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Chapter 1

General Notes

1. Rayleigh-Jeans approximation: u(v) = 5Z¥ :

kpT. Where u(v) is the energy per frequency interval per unit volume.
Total energy per unit volume is U = fooo u(v)dv.

2. Planck’s equation:

3 252
3. Bohr radius: r, = TanZ .

4. Rydberg constant: g‘he; = 13.6eV.

5. Schrodinger’s Equation

(Time-dependent):
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6. Gaussian (square of the Gaussian wave function):

7. Solution to initial value problem:

8. Position displacement operator:

Blfa)] = oxp (“527 ) 1(0) = f(o + o)
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where L is the vector operator for the total angular momentum of the system.

10. Schrodinger’s Equation (time-independent)

9. Angular displacement operator:
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Expectation Value
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Standard Deviation

Momentum

Position

where ®(p, t) is the momentum space wave function.

Velocity:
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Position and Momentum space correspondence:

Position space: Q (z,p) —

Momentum space: Q x,p)

o+
s Q)+ @ (i )
(T

Hamiltonian Operator
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Hamilton’s Equations:
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31.

General solution to TISE:

t) = Z ot (x)e " Ent/h
n=1

Infinite square well: Boundary conditions: t(0) = ¢(a) = 0. Energy: E, = ”;;;ZZL2 = h;:f;,k
Yn(x) = \/gsin (2Zg).
Orthonormality: [ ¢y, (2)*, (2)dz = mpn.

Delta function orthogonality:
| Y
(Wl ibr) = 27/ iK' =R o — (k' — k)
™ — 00

Fourier decomposition. Given f(z) = > 7 cy¥bn(x), obtain ¢, = [, (2)* f(z)dz.

General solution to stationary states:

Z C'rl\/»bln ( 3;) 6*7:(”27T2ﬁ/2ma2)t
Cn = \/’/ sln U(z,0)dx

Energy expectation value: (H) = > °7 | |c,|?E,,.

TISE for harmonic oscillator:

h? d? 1
~5 dxlf + 2mw2x2w By = o [p + (mwz) }’l/J = Ev

Canonical commutation relation: [z, p|] = ifi

Ground state of harmonic oscillator:

1/3 mw 1
Yo(z) = (T:;;) e~ 5 By = ~hw
Energy expectation values:
)
T =
(1) =%
1
V) = gme(a?)
Normalised stationary states for harmonic oscillator:
mw\/4 1 mw
= (= —£7/2 b
n@)= (1) gy (@ e =\ [T
Hermite polynomials:
Hy =1
Hy =2¢
Hy, =482 -2
d n
Rodrigues formula: H,(§) = (—1)"652 <d£) et = Hp1(8) =28H,(8) — 2nH,—1(§)
dH,
> _n
Generating function: e~ 2 Z %Hn(f)
n=0 "

. One solution:
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48.

Plancherel’s theorem:

1 > ikx 7L > xe*izx
f@) = o= [ P@etdk s P = o= [ pw)eted

Say that F(k) is the Fourier transform of f(x) and that f(z) is the inverse Fourier transform of F'(k).

The Fourier transform of a Gaussian is also a Gaussian. A Gaussian in space with width Az will be a Gaussian in
wavenumber with width Ak =

QAT

Wave packet solution to Free Particle system:

U(a, 1) = % / (et B0 g
zka: 7ika:
W(,0) = o= / B)edh = o) = = / dx

Delta function well bound state: Given V(z) = —ad(z),a > 0,

2

o \/ma —ma|:v|/h2 o mao
ple) =T F=m

Reflection and Transmission coefficients (relative probability that a particle will be reflected /transmitted):

1
R: _—
1+ 2h2E/ma?
1
T:

1+ ma?/2RE

Strategies for solving potential distributions:

(a) Make solution guess in each region (complex exponentials or trigo functions)

(b) Impose boundary conditions (wavefunction vanishes at infinity, continuity of wavefunction across boundaries,
continuity of derivative across boundaries), no incoming wave from the other side for scattering states)

(¢) Normalisation (or infinite superposition for scattering states)

Hilbert Space: A (real or complex) complete inner product space. Complete: every Cauchy sequence of functions
converges to a function that is also in the space.

Inner product of two functions: (f|g) f f(z

Conjugate of inner product (skew symmetry): (g|f) = (f|g)*

Inner product is positive semidefinite: (f|f) >0, (f|f) =0 < f(z) =0
Inner product is antilinear in first element: (axq + bxa|y) = a*(z1|y) + b* (z2|y).

Inner product is linear in the second element: (x|ays + by2) = alx|y1) + al{x|ys).

Integral Schwarz inequality: ‘ff f(z)*g(:c)dx‘ < \/f; |f(x)]2dz f; lg(z)|2dz.

Expectation value: (Q) = [ U*QWUdz = (¥|QWU) = 3 (Uw;) (w;| Thw; = 3, [{wi| ¥ Pwi.

Operators representing observables must give a real expectation value (@) = (Q)* and hence must be Hermitian:

(f1QF) = (QFIF)Vf(x).
The product of two Hermitian operators is Hermitian iff they commute.

If © and A are two commuting Hermitian operators, there exists a basis of common eigenvectors that diagonalises them
both.



49. Matrix Representation of Operators:
Qj; = (j1€1)

QV) = QZM szﬂl = wjli) =
vi:ZQijvj
J

2 — . : . : .2

The columns are the components of the transformed basis vector under 2 in the given basis.
50. Projection Operator:

e Note the completeness relation |V) = (30, |i)(i]) |V).

e Hence |i)(i| is the projection operator P; for the ket |i).

On kets, P;|V) = [0)(i| V) = |i)v;.

On bras: (V|P; = (V[i){i| = v} (i].

The identity operator: I =" | P;. In infinity dimensions, I = [ |2/)(z’|dz’.
Product: P;P; = 6;;P;.

51. Matrix product (prove by writing the identity in between the operators and noting the identity can be written as a
sum of projection operators):

(O = (AAL) = 3 sy

52. Anticommutator: {A, B} = AB + BA.
53. Commutation identities:

e A commutes with any function f(A).

-[A+ B,C]= 4,0+ [B.C]
<[4, BC] = [A, BIC + B[A,C]
«[4,BCD] =[A, BICD + B[A,C]D + BC[A, D]
[A, BCDE] = [A, BICDE + B[A,C|DE + BC[A, D|E + BCD[A, E]
[AB, €] = A[B, €] + [4,C1B
[ABC, D] = AB[C, D] + A[B, D|C + [4, D|BC
«[ABCD, E] = ABC[D, E] + AB[C, E|D + A[B, E|CD + [A, E|BCD
[
[
[

AB,CD])= A[B,CD]|+[A,CD|B = A[B,C|D+AC[B,D]|+[A,C1DB+C[A, D|B
[[4, B], C), DI+([[B., C], D], AI+[[[C, D], A], BI+[[[D, A], B], C] = [[A,C].[B, D]
AB O] {B C} — { A, C}B whera{ A, B} = AB + B A s the anticommutator defined above.

54. Hermitian conjugate (adjoint): The adjoint of an operator Q is the operator QT such that <f|Qg> = (fo|g> for all f
and g. A Hermitian operators is its own Hermitian conjugat.

55. General rule for taking adjoint of a product: Reverse the order of all factors, replace everything with the adjoint:
Q<+ QL V) < (V],a + a*.

56. The eigenvalues of a Hermitian operator are real. Also, all Hermitian operators are diagonalisable and has an orthonor-
mal eigenbasis.
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72.

Every operator can be written as a sum of a Hermitian and an Antihermitian operator:

QO+t q-qf
0= +
2 2

Unitary operator: UU' = I. Unitary operators preserve the inner product: (V3|V{) = (UV,|UV;) = (Va|V4). For real
vector spaces, we have the orthogonality condition: U~ = U™

Determinate states have o2 = 0, which only occur when Q‘I’ = qWU, where ¢ is the value that the measurement returns.
Hence ¢ is an eigenvalue of the operator @@ with eigenfunction ¥. The zero function cannot be an eigenfunction.

Degenerate spectrum: When two or more linearly independent eigenfunctions share the same eigenvalue.
Types of eigenfunctions:

e Discrete eigenvalues: Eigenfunction lies in Hilbert space and constitute physically realizable states. Eigenvalues
are real if the operator is Hermitian. Eigenfunctions belonging to distinct eigenvalues are orthogonal (f|g) = 0.
e Continuous eigenvalues: Eigenfunctions are not normalizable, but linear combinations may be normalizable.

Axiom on completeness: The eigenfunctions of an observable operator are complete: Any function in Hilbert space can
be expressed as a linear combination of them.

Dirac Delta function from integral: d(p — p’) = i ffooo el gy
Dirac orthonormality for continuous spectra: (fy/|fp) = d(p —p').
Completeness of eigenfunctions for continuous spectra: Any function can be written as f(x) = 217rh ffooo c(p)e®*/Mdp

o0

with the coefficient function calculated using (fy |f) = [~ c(p)d(p — p')dp = c(p').
Statistical Interpretation:

e If the particle is in a state |¢), measurement of the variable corresponding to  will yield one of the eigenvalues w

with probability P(w) = H@J‘u&lz . The denominator is 1 if the state was normalised. The state of the system after

the measurement is then the eigenstate |w) after the measurement.
e Discrete spectra: U(z,t) =Y., cofu(z) = (Q) =3, dulcnl®, X, lcenl? = 1.

Momentum space wave function: ®(p,t) = \/2175 ffooo e~P¥/"y (g t)dx. Note that this is the inverse Fourier transform
of the position space wave function. Hence we also have ¥(z,t) = \/217? ffooo e/ P (p, t)dp.
2
. . o . 1 D
Generalized uncertainty principle: 040% > (27’<[A’ BD) .
e Commutator of two Hermitian operators is anti-Hermitian: Q‘L = ,Q and hence has imaginary expectation value.

Commutator identity: [AB,C] = A[B,C] + [A, C]B.

Minimum uncertainty: The necessary and sufficient condition for minimum uncertainty is that g(z) = iaf(x),a € R.
For position-momentum uncertainty, the general solution is a Gaussian.

Common Uncertainty Principles:
AxAp >

AtAE >

M| SN S

At is the amount of time it takes for the expectation value of () to change by one standard deviation:

Q)
og = dt’ At

Time derivative of operator expectation value:

d i oQ

Loy = (@) + (2

7@ =5 (1.Q)+ < o >
obtained using product rule on LHS and using TDSE. If operator does not depend explicitly on time (typical), third
term <%> vanishes, and hence if the operator commutes with the Hamiltonian, then (@) is a constant, and hence is
a conserved quantity.



73. Special Case: Ehrenfest’s Theorem:

in 3D:
d 1
%<1‘> = E<P>
d
lp) = (=vV)

74. Harmonic Oscillator Operators:

Lowering: a = % (4 + K
2h mwg
e [mwo (. ip
R cal = — —
aising: a 57 (a: P )

h
- AT ~
v Qmw(a +4)
p=iy/ T Gt~ a)
2
[a,a'] =1

Nd)n:dTA n:n¢n

75. Correspondence principle: Classical harmonic oscillator probability density: P = such that ff;o P(x)dx =1

1
2__2
m/zi—x

where +x( are the classical turning points.

76. Dirac Notation

Operators are linear transformations |3) = Q|a).

Vectors can be represented in any basis by their components: |a) =" anle,) with a,, = (e,|a).

Operators can be represented by their matrix elements: (em|Q|en> = Qun-
— (z|X|2') = x0(x — ')
— (x| P|2’) = —ihd'(z — 2').

Bra: (f| = [ f*[--]dz. In finite-dimensional vector space, it is the Hermitian conjugate of the Ket.

e Projection operator: P = |a)({«| picks out the portion of any other vector that “lies along” |a).

e Orthonormal basis: (e;,|e,) = dmn and the sum of the projects along all the finite dimensions is clearly the
identity: > |en)(en| = 1.
e Dirac orthonormal continuous basis: (e.|e./) = §(z — 2’) with analogous integral over the basis: [ |e,)(e,|dz = 1.

e Spectral decomposition: For an operator Q with a complete set of orthonormal eigenvectors Q|en> = gnlen),n =
1,2,3,..., we can write the operator as:

Q=> agnlen)enl

77. Virial Theorem:

78. Dealing with the matrix Hamiltonian.

e Find the eigenvalues and eigenvectors of the matrix Hamiltonian.

e Consider the initial conditions (t=0) to find the coefficients of each of the eigenvectors to describe the system.



e Tack on the time-dependence (since the eigenvalues obtained are the energies) to each of the eigenvector terms to
obtain the time-evolution of the system.

79. Equations in 3D:
e Momentum operator: p — %V
o TDSE: iidY = V¥ + V¥
o TISE: 512V2) + Vi) = Ep.
e Solution to TDSE: W(r,t) = Y, cntby(r)e Ent/h
80. Canonical commutation relations: Let r = (r1,72,73) and p = (p1, p2, p3). Then:
[ri, ps] = —[pis 5] = ihdy;
[ri; r5] = [pispi] =0
81. Spherical coordinates

e Laplacian:

2p_ 10 (50f L 0. 0N, L  (&f
vf_r28r " or +rzsin989 Smeae +r2sin27Th0 02

e Separation of variables: Write ¢(r, 0, ¢) = R(r)O(0)®(p).

e Solution for azimuthal angle:
e Solution for polar angle:

e Legendre function:
) ) d |m|
PP (z) = (1 — a2V <dx) Pi(x) = P ()

e Legendre polynomial (using Rodrigues formula):

requires that [ is a non-negative integer. Note also that if [m| > [, then P/ = 0. Hence for any [ there are 21 + 1
possible values of m : —I,—l+1,...,—-1,0,1,... 1.

e Legendre polynomials are orthonormal:

/_11 Py(z)Py(x)dx = (2[2_1_1> S

e (Call [ the azimuthal quantum number and m the magnetic quantum number.

e Normalized angular wavefunction:

V(6.0) = ey 2 e A cost)
. {(—1)’”,m >0
1,m<0
e Radial Equation:
u(r) = rR(r)
2 12 2



e Effective potential

R? (1 +1)
Vepr =V + —
I +2m r2

tends to throw the particle away from the origin.

e General solution to radial equation in infinite spherical well: w(r) = Arj;(kr) + Brni(kr), where j;(x) is the
spherical Bessel function of order I and n;(z) is the spherical Neumann function of order I:

ji(z) = (—z)' (i;i)l s

x
1
1 d\ coszx
= — — l [
(@) = —(-z) (33 dx) T
B = 0 because Neumann functions blow up at the origin.
e Energies in infinite spherical well:
h2
By = ——p2
LT 2ma2

where ,; is the nth zero of the Ith spherical Bessel function.
82. Hydrogen Atom

e Bohr formula:
b | m (N L
" 2h2 \ 4meg n2

_ 4megh?

me?

e Bohr radius

~ 0.529 x 107 %m

e Ground state of hydrogen (n = 1,0 =0,m = 0):

1 )
Y100(r, 0, ¢) = ——e""/°

wa3
e See page 145 onwards for all the formulae for the hydrogen atom.

83. Angular Momentum operators and commutation relations:

L:E(rXV)
i

Lw =YPr — 2Py
Ly = ZPz — TP

[Ly, Ly =4hL,
[Ly,L.| =ihL,
[L.,L;] = thL,
LP=L+L+ L2
[L3 L) =
[sz L2] =0

[L.,z] =ihy, [L.,y]= —ihz,[L,,2]=0
[Lzap:r] = ihpyv [Lzapy] = _ihpaja [Lz;pz] =0

Note that only one of the three Cartesian components of the angular momentum may be known at one time.

10



84. Angular momentum stuff in spherical coordinates:

io_ e[ L9 (el ) L O
L=—h [sineae 056 ) T sinZ0 962

L, =ih <sin ¢% + cot 6 cos <Z)8>

o
ﬁy =1ih (— cos qb% + cot f sin ¢38¢>
L.,= —z’ha%

Ly = he'® (z cot 9% + 889>
L_=he ™ (z cot 9(%5 — ;)

85. Angular momentum ladder operators (increases or decreases the value of m by 1):

Ly=L,+iL,
L.(Ly+f)= (u+h)(Lsf)
[L2,Li] =0

[L.,Ly]=+hLy
L?=LLy+L2+hL,
86. Angular momentum eigenvalue equations:

L2Gum = K211+ 1)y, 1 = 0,1,2, . ..

Lt = h/1(1 + 1) i

f/zqshn = hm¢l7n,m = —l, . ,O7 . ,l

87. Solid angle dS = r2dQ) = r? sin 0dfdé.

88. Two body problem: If the interaction potential only depends on the separation between particles ¥ = 7} — 7, then we
define the position of the centre of mass R = % such that ¥, = R — 7,7 = R — n’—:zf'. Differentiation with

mi mi

respect to particle 1 and 2 positions can then be written as:

Vi=Lve+v,
ma2

Vy= L vp-vV,
my

where % = mil + m% is the reduced mass, and the time independent Schrodinger equation becomes:

—hK?

h2
- VIV - VU U =FEU
2(my +m2)vR ZMVT +V()

Alternatively, define the weighted momentum p = ™P2-""2P1 a5 the total momentum P = p; + p, and write the

X X mi+ma
Hamiltonian as:

P2 p2
H=—+|Z v =H H,,
2M+ {2M+ (r)} oy + Hrel

89. Composite wavefunction for indistinguishable particles: ¢y (z1, z2) = % [Ya(z1)p(22) £ p(x1)1e(x2)]. If the particles

are distinguishable, then 1 (x1,22) = ¥4 (x1)®p(z2). Plus sign for bosons, minus sign for fermions.

11



90.

91.
92.

93.

94.

95.

96.

97.

98.

Symmetrization requirement. For two identical particles, ¢ (7, 72) = £t (72,71 ), plus sign for bosons, minus sign for

fermions.
Exchange force: Non-trivial. See page 208.

Probability Current Density:

h * *
J:Tmiw Vi — V™)

with dimensions per area per second.

Transmission and Reflection. Given:

Yine = Aeithrz=et)
wref = Be“kl;ﬂ_ﬂult)

q/jtrans = Cei(k2x7w2t)

The reflection and transmission coefficients are:

J rans
T = ‘ :
_ refl ‘
Finite rectangular barrier:
1 V2 2m(E —V)
— =14+ -—— sin%(2k kg=Yr——"—-—"FE>V
a +4E(E—V)Sm( 2a), ks - ,E >
1 & 9 2m(V — E)
— =14 ————sinh”(2k ko ="————"""FE<V
T +4E(E_V)bln (2k2a), ko - JE <
Potential step:
dko /K1
T=—"™-"—"SFE>V
(1 + (k2/k1))?
k_,_V
Kk} E

Transmission is zero if £ < V, so that the kinetic energy in the entire step region is negative.

Scattering off a finite potential well

1 V2 2m(E — V)
—=1+-———sin?(2k kg = +——1—=
T = Y mE gy S (BRea). ke h
Double potential step:
4 2
sk k1 > ko > k3

T K2 (k1 + k)2 + (K2 — K2)(K — Kk2) sin®(ksa)

Delay from reflection and transmission. Let X be the centre of the incident wavepacket at ¢ = 0, which moves with

group velocity > fiko

hk
Incident packet: x = X
m

Odr
" (a/«)ko

Transmitted packet: = = %t - X - %
m ok

Reflected packet: z = —

12



where the wave functions are:
1 o . .
Q;Z)inc _ b(k)eZkXel(kx7Wt)dk
V2T J s

I VR kX —i(kotwt)

Yrefl = —— Re'PRb(k)e'™* e "\ FET@ dk
V2T J oo
1 e , . _

wtrans i \/Tel(i)Tb(k)elkXel(km_Wt)dk

V2T J—so

99. Plane wave solution to 3D Schrodinger equation (free particle in 3D):
wk(r’ t) — Aei(k.r—wt)’ Hw = Ek

100. 3D Dirac Delta:

dr—r') = 6(90—:1: y')o(z—2)

5(r—r') 271- /// il (=)

dk = dk,dk,dk,

Gt < [[[ vinedsayaz = s0c-10)

U(r,t) = W / / / bk, t)e'kr=wb) gk

1 ,
i) = oy [ vteie e

Yk =

101. 3D Wavepacket:

102. Radial and Angular momentum:

. 2 2 L? ARl o
H:L:pr+72, Pr=—-—F7-=
2m 2m = 2mr

pr is not just simplify % because this is not Hermitian.

103. Central potential radial equation. Write ¢ = R(r)Y;"(0, ¢). Then R(r) satisfies:

p2  RA(I+1) B
Z + W + V(’I’):| R(T) = ER(T’)

where the second term is the angular momentum barrier.
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