV

For a reversible isothermal expansion, let a spring-loaded piston expand slowly - i.e. slower than the speed of sound.
Since N and τ stay constant,

dU = 0

Hence the heat that the gas absorbs is equal to the work done by the gas.

∆Q =

∫ Vf

Vi

PdV =

∫ Vf

Vi

Nτ

V
dV = Nτ ln

Vf
Vi

Recall also that the entropy of an ideal gas was:

σ = N ln

[
V

N

( mτ

2π~2

)3/2
]

+
5N

2

and the entropy change of the system is:

∆σ = σf − σi =
∆Q

τ
= N ln

Vf
Vi

Since Vf > Vi, the entropy of the system increases during the expansion. Since the process is reversible, the entropy
change of the universe is constant and the reservoir must experience a reduction in entropy of the same amount.

Free Expansion Consider a free expansion from Vi to Vf . The entropy change in this case is:

∆σ = N ln
Vf
Vi
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by considering the entropy of an ideal gas equation above. This entropy change is the same as in the reversible isothermal
expansion. However, the work done by the gas is zero. No heat flows into the gas, hence the reservoir does not change
in entropy. The net effect is that the total universe entropy increases as a result of the free expansion. This process is
irreversible. During the expansion, the temperature and pressure are not well-defined quantities because the system is
not in equilibrium. However, we may still use:

∆U = ∆Q+ ∆w

which are not differentials but path-dependent changes.

Isentropic Reversible Expansion Recall that for an isentropic expansion we require that:

V τ3/2 = constant

V 2/3τ = constant

which is only true for monoatomic ideal gases. For multiatom gases we have:

τV γ−1 = constant, γ =
Cp
CV

Summary of Thermodynamics :

1. Thermodynamic Identity: dU = τdσ − pdV + µdN .

2. Consider N,V, τ as independent variables. Rewrite the thermodynamic identity as:

dU = d(τσ)− σdτ − pdV + µdN = d(τσ) + dF

dF ≡ −σdτ − pdV + µdN

=⇒ dF = dU − d(τσ) =⇒ F = U − τσ

=⇒ σ = −
(
∂F

∂τ

)
V,N

, p = −
(
∂F

∂V

)
N,τ

, µ =

(
∂F

∂N

)
V,τ

3. Consider N, τ, p as independent variables (e.g. chemical processes). Then the thermodynamic identity can be
written as:

dU = d(τσ)− d(pV )− σdτ + V dp+ µdN = d(τσ)− d(pV ) + dG

dG ≡ −σdτ + V dp+ µdN

=⇒ G = U − τσ + pV

=⇒ σ = −
(
∂G

∂τ

)
p,N

, µ =

(
∂G

∂N

)
τ,p

, V =

(
∂G

∂p

)
τ,N

4. Consider N, p, σ as independent variables (e.g. isentropic processes). Then we write:

dU = −d(pV ) + τdσ + V dp+ µdN = −d(pV ) + dH

dH ≡ τdσ + V dp+ µdN

=⇒ H = U + pV

=⇒ τ =

(
∂H

∂σ

)
p,N

, V =

(
∂H

∂p

)
σ,N

, µ =

(
∂H

∂N

)
σ,p
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Gibbs’ Free Energy and Chemical Potential Recall that G is minimum at equilibrium for systems in contact with a
thermal and pressure reservoir (temperature and pressure are externally controlled by the reservoir). Consider two
identical systems with N0, τ, V0 and combine them. Note that some variables stay the same, such as the pressure,
temperature and chemical potential. These are intensive variables. On the other hand, the volume, number of particles,
energy and entropy changes. These are extensive variables (variables that change when you add more identical systems
together). Since G = U − τσ + pV , G is extensive as it depends on the extensive variables U, σ, V . G has to scale as
N , since in G(N, p, τ), two of these independent parameters are intensive and only N is extensive. Hence we write:

G = N × f(p, τ)

But we also knew that the chemical potential could be obtained from G:

(
∂G

∂N

)
τ,p

= µ =

(
∂Nf(p, τ)

∂N

)
τ,p

= f(p, τ)

=⇒ f(p, τ) = µ

=⇒ G(N, p, τ) = Nµ(p, τ)

which is only true if a single species of particle is present. Where there are multiple species, we just write:

Gtot(N, p, τ) =
∑
i

Niµi(p, τ)

Compare this to the chemical equilibrium condition:

dG = 0 =⇒ d
∑
i

Niµi(p, τ) = 0

But this is precisely the formula for chemical equilibrium that we used previously.

Helmholtz Free Energy and Chemical Potential Recall that:

F (N,V, τ) = U − τσ

and F is extensive since U and σ are extensive. However, in this case, we cannot write F (N,V, τ) = N×g(V, τ) because
V is an extensive variable as well.
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Chapter 9

Week 9

9.1 Tuesday 26 May 2015

Phase Transitions Note that we cannot use ideal gas assumptions since we require inter-particle interactions to understand
PT. Each phase is characterized by its own uniform thermodynamic state (density n, entropy σ, temperature τ).

Phase Equilibrium Consider two phases in chemical-like equilibrium. We use the Gibbs free energy G(N, p, τ) = U − τσ+
pV to characterize the system. Equilibrium occurs when dG = 0 or G is minimized. Recall that we can factor the
Gibbs free energy into the number of particles in each phase multiplied by another function. Define the Gibbs free
energy PER PARTICLE g1(p, τ), g2(p, τ) for each system, so that the total Gibbs free energy is

G = N1g1 +N2g2

Note that if the phases each have a single component, the Gibbs free energy per particle is simply the chemical potential.
Hence:

g1 = µ1, g2 = µ2

The differential at constant pressure and temperature is hence:

dG = µ1dN1 + µ2dN2 = 0

But we impose that N = N1 +N2 is a constant, hence dN1 = −dN2. This gives:

µ1 = µ2

Phase Diagram Plot pressure against temperature. The phase equilibrium curve exists as a locus of points that satisfy
g1 = g2 ⇐⇒ µ1 − µ2. We only expect the curve to exist only up to a maximum temperature, up to the point where
the thermal energy exceeds the binding energy between the molecules. Call this the critical point τc, where both phases
coexist but we are unable to tell the difference between them.

Phase Equilibrium Curve Consider two points on the curve separated by dτ and dp. Then:

g1(p+ dp, τ + dτ) = g2(p+ dp, τ + dτ) g1(p, τ) = g2(p, τ)

=⇒ g1(p+ dp, τ + dτ)− g1(p, τ) = g2(p+ dp, τ + dτ)− g2(p, τ)

Note that:

dgi = d(U iN − τσiN + pV iN )
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where the subscripts indicate values per particle. By the thermodynamic identity for a fixed number of particles, which
is valid here for N = 1,

dUN = τdσN − pdVN

Hence combining and using the product rule,

dgi = −σiNdτ + V iNdp

Because dg1 = dg2 at equilibrium, we hence have:

−σN2dτ + VN2dp = −σN1dτ + VN1dp

=⇒ (VN2 − VN1)dp = (σN2 − σN1)dτ

=⇒ dp

dτ
=

∆σ

∆V

and the slope of the equilibrium curve is given by the ratio between the entropy and volume difference between the
phases. If the entropy and volume are discontinuous across the phase equilibrium curve, then we call the phase transi-
tion first order. If the entropy and volume are continuous across the phase transition, we call this a second order phase
transition (examples are like magnetic phase transitions).

Hence for a first order phase transition, ∆σ 6= 0, τ∆σ 6= 0 which indicate heat flow into (or out of) the system. This
corresponds to the latent heat flowing into the system. Write:

L = τ∆σ

so that we have:

dp

dτ
=

L

τ∆V

which is called the Clausius-Clapeyron Relation. If ∆V is the volume per mole of particles, then L is given as the
latent heat per mole of particles.

Example: Gas into Liquid The volume per mole for the gas will usually be much larger than the volume per mole for the
liquid. Hence

∆VN ≈
Vgas
Ngas

Approximating the gas as ideal, pV = Nτ =⇒ N
V = τ

p . Substituting this into the C-C relation, we obtain a differential
equation:

dp

dτ
=
LN
τ

p

τ

where we introduced LN which is the latent heat per mole of particles. We assume that the Latent heat is independent
of temperature. Separating variables,

ln p = −1

τ
LN + c

=⇒ p = Ae−LN/τ

This gives the phase equilibrium curve.
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Three Phase Equilibrium Consider a three phase system. We can have equilibrium between any two phases by picking
g1 = g2, g2 = g3, g2 = g3. We can have all three phases in equilibrium at a single point where g1 = g2 = g3, which is
called the triple point. Note that the curves are generally positive because entropy increases as volume increases across
the phase transition dp

dτ = ∆σ
∆V . However, there is a major exception in the form of water ice and water. From solid ice

to liquid water, the entropy increases but the volume decreases. Hence the derivative is negative for the solid-liquid
phase equilibrium curve.

Intermolecular forces Recall that an electric field can induce a dipole moment in a polarizable atom. The dipole field falls
off as 1

r3 . Now another dipole does not feel the dipole field directly but feels the gradient in the field:

~Fx = (~p · ∇) ~Ex

The dipole moment of the second dipole goes as the field strength, which went as 1
r3 . Taking these together, the force

between the two dipoles goes as − 1
r4

1
r3 = − 1

r7 . Since the force is the negative gradient of the potential, the potential
goes as − 1

r6 . Note the negative signs, which indicates an attractive force.

There is also a short range repulsive force due to the Pauli exclusion principle - the exchange force. This prevents the
electron clouds from completely coalescing. This force can be modelled (rather arbitrarily) as a 1

12 potential. This
results in the Lennard-Jones potential:

U(r) = −A
r6

+
B

r12
, A,B > 0

Equation of State for Real Classical Gas Recall that for the ideal gas, we used the following process:

Z1 = nQV

ZN =
(Z1)N

N !
F = −τ lnZN

p = −
(
∂F

∂V

)
N,τ

=
Nτ

V

We want to replicate this line of thought. The partition function for a non-ideal gas needs to include the interactions
between particles in the form of the additional potential:

Zclass1 =
1

h3
0

∫
6D phase space

d3rd3pe−βE

E = KE + PE =
p2

2m
+ U(r)

=⇒ Zclass1 =
1

h3
0

∫
~r

d3re−βU(r)

∫
~p

d3pe−βp
2/2m = nQ

∫
~r

d3re−βU(r)

Recall that when U(r) = 0 as in the ideal gas case, the position integral just became V. For a single particle in a field
of many others, U(r) =

∑
i U1,i. We approximate the potential as a square well that is infinite at small Ro and steps

up to zero at Rw. The value of the potential between Ro < r < Rw is negative. Then we may approximate the position
integral as:

∫ ∞
Ro

d3re−βU(r)

because molecules cannot get within Ro of each other (infinite potential). Then we use the mean-field approximation:

U =
∑
i

U1,i ≈ Ū =

∫ ∞
Ro

Uapprox(r)n(r)4πr2dr
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We may also assume that the particle density n(r) is uniform and equal to N
V . Uapprox is also equal to some negative

constant between Ro and Rw and is zero outside. Hence the integral is trivial:

U ≈ −aN
V

for some positive constant a

9.2 Thursday 28 May 2015

Equation of state for non-ideal gas Recall that the single particle partition function was (from above):

Zclass1 = nQ

∫
~r

d3re−βU(r)

where the potential between two particles, U12(r) was:

U12(r) =


∞, r < R0

−U0, R0 < r < Rw

0, r > Rw

The actual potential is the sum over all possible two body interactions. We write:

U(r) =
∑
i

U1i(r)

which we can simplify using mean-field theory:

Ū =

∫ ∞
R0

U(r)n(r)d3r ≈ −aN
V

where a is a positive constant with units energy times volume. If n was such that the atoms were just touching, we
would have:

−nmaxa = U0

Then the space integral can be written as:

∫
~r

d3re−βU(r) ≈ e−βŪ
∫ ∞
R0

d3r ≈ e−βŪ (V − 4π

3
R3
oN) = e−βŪVnet

Vnet = V − 4π

3
R3
oN = V − bN

where we note that the excluded volume corresponds to the volume of the other atoms. We take Ro to be twice the
electron orbital radius, since the atoms can be considered to be overlapping when they are within two electron orbital
radii of each other. Hence the partition functions are:

Z1 = nQe
−an/τ (V − bN)

ZN =
ZN1
N !
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We can calculate the other thermodynamic parameters:

p = −
(
∂F

∂V

)
τ,N

, F = −τ lnZN

=⇒ F = τ lnN !− τN lnnQ − τN ln(V − bn)− τN an

τ

=⇒ p =
τN

V − bN
− aN2

V 2

=⇒
(
p+

aN2

V

)
(V − bN) = Nτ

This is the Van-de-waals equation of state. We may also write it using a Virial expansion in n:

p =
Nτ

V

[
1

1− bn
− an

τ

]
≈ Nτ

V

[
1 + n

(
b− a

τ

)
+ . . .

]
, bn << 1

=⇒ p

τ
= n+B2(τ)n2 +B3(τ)n3 + . . . , B2 = b− a

τ

Note that at high temperatures, the pressure is larger than that of an ideal gas due to the volume-reducing effect of
other atoms 1

1−bn > 1. At low temperatures, p is decreased due to the interatomic interactions governed by a.

Van de Waals Equation of State and Phase Transitions Consider p as a function of V
N and at fixed τ . Then:

p =
τ

V
N − b

− a

(V/N)2
=

τ

x− b
− a

x2
, x =

V

N

We examine the derivative:

dp

dx
= − τ

(x− b)2
+

2a

x3

and the slope is negative when x is close to b and positive when it is far away. b is also small, hence we expect
that the slope is negative for small x. Near zero, the gradient is large and negative, which acts against increases in
the density (reduced V

N ). It is effectively incompressible, and hence acts like a liquid. However, as V
N increases, 2a

x3

begins to dominate and the gradient becomes positive. This is unstable and unphysical. This is probably due to the
approximations in describing the interactions.

Maxwell Construction Fixing the unphysical aspect of positive dp
dx . This process minimizes the Gibbs free energy to find

the correct equilibrium curve at fixed τ and N . Recall that the Gibbs free energy is:

g = UN − τσN + pVN

dg = dUN − τdσN + pdVn + VNdp = VNdp = 0

where we used the thermodynamic identity for fixed particle number.

dUN − τdσN + pdVN = 0

Hence equilibrium corresponds to VNdp = 0. We pick a horizontal line so that the local max and local min of the
p versus x graph contributes equal areas. Then there is a horizontal region of V

N values at which liquid and gas can

coexist and the pressure there is called Pco. For V
N values smaller than this range, the gas behaves more like a liquid.

For V
N values larger than this range, the gas is more gas-like.

Effect of temperature on Maxwell Construction :
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Note that as temperature increases, there is a narrower region of coexistence, until it vanishes into a single point at
which V

N gives phase coexistence (gradient equals zero).

Opalescence at Critical point At the critical point, dpdx vanishes, or dx
dp →∞. A small change in pressure causes a massive

change in volume. There will hence be large density fluctuations throughout the gas. The index of refraction of a gas
is proportional to the density, hence the index of refraction at the critical point varies widely from point to point. This
results in critical opalescence.
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Chapter 10

Final Review

Topics Probability/Binary Model Systems. Notion of entropy, temperature, equilibrium. Boltzmann distribution, partition
functions. Photons/phonons/blackbody radiation. Chemical potential/GCE. Ideal Fermi+Bose gases. Heat, Work,
Engines, Refrigerators. Phase transitions.

Example 1: Photon Gas Consider a photon gas in a volume V at temperature T , with energy ε = pc. We want to calcu-
late the chemical potential and the number of photons as a function of temperature.

Now for a photon gas, the number of photons is not fixed. Hence N varies independently of the temperature and the
volume of the system. We can determine the equilibrium by minimizing the free energy of the photon gas with respect
to this independent variable:

(
∂F

∂N

)
τ,V

= 0

But note that this is precisely the expression for µ. Hence µ = 0.

To calculate the number of photons, we use the density of states. Hence:

ε = pc =
cπ~
L

√
n2
x + n2

y + n2
z =

cπ~n
L

The number of orbitals contained within an n−sphere is:

2× 1

8
× 4

3
πn3 =

πn3

3

The energy can be written in terms of frequency:

ε = ~ω =⇒ n =
Lω

cπ
=⇒ N(ω) =

V ω3

3c3π2

=⇒ D(ω) =
dN

dω
=
V ω2

c3π2

Hence we have the density of states in terms of frequency. Evaluating the number of photons using the Bose distribution
function:

N =

∫ ∞
0

dω
V

π2c3
ω2

e~ω/τ − 1
=

V

π2c3
τ3

~3
2ζ(3)
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Blackbody Shells Consider concentric shells of radius R1 and R2 < R1 and temperatures T1, T2 respectively. Let there be
a solid sphere of radius R3 < R2 inside the shells. Let there be a point source of power with output power W at the
center. We want to find the steady-state temperatures of all the shells as a function of the radii and the power.

Start with the outer shell. Note that for a shell, the effective surface area is twice the surface area because it is radiating
in both directions inside the shell and outside the shell. Hence the energy per time leaving the outer shell is:

2 · 4πR2
1σBT

4
1 = 4πR2

2σBT
4
2

For the next shell,

2 · 4πR2
2σBT

4
2 = 4πR2

1σBT
4
1 + 4πR2

3σBT
4
3

For the inner sphere,

4πR2
3σBT

4
3 = W + 4πR2

2σBT
4
2

This is a set of simultaneous equations with solution:

4πR2
1σBT

4
1 = W

4πR2
2σBT

4
2 = 2W

4πR2
3σBT

4
3 = 3W

Discrete System Statistics Consider two particles which can occupy a system with orbitals at 0, ε, 2ε and with degeneracy
2, 1, 1 respectively.

We first write down the grand canonical partition function assuming they are Fermions (and fixing the number of
particles):

Z = 1 + 2e−ε/τ + 2e−2ε/τ + e−3ε/τ

The energy can be calculated to be:

U = − ∂

∂β
lnZ =

ε

Z
e−βε

[
2 + 4e−βε + 3e−2βε

]
If the particles are Bosons, then we have:

Z = 3 + 2e−βε + 3e−2βε + e−3βε + e−4βε

Boltzmann Statistics Write the partition function for distinguishable particles (same orbital system as above):

Z = 4 + 4e−βε + 5e−2βε + 2e−3βε + e−4βε

Bose Gas in 1D First compute the occupancy of the excited orbitals. Recall the quantum box energies:

En =
~2n2π2

2mL2
=⇒ N(E) =

L

~π
√

2mE =⇒ D(E) =
dN(E)

dE
=

L

2~π
1√

2mE
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Now we calculate the occupation of the excited state orbitals:

Ne(τ) =

∫ ∞
0

dED(E)
1

eε/τ − 1

where we approximated µ = 0 for low temperatures assuming that µ = 0. This integral does not converge. Hence the
approximation that BEC occurs is wrong.

10.1 Tuesday 02 June 2015

Velocity and Speed Distributions Consider a classical non-relativistic ideal gas at constant τ, V,N (canonical ensemble).
We want to find the probability of a particle with mass m having a velocity component between vx, vx + dvx. Then:

∫
P (ε)dε =

∫
f(ε)D(ε)dε

We can also perform this calculation using phase space considerations (in momentum and position space). The prob-
ability of the particle occupying a certain volume in phase space is given by the volume of the phase space element
multiplied by the probability that it is occupied. The latter goes as e−E/τ .

P (px)dpx =

∫
V

∫
Py

∫
Pz
e−E/τdxdydzdpxdpydpz∫

V

∫
p
e−E/τd3rd3p

E =
m

2
(v2
x + v2

y + v2
z)

=⇒ P (vx)dvx =

[∫∞
−∞

∫∞
−∞ dvydvze

−(m/2τ)(v2y+v2z)
]
e−mv

2
x/2τdvx∫∫∫

dvxdvydvze
−(m/2τ)(v2x+v2y+v2z)

=
e−mv

2
x/2τdvx(

2τ
m

)1/2 ∫∞
−∞ e−u2du

=
( m

2πτ

)1/2

e−mv
2
x/2τdvx

Note that the distribution is symmetric, so 〈vx〉 = 0. We also have:

〈v2
x〉 =

τ

m
=⇒ 〈E〉 =

m

2
〈v2
x + v2

y + v2
z〉 =

3τ

2

Each translational degree of freedom contributed τ
2 of average thermal energy.

Specific heats CP = CV +N . For air, γ = CP
CV

= 1.4 which corresponds to CP = 7
2N,CV = 5

2N . Note that this is not equal

to the expected γ = 9/2
7/2 if rotational and vibrational contributions were counted as well. This arises because τ must be

much larger than the energy spacing of that degree of freedom so that the equipartition theorem applies. Rotational
states have separations of around 10−4eV and τ = 1

40eV so rotational states contribute. However, the vibrational
energy separations are on the order of 0.1eV , which is comparable to the thermal energy. Hence the vibrational terms
do not feature significantly in the calculation of heat capacity.

Distribution of speeds: Maxwell Boltzmann Distribution The speed is scalar. We hence may use spherical coordi-
nates to describe the speed itself. The unit element in speed space is hence:

dvxdvydvz = v2 sin θdθdφdv

P (v)dv =

∫ π
0

∫ 2π

0
e−mv

2/2τv2dv sin θdθdφ∫ π
0

∫ 2π

0

∫∞
0
e−mv2/2τv2dv sin θdθdφ

=
v2e−mv

2/2τdv(
2τ
m

)3/2 ∫∞
0
u2e−u2du

, u2 =
mv2

2τ

=⇒ P (v)dv = 4πv2
( m

2πτ

)3/2

e−mv
2/2τ
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Useful Integrals ∫ ∞
0

ue−u
2

du =
1

2∫ ∞
0

u2e−u
2

du =

√
π

4∫ ∞
0

u3e−u
2

du =
1

2∫ ∞
0

u4e−u
2

du =
3
√
π

8∫ ∞
0

u5e−u
2

du = 1

Means in the Maxwell-Boltzmann Distribution

〈v〉 =

∫ ∞
0

vP (v)dv =

√
8τ

πm√
〈v2〉 =

√
3τ

m

vmp = max v =

√
2τ

m

=⇒ vmp < v̄ <
√
v̄2

Application of Velocity Distribution: Effusion Consider a box of dilute atoms at temperature τ with a small hole
compared to the mean distance between collisions. Let the outside be a vacuum. We want to find the flux of atoms
leaving the box Φtot.

Crude estimate: Consider a cylinder of length l = v̄dt at the hole. The number of particles that leave can be approxi-
mated to be one sixth (6 possible directions) the number of atoms in that cylinder. Then:

ΦtotdAdt =
1

6
n(dA× l) =⇒ Φtot =

nv̄

6

Exact Calculation: We have to include the velocity distribution. Then:

Φtot =

∫ ∞
0

Φ(vz)dvz

where Φ(vz) is the flux through the hole for particles with velocities in vz, vz + dvz. The number of exiting atoms with
velocities in the neighbourhood of vz is hence:

Φ(vz)dAdt = ndldAP (vz), dl = vzdt =⇒ Φ(vz) = nvzP (vz)

Integrating over all possible velocities:

Φtot =

∫ ∞
0

nvzP (vz)dvz =

∫ ∞
0

nvz

( m

2πτ

)1/2

e−mv
2
z/2τdvz = n

√
τ

2mπ
=
nv̄

4

which is on the same order of magnitude as the crude estimate. If we use the ideal gas approximation,

P = nτ =⇒ Φtot =
P v̄

4τ
=

P√
2πmτ

Note that the flux exiting the hole is smaller for large mass.
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10.2 Final Review II

Condition for equilibrium Consider a system in thermal equilibrium with a reservoir. The entropy of the reservoir and
system combined is maximized at the equilibrium:

SR(E − Es) ≈ SR(E)− ∂SR
∂E

Es = SR(E)− βEs

By the Boltzmann factor,

P (Es) = P (0)e−βEs

=⇒ P (Es) =
e−βEs

Z

Example: DNA Consider base pairs with two states: bound or dissociated. Let the bound energy be 0 and the dissociated
energy be ε. Assuming that the base pair states are independent. Then the energy of the system is:

U = εNd

Consider the partition function for a single base pair:

Z1 = 1 + e−βε

and hence the combined partition function assuming the states are distinguishable is:

ZN = (1 + e−βε)N

The thermal average energy is:

U〈E〉 = −τ2

(
∂Z

∂τ

)
N,V

= −
(
∂ logZ

∂β

)
N,V

= Nε
e−βε

1 + e−βε

=⇒ 〈n〉 = N
e−βε

1 + e−βε

Example 2: Dependent DNA Consider DNA that can only unzip from one end. That is, the nth base pair can only
dissociate if the first n− 1 base pairs have already dissociated. Proceed by calculating the partition function, letting k
be the number of dissociated base pairs:

Z =

N∑
k=0

(e−βε)k =
1− (e−βε)N+1

1− e−βε

Note that the thermal average energy becomes independent of N when N is large. Interestingly, it becomes:

U ≈ 1

eβε − 1

which is in fact a useful approximation to the boson statistics. The previous example modelled a fermion two-state
system.
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Density of States: Massive Particles The dispersion relation is:

E =
~2k2

2m

where the allowed values for k in an infinite square well is

|k|2 =
(n2
x + n2

y + n2
z)π

2

L2

In D dimensions,

N(ε) =
CD
2D

(
2mL2ε

~2π2

)D/2
which goes as LDεD/2. Hence the density of states goes as dN

dε ∼ L
DεD/2−1.

Solving ideal gases at fixed chemical potential Consider the Bose Einstein distribution:

fBE =
1

eβ(ε−µ) − 1

Then the thermal average number of particles in a particular state with β, µ is:

〈N(β, µ)〉 =

∫ ∞
0

dε
dN

dε
fBE(ε, µ) ∝

∫ ∞
0

dεV εD/2−1 1

eβ(ε−µ) − 1

We require that this integral equals N, the actual number of particles. Note that this method fails to work when Bose
Einstein condensation occurs. That is, there is no value of µ such that the thermal average of particles is equal to the
total number of particles.

For example, bosons have a negative µ, hence it is bounded above by zero. If:

〈N〉µ <∞ when µ→ 0

then µ cannot be tuned to match any arbitrary N . We want to find the values of D such that this occurs. Consider a
first order approximation in terms of βε near ε = 0:

〈N〉µ ∼
∫
dεεD/2−1 1

1 + βε− 1
=

∫
dεεD/2−2

Note that the RHS integral is only convergent when:

D/2− 2 > −1 =⇒ D > 2

Density of states for photons in D-dimensions The dispersion relation is

E = ~c|~k| = ~cπ
L
|~n|

Hence the number of states contained within a D-sphere is:
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N(ε) =

(
εL

~cπ

)D
CD
2D
∼ LDεD =⇒ dN

dε
∼ εD−1

The thermal average energy is:

E =

∫ ∞
0

dε
dN

dε
εεD−1V

1

eβε − 1
∼ 1

βD+1

∫ ∞
0

dx
xD

ex − 1

White Dwarf Stars Consider the energy of a spherical box or radius R made of fermions so that the system is as the
ground state:

E =

∫ pF

0

dp
dN

dp

√
p2c2 +m2c4

where we integrate up to the fermi momentum. Note that the momentum of the fermions goes as p ∼ nπ~
R , and the

total number of particles goes as R3, so the momentum scales as pF ∼ N1/3

R .

10.3 Thursday 4 June 2015

Kinetic theory of transport We want to characterize the transport of heat, velocity and particles in non-equilibrium
situations. We make the following assumptions:

• The collision time is negligible as compared to the time between collisions.

• The only collisions that occur are 2 particle collisions.

• Particles are classical: λdeBroglie <<distance between particles.

First consider hard-sphere collisions between particles of radius R. Hence if two particles approach within 2R, there is
a collision which redirects the velocity of the particles. The cross-sectional area for a collision is given by:

σ0 = π(2R)2

The probability of a collision in a thin box of width dl and area L2 is hence:

dP =
Nπ(2R)2

L2
=
nL2dlπ(2R)2

L2
= 4ndlR2

Then the probability of colliding at a distance l is

Pc(l) = 1− Pno collision(l)

Note that:

PNC(l + dl) = PNC(l)× (1− nσ0dl)

=⇒ dPNC
dl

= −PNCnσ0

=⇒ PNC = Ce−nσ0l

Implementing the normalization condition, we realize that if l = 0, then the probability of no-collision is just 1. Hence
C = 1, so:
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PNC(l) = e−nσ0l =⇒ PC(l) = 1− e−nσ0l

Define the mean free path:

lmfp =
1

nσ0

so that we can write the probability of a collision to be:

PC(l) = 1− e−l/lmfp

Transport Theory Consider a simple empirical linear law governing fluxes:

Flux ∝ Driving Force ∝ Gradient

For instance, Ohm’s law states:

~Jelectric current = − 1

R
∇Q, Q = electric potential

and there is the self-diffusion equation:

~Jparticles = −D∇n, D = Diffusion coefficient or diffusivity

Example: Diffusion Let there be a gradient in density along the z-axis. We want to calculate the flux of particles crossing a
fixed plane z0 normal to the z-axis. Consider two planes just above and below this plane: zu and zl. Let the separation
between planes be smaller than the mean free path length so that we may ignore particle collisions. Then the flux of
particles through z0 is given by the net number of particles going up between z0 and zl multiplied by the RMS velocity
and divided by the volume (to attain a flux).

Continuity equation

∂n

∂t
=
∂Jz
∂z

=
∂

∂z

(
−D∂n

∂z

)
=⇒ ∂n

∂t
= −D∂

2n

∂n2

Applying Random Walk Results Consider how long it takes for a photon at the middle of the sun to get to the surface.
Let the radius of the sun be 7 × 1010cm, and let the time to surface to collisions be ts. The mean square distance
travelled in the simple random walk theory is given by:

〈d2〉 = Nl2mfp

where N is the number of time steps.

Then the time taken to travel to the surface of the sun is:

ts = N × lmfp
c

=
〈d2〉
l2mfp

lmfp
c

=
R2
sun

lmfpc

The collisions can be estimated based on the cross section with electrons:

σ0 = 0.67 barns = 0.67× 10−24cm2
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and the average number density of electrons:

〈ne〉 = 8× 1023cm−3

so that the mean free path is:

lmfp =
1

nσ0
≈ 1cm

Hence ts ≈ 5000years

Advanced Treatment We need to consider the actual velocity distribution.

Liouville’s theorem from Classical Mechanics The volume of phase space is conserved.

10.4 Friday Recitation / Final Review

Types of ensembles • Microcanonical: U fixed. Use:

dU = τdσ − pdV + µdN

• Canoncial: τ,N fixed. Use Helmholz:

dF = −σdτ − pdV + µdN

• Grand-Canonical: fix τ, µ.

Expected number of particles from Grand Canonical partition function

〈N〉 = τ
∂

∂µ
lnZ

Density of states Changing variables from summing across states to energies:

〈X〉 =
∑
n

f(εn, τ, µ)Xn =

∫
dεD(ε)f(ε, τ, µ)X(ε)
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Ph12c Final Formulae Sheet

Stirling Approximation (1.26
Pg 19)

N ! ≈ (2πN)1/2NN exp(−N + 1/12N)

lnN ! ≈ N lnN −N

Binomial Distribution

PN (nr) =
N !

nr!(N − nr)!
pnrqN−nr

Approximation for Poisson
(Week 1 Notes, A1)

(1− p)N−nr ≈ e−Np, nr << N, p << 1

e Definition

lim
x→∞

(1 + 1/x)x = e

Poisson Distribution

PN (nr) ≈
µnre−µ

nr!
, µ = Np

Gaussian Normal Distribution

P (x) =
1√

2πσ2
e−x

2/2σ2

Multiplicity sharpness (1.35-36
Pg 20)

g(N, s) =
N !

(N/2 + s)!(N/2− s)!
≈ g(N, 0)e−2s2/N

g(N, 0) ≈ 2N
√

2

πN

Multiplicity for harmonic oscil-
lators (1.55, Pg 25)

g(N,n) =
(N + n− 1)!

n!(N − 1)!

1D Harmonic Oscillator Parti-
tion Function (10.26, Pg 285)

εn = n~ω − ε0

Zs =
eε0/τ

1− e−~ω/τ

Combining system multiplici-
ties (2.6, Pg 35)

g(N, s) =
∑
s1

g1(N1, s1)g2(N2, s− s1)

Entropy (2.21, Pg 40)

σ(N,U) = ln g(N,U)

Temperature (2.26, Pg 41)

1

τ
=

(
∂σ

∂U

)
N,V

τ = kBT

1

T
=

(
∂S

∂U

)
N,V

Boltzmann Factor (3.9, Pg 61)

P (ε1)

P (ε2)
=
e−ε1/τ

e−ε2/τ

Partition Function (3.10, Pg 61)

Z(τ) =
∑
s

e−εs/τ =
∑
ε

g(ε)e−ε/τ

Average Energy (3.12, Pg 61)

U = τ2

(
∂ lnZ

∂τ

)
= −

(
∂ lnZ

∂β

)
Heat Capacity (3.17ab, Pg 63)

CV =

(
∂U

∂τ

)
V

= τ

(
∂σ

∂τ

)
V

6.37 : Cp = τ

(
∂σ

∂τ

)
p

=

(
∂U

∂τ

)
p

+ p

(
∂V

∂τ

)
p

6.38a : Cp = CV +N

6.38b : Cp = CV +NkB

Estimating Heat Capacity
(6.39, Pg 167)

σ(τ)− σ(0) =

∫ τ

0

Cp
τ
dτ

Pressure (3.26,3.32, Pg 66-67)

p = −
(
∂U

∂V

)
σ,N

= τ

(
∂σ

∂V

)
U

Thermodynamic Identity
(3.34ab, Pg 67-68, 5.39 Pg 134)

τdσ = dU + pdV − µdN
dU = TdS − pdV + µdN

where pdV is the work done by the
system.

Helmholtz Free Energy (3.35,
Pg 68)

F = U − τσ
dF = 0 for reversible process

6.24 : Fideal gas = Nτ [ln(n/nQ)− 1]

The free energy is extrinsic.

Volume and Pressure from F
(3.49, Pg 70)

σ = −
(
∂F

∂τ

)
V,N

p = −
(
∂F

∂V

)
τ,N

Maxwell Relations (3.51, Pg 71)(
∂σ

∂V

)
τ

=

(
∂p

∂τ

)
V

F from Z (3.55, Pg 72)

F = −τ lnZ ⇐⇒ Z = e−F/τ

Quantum Concentration and
Ideal Gas (3.63, Pg 73)

nQ =

(
Mτ

2π~2

)3/2

Z1 = nQV, ZN =
(nQV )N

N !

Sackur-Tetrode Equation (3.76,
Pg 77)

σ = N

[
ln(nQ/n) +

5

2

]

Energy Fluctuations (3.89,
HW3Q2)

〈(ε− 〈ε〉)2〉 = τ2

(
∂U

∂τ

)
V

Finite Geometric Series

N∑
s=0

xs =
1− xN+1

1− x

Gaussian Integrals

∫ ∞
0

e−αn
2

dn =

√
π

4α

Planck Distribution Function
(4.6, Pg 91)

〈s〉 =
1

e~ω/τ − 1
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Photon Gas Parameters

Dispersion Relation 4.15 ωn =
nπc

L

n =
√
n2
x + n2

y + n2
z

Energy density 4.20
U

V
=

π2τ4

15~3c3

Spectral density 4.22 uω =
~

π2c3
ω3

e~ω/τ − 1

Entropy 4.23 σ =
4π2V

45

τ3

~3c3

Energy Flux 4.25 JU =
cU(τ)

4V
=

π2τ4

60~3c2

Jω =
cuω
4

S-B constant 4.26a σB =
π2k4

B

60~3c2

Part. Fn. 4.53 Z =
∏
n

[1− exp(−~ωn/τ)]−1

EOS (Week 4 notes) pV =
U

3

Frequency Peak (4.27, Pg 98,
Week 4 notes)

~ωmax
kBT

≈ 2.82

λmaxT = 0.290cmK = 2.898× 10−3mK

Nyquist Theorem for Thermal
Voltage Fluctuations (4.28, Pg
100)

〈V 2〉 = 4Rτ∆f

Debye Phonon Model (104-106)

Ntot = 3N

U =
3L3τ4

2π2~3v3

∫ xD

0

dx
x3

ex − 1

xD =
~v
τ

(
6π2N

V

)1/3

≡ kBθ

τ

τ → 0, U ≈ 3π4NkBT
4

5θ3

=⇒ U

V
≈ π2τ4

10~3v3

Virial Theorem

KE = −1

2
PE

Radiation Pressure (4.52, Pg
112)

p =
1

3

U

V
=

π2τ4

45~3c3

Density of States (Midterm Q2,

Week 6 notes)∑
n

f(εn, τ, µ)Xn ≈
∫
dεD(ε)f(ε, τ, µ)X(ε)

1D spinless :
L

π~

√
m

2

1√
E

1D spin s :
2s+ 1

2

V

2π~
(2m)1/2E−1/2

2D spinless :
mL2

2π~2

2D spin s :
2s+ 1

2

V

2π~2
(2m)

3D spinless :
L3

4π2

(
2m

~2

)3/2√
E

3D spin half :
V

2π2

(
2m

~2

)3/2√
E

3D,
1

2
(7.14) : N(E) =

V

3π2

(
2m

~2

)3/2

E3/2

3D spin s :
2s+ 1

2

V

2π2~3
(2m)3/2

√
E

Energy Minimization (Week 3
Notes)

τ, V,N const. F minimized

F = U − τσ
τ, p,N const. G minimized

G = U − τσ + pV

σ, p,N const. H minimized

H = U + pV

Types of Ensembles (Week 5
notes)

Microcanonical: N,V, U fixed

Canonical: N,V, τ fixed

Grand Canonical: V, τ, µ fixed

Chemical Potential (Week 5
notes) The work required to transfer
one particle into the system from a reser-
voir at zero chemical potential (Pg 250).

5.5 : µ(U, V,N) ≡
(
∂F

∂N

)
τ,V

5.7 : µj =

(
∂F

∂Nj

)
τ,V,N1,N2,...

5.12a : µideal gas = τ ln
n

nQ

5.30 : µ = −τ
(
∂σ

∂N

)
U,V

Table 5.1: µ =

(
∂U

∂N

)
σ,V

dF = µdN − pdV − σdτ

Shifted zero energy: 6.20: µ = ∆ + τ ln
n

nQ

Chemical Potential with Inter-
nal Degrees of Freedom (Pg 169-
170)

Given: ε = εn + εint

6.44 : Zint =
∑
int

e−εint/τ

6.45 : Z = 1 + λZinte
−εn/τ

6.47 : λ =
n

nQZint

6.48 : µ = τ [ln(n/nQ)− lnZint]

6.49 : Fint = −Nτ lnZint,

F = F0 + Fint

6.50 : σint = −
(
∂F

∂τ

)
V

,

σ = σ0 + σint

For spin alone, 6.51: Zint = 2s+ 1

Barometric Equation (5.18-19)

n(h) = n(0)e−Mgh/τ

p(h) = p(0)e−Mgh/τ

Gibbs’ Factor (5.52, Pg 137)

P (N1, ε1)

P (N2, ε2)
=

exp[(N1µ− ε1)/τ ]

exp[(N2µ− ε2)/τ ]

Grand Partition Function

Z(µ, τ) =

∞∑
N=0

∑
s(N)

exp[(Nµ− εs(N))/τ ]

P (N1, ε1) =
exp[(N1µ− ε1)/τ

Z
=
∑
s

∑
Ns

λNse−Es/τ

λ ≡ eµ/τ

5.68 : λideal gas =
n

nQ
=

p

τnQ

Averages using Grand Partition
Function

〈A〉 =

∑
s

∑
Ns
AλNse−Es/τ

Z

5.59 : 〈N〉 = τ
∂ lnZ
∂µ

5.62 : 〈N〉 = λ

(
∂ lnZ
∂λ

)
5.65 : U =

(
µ

β

∂

∂µ
− ∂

∂β

)
lnZ

5.81 Prob 10 : 〈N2〉 =
τ2

Z
∂2Z
∂µ2

Chemical Equilibrium

For the reaction:
∑
i

aiXi = 0

Equilibrium =⇒
∑
i

µiai = 0
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Partition function for Fermions
and Bosons (Week 6 Notes)

ZFD(Ei) =

1∑
Ns=0

exp[(µNs −NsEi)/τ ]

6.1 : ZFD = 1 + λe−ε/τ

ZBE(Ei) =

∞∑
Ns=0

exp[(µNs −NsEi)/τ ]

6.7 : Z =
1

1− λe−ε/τ

FD and BE Distribution Func-
tions (6.4 Pg 154, 6.10 Pg 158)

fFD(ε) =
1

e(ε−µ)/τ + 1

fBE(ε) =
1

e(ε−µ)/τ − 1

fclassical(ε) = λe−ε/τ

Fermi Energy (6.5 Pg 155)

µ(τ = 0) = εF

7.7 : εF =
~2

2m
(3π2n)2/3

Classical Regime A gas is in the
classical regime when f << 1 for all or-
bitals (Pg 159).

Low temperature Boson chemi-
cal potential (Week 6 Notes)

µ ≈ E0 −
τ

N
7.55 : µ = −τ/N

Quantum Temperature (Week 6
Notes)

For classical limit: n <<
( mτ

2π~2

)3/2

=⇒ τ >>
2π~2n2/3

m
= τQ

Fermion Parameters (Week 6

Notes)

EF =
~2

2m
(3π2n)2/3 spin half

EF =
~2

2m

(
6π2n

2s+ 1

)2/3

spin s

U(τ = 0) =
3NEF

5
spin half

CV =
3π2N

4

τ

EF
, τ << EF

HW5E15 : µFD = EF

[
1− π2

12

τ2

E2
F

]
,

τ << EF

7.28 : Cel =

∫ ∞
0

dε(ε− εF )
df

dτ
D(ε)

7.37 : Cel ≈
1

2
π2Nτ/εF

7.36 : D(εF ) =
3N

2εF

7.90 : p =
(3π2)2/3

5

~2n5/3

m
, τ << τF

HW6Q7.3: σ =
π2

2
N

τ

τF
, τ << τF

Sommerfeld’s Lemma (Week 6
Notes)∫ ∞

0

φ(x)dx

ex−α + 1
≈
∫ α

0

φ(x)dx+
π2

6

(
dφ

dx

)
x=α

α >> 1

Gravitational Pressure on
White Dwarf (Week 6 Notes)

P =
3

5

GM2

4πR4

Relativistic Stuff

E2 = p2c2 +m2c4

p = ~k, k =
nπ

L

Ultrarelativistic 7.88: εF = ~πc
(

3n

π

)1/3

Ultrarelativistic 7.89: U0 =
3

4
NεF

Einstein Temperature (Week 6
Notes, Pg 204-206)

7.70 : Ne = 2.612nQV, τ small

7.72 : τ <
2π~2

m

( n

2.61

)2/3

= τE

7.73 : =⇒ Ne
N
≈
(
τ

τE

)3/2

7.74 : N0 = N −Ne = N

[
1−

(
τ

τE

)3/2
]

Carnot Efficiency/Coefficient

8.7 : ηc =
W

QH
=
τH − τC
τH

8.13 : γC =
QC
W

=
τC

τH − τC
> 1

Entropy change of isothermal
expansion

∆σ = N ln
Vf
Vi

Work done by isothermal ex-
pansion (6.57, Pg 172)

W = Nτ ln
V2

V1

Work done by Carnot Cycle
(8.27, Pg 240)

W = N(τh − τl) ln
V2

V1

Reversible and Irreversible In-
equalities (8.28-29, Pg 243)

For work done ON gas

δWirr > δWrev

δQirr < δQrev

Ideal Gas Isentropic Process
(Pg 174-176)

6.66 : τV γ−1 = constant

6.67 : τγ/(γ−1)p = constant

6.68 : pV γ = constant

Table 6.3: W = U2 − U1

U2 − U1 = −3

2
Nτ1

[
1−

(
V1

V2

)2/3
]

Gibbs Free Energy (Week 8
Notes) is used when N, p, τ are inde-
pendent variables. Minimized at con-
stant pressure and temperature (Pg
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262).

G = U − τσ + pV

9.5 : dG = −σdτ + V dp+ µdN

9.7 :

(
∂G

∂N

)
τ,p

= µ

9.8 :

(
∂G

∂τ

)
N,p

= −σ

9.9 :

(
∂G

∂p

)
N,τ

= V

9.13 : G(N, τ, p) = Nµ(p, τ) one species

9.14 : G =
∑
i

Niµi multiple species

9.16 : dG =
∑
i

µidNi − σdτ + V dp

9.21 : Gideal = Nτ ln
p

τnQ

9.30 :
∑
i

viµi = 0 for reactions at const. p, τ

Law of Mass Action (9.35, Pg
268)∏
i

nvii = K(τ) =
∏
i

nviQ,i exp[−viFi(int)/τ ]

Saha Equation (HW7, 9.48 Pg
273)

[e] = [H]1/2n
1/2
Q e−I/2τ

Enthalpy (Week 8 Notes)

H = U + pV

dH = −τdσ + V dp+ µdN

used when N, p, σ are independent
variables.

Types of Reversible Work per-
formed ON the system (Pg 245-
246)

Constant τ =⇒ δW = dF

Constant p =⇒ δW = dH − δQ
Constant τ, p =⇒ δW = dG

Chemical Work (8.51, Pg 250)

δWc ≡ µdN

Free Energy in Superconductors
(8.56a, Pg 256)

FN (τ)− FS(τ)

V
=
B2
c (τ)

2µ0

Condition for phase coexistence
(10.2, Pg 278) The phase with lower
chemical potential will alone be stable.

µl(p, τ) = µg(p, τ)

Clausius-Clapeyron Equation
Let s, v be the specific entropy and vol-
ume σ/N, V/N .

10.11 :
dp

dτ
=
sg − sl
vg − vl

10.15 :
dp

dτ
=

L

τ∆v

Latent Heat (10.13, Pg 280).
Use the specific entropy s = σ/N .

L ≡ τ(sg − sl)

Idealized Phase Coexistence
Curve (10.20-21, Pg 282)

p(τ) = p0e
−L0/τ

p(T ) = p0e
−L0/RT

Thermodynamic identity across
the phase coexistence curve (10.22,
Pg 284)

τdσ = dU + pdV − (µg − µl)dN
Constant p (10.23):

L = τ∆σ = ∆U + p∆V = Hg −Hl

Lennard Jones 6-12 Potential

U(r) = −A
r6

+
B

r12

Van de Waals gas (Week 9
Notes)

Mean field potential energy: Ū ≈ −aN
V

Vnet = V − bN

Z =
1

N !

[
nQ(V − bN)eaN/V τ

]N
10.38 : F = −Nτ

[
ln
nQ(V −Nb)

N
+ 1

]
. . .

−N
2a

V

10.33 :

(
p+ a

N2

V 2

)
(V − bN) = Nτ

⇐⇒ p =
τ

V/N − b
− a

(V/N)2

10.46 : G =
NτV

V −Nb
− 2N2a

V
. . .

−Nτ
[
ln
nQ(V −Nb)

N
+ 1

]
10.73 : σ = N

[
ln
nQ(V −Nb)

N
+

5

2

]
10.74 : U =

3

2
Nτ − N2a

V

10.75 : H(τ, V ) =
5

2
Nτ +

N2bτ

V
− 2N2a

V

10.76 : H(τ, p) =
5

2
Nτ +Nbp− 2Nap

τ

Van de Waals critical points
(10.41, Pg 289)

pc =
a

27b2

Vc = 3Nb

τc =
8a

27b

10.42 :

(
p

pc
+

3

(V/Vc)2

)(
V

Vc
− 1

3

)
=

8τ

3τc

10.44 :

(
p̂+

3

V̂ 2

)(
V̂ − 1

3

)
=

8

3
τ̂

Critical Point (10.45, Pg 291)(
∂p̂

∂V̂

)
τ̂

= 0(
∂2p̂

∂V̂ 2

)
τ̂

= 0

are satisfied by p̂ = V̂ = τ̂ = 1, the crit-
ical pressure, volume and temperature.
Above τc, no phase separation exists.

Virial Expansion (Week 9
Notes)

p

τ
= n+B2(T )n2 +B3(T )n3 . . .

B2(τ) = b− a

τ

Maxwell’s Construction

Equilibrium condition: dg = VNdp = 0∫ VB

VA

V dp = 0

Landau Theory of Phase Tran-
sitions (298-304)

F (τ) = min
ξ
FL(ξ, τ) = U(ξ, τ)− τσ(ξ, τ)

Let FL(ξ, τ) = g0(τ) +
1

2
g2(τ)ξ2 + . . .
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10.5 Additional useful stuff from other books

Calculating entropy change

∆S =

∫
dQ

T
=

∫ Tf

Ti

Cv
T
dT

Thermal De Broglie Wave-

length

λ =
h√

2πmkT

nQ =
1

λ3

Density of states in frequency
(photons)

D(ω)

V
=
uω
~ω

=
ω2

π2c3
1

e~ω/τ − 1
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