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Schwarz Inequality (1.3.15, Pg 16)

|〈V |W 〉| ≤ |V ||W |

Triangle inequality (1.3.16, Pg 16)

|V +W | ≤ |V |+ |W |

Vector triple product

a · (b× c) = b · (c× a) = c · (a× b)

Summation relations

N∑
n=1

n =
N(N + 1)

2

N∑
n=1

n2 =
N(N + 1)(2N + 1)

6

Gaussian integral∫ ∞
−∞

dze−kz
2

=

√
π

k∫ ∞
−∞

dzAeaz
2+bz+c =

√
π

−a
Aec−

b2

4a

In n-dimensions, just bring both sides to
the appropriate nth power by separating
the integral into a product of indepen-
dent terms.
Matrix inverse(

a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
Adding subspaces Given to subspaces
Vni
i ,V

nj

j , define the sum Vni
i ⊕ Vnj

j =
Vnk

k to be the set containing all elements
of each of the subspaces as well as all
possible linear combinations of all the el-
ements of both subspaces:
Commutator Identities (1.5.10-11,
Pg 20)

[Ω,ΛΘ] = Λ[Ω,Θ] + [Ω,Λ]Θ

[ΛΩ,Θ] = Λ[Ω,Θ] + [Λ,Θ]Ω

Matrix elements of linear opera-
tors (1.6.1, Pg 21) Let vectors be ex-
pressed as columns. Then the jth row,
ith column component of the operator
matrix can be written as:

〈j|Ω|i〉 = Ωji

Hermitian/Anti-Hermitian Opera-
tor (Definition 13-14, Pg 27)

Ω† = Ω Hermitian

Ω† = −Ω Anti-Hermitian

Ω =
Ω + Ω†

2
+

Ω− Ω†

2

Hermitian operator eigenvalues are real
(Theorem 9, Pg 35). Every Hermi-
tian operator has a basis of orthonor-
mal eigenvectors and is diagonal in this
eigenbasis with eigenvalues along the di-
agonal (Theorem 10, Pg 36).
Unitary (Definition 15, Pg 28)

UU† = I

Unitary operators preserve the inner
product when operating on both bra
and ket (Theorem 7, Pg 28). The rows
and columns of a unitary matrix are or-
thonormal (Theorem 8, Pg 28). The
eigenvalues are complex numbers of unit
modulus (Theorem 11, Pg 39). The
eigenvectors of a non-degenerate unitary
operator are mutually orthogonal (The-
orem 12, Pg 39).
Trace properties (Ex 1.7.1, Pg 30)

Tr(ΩΛ) = Tr(ΛΩ)

Tr(XY Z) = Tr(Y ZX) = Tr(ZXY )

Tr(Ω) = Tr(U†ΩU)

Characteristic Polynomial (1.8.6,
Pg 32)

det(Ω− ωI) = 0

Simultaneous Diagonalization
(Theorem 13, Pg 43) If two Her-
mitian operators commute, there exists
a basis of common eigenvectors that
diagonalizes them both.
Pauli Matrices The Pauli matrices
form an orthogonal basis for the com-
plex Hilbert space of 2x2 matrices.

σ1 = σx =

(
0 1
1 0

)
σ2 = σy =

(
0 −i
i 0

)
σ3 = σz =

(
1 0
0 −1

)
With properties (Pg 381):

σ2
i = I, i = 1, 2, 3

−iσ1σ2σ3 = I

[σa, σb] =
∑
c

2iεabcσc

{σa, σb} = 2δabI

By 14.3.33 (Pg 381):

σxσy = iσz

They are orthogonal with respect to the
trace inner product (14.3.40a, Pg 382):

Tr(σiσj) = 2δij

with cyclic permutations. Any complex
matrix can be written as a linear com-
bination of the Pauli matrices (where
σ0 = I), (14.3.42-43, Pg 383):

M =
∑
a

maσa

ma =
1

2
Tr(Mσa)

The Levi-Civita symbol is +1 if the val-
ues are cyclic permutations of (1,2,3)
and -1 if the values are cyclic permu-
tations of (3,2,1). Eigenvalues are ±1.
Define the Pauli vector ~σ:

~σ = σ1x̂+ σ2ŷ + σ3ẑ

~a · ~σ =

(
a3 a1 − ia2

a1 + ia2 −a3

)
(â · ~σ)2n = I

(â · ~σ)2n+1 = â · ~σ
ei|a|(â·~σ) = I cos |a|+ i(â · ~σ) sin |a|

exp

(
−iHt
~

)
= exp

(
−i(gĝ · ~σ)t

~

)
= cos

(
gt

~

)
I − i sin

(
gt

~

)
(ĝ · ~σ)

Rotation Matrix (12.2.1, Pg 306)

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)

rotates a vector counterclockwise.

Exponential Operator (1.9.3, Pg
54)

eΩ =

∞∑
n=0

Ωn

n!

eaΩebΘ = eaΩ+bΘ ⇐⇒ [Ω,Θ] = 0,Pg 56

Exponential Chain Rule (1.9.8, Pg
56)

d

dλ

(
eλΩeλΘ

)
= ΩeλΩeλΘ + eλΩeλΘΘ
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Delta function properties (1.10.23,
1.10.26, Pg 62)

dnδ(x− x′)
dxn

= δ(x− x′) dn

dx′n

1

2π

∫ ∞
−∞

dkeik(x′−x) = δ(x′ − x)

More identities from Wolfram Math-
world:

δ′(−x) = −δ′(x)

xδ′(x) = −δ(x)

xnδ(n)(x) = (−1)nn!δ(x)

δ(ax) =
1

|a|
δ(x)

δ(x2 − a2) =
1

2|a|
[δ(x+ a) + δ(x− a)]

Fourier Transform and Inverse
(1.10.24-25, Pg 62-63)

F (k) =
1√
2π

∫ ∞
−∞

e−ikxf(x)dx forward

f(x) =
1√
2π

∫ ∞
−∞

eikxF (k)dk reverse

Position and Momentum Space

K = −iD is Hermitian, Pg 65

Pg 66: lim
x→∞

eikxe−ik
′x =

lim
L,∆→∞

1

∆

∫ λ+∆

L

ei(k−k
′)xdx = 0, k 6= k′

1√
2π
eikx Momentum eigenfunctions

With ~ (Pg 137):

ψp(x) = 〈x|p〉 =
1√
2π~

eipx/~

ψx(p) = 〈p|x〉 =
1√
2π~

e−ipx/~

〈k|K|k′〉 = k′δ(k − k′) 1.10.36, Pg 68

〈x′|X|x〉 = xδ(x′ − x) 1.10.38, Pg 68

〈k|X|k′〉 = iδ′(k − k′) Pg 69

[X,K] = iI, 1.10.41

Action (2.1.3, pg 76)

S[x(t)] =

∫ tf

ti

L(x, ẋ)dt

First order multivariable Taylor
expansion (2.1.4, pg 77)

f(x0 + η) = f(x0) +

n∑
i=1

∂f

∂xi

∣∣∣∣
x0

ηi + . . .

Euler-Lagrange Equation (2.1.9,
Pg 78)

∂L
∂x
− d

dt

(
∂L
∂ẋ

)
= 0, ∀ti ≤ t ≤ tf

Canonical momentum and force
(2.1.12-13, pg 80)

pi =
∂L
∂q̇i

Fi =
∂L
∂qi

Cyclic Coordinate (2.1.14, pg 81) is
a coordinate such that the Lagrangian
depends on the velocity (time derivative
of coordinate) but not the coordinate it-
self. Then pi is conserved:

dpi
dt

=
d

dt

(
∂L
∂q̇i

)
=
∂L
∂qi

= 0

By 2.7.1, Pg 91, for a cyclic coordinate
qi missing in the Hamiltonian:

ṗi = −∂H
∂qi

= 0

Polar Equations of Motion (2.1.18-
19, pg 81)

mρ̈ = −∂V
∂ρ

+mρ(φ̇)2

mφ̈ = − 1

ρ2

∂V

∂φ
− 2mρ̇φ̇

ρ

Lorentz Force CGS (2.2.1, Pg 83)

F = q
(
E +

v

c
×B

)
Electromagnetic Lagrangian (2.2.2,
Pg 83)

LEM =
1

2
mv · v − qφ+

q

c
v ·A

p = mv +
qA

c
, 2.2.7, Pg 84

EM Potentials and Fields (2.2.3-4,
Pg 83)

E = −∇φ− 1

c

∂A

∂t
B = ∇×A

Two-body CM coordinate (2.3.2-4,
Pg 85)

rCM =
m1r1 +m2r2

m1 +m2

r1 = rCM +
m2r

m1 +m2

r2 = rCM −
m1r

m1 +m2

Hamiltonian Formalism (2.5.2, Pg
87)

q̇i =
∂H
∂pi

Legendre Transform (2.5.4, Pg 87)

Given u(x) =
df

dx
define g(u) = x(u)u− f(x(u))

then
dg

du
= x(u)

Multidimensional Legendre Trans-
form (2.5.6, Pg 87)

Given f = f(x1, x2, . . . , xn)

we can eliminate a subset of variables in
favor of partial derivatives ui = ∂f

∂xi
by

the transformation:

g(u1, . . . , uj , xj+1, . . . , xn) =

j∑
i=1

uixi − f(x1, . . . , xn)

so that:

∂g

∂ui
= xi

Hamiltonian (2.5.14, Pg 89)

H =
∑
i

piẋi − L

Hamilton’s Canonical equations
(2.5.12, Pg 88)

∂H
∂pi

= q̇i

−∂H
∂qi

= ṗi

for a total of 2n first-order equations for
a system with 2n degrees of freedom.
Electromagnetic Hamiltonian
(2.6.2, Pg 91)

HEM =
|(p− qA/c)|2

2m
+ qφ

Poisson Bracket (2.7.3, Pg 92)

{ω, λ} ≡
∑
i

(
∂ω

∂qi

∂λ

∂pi
− ∂ω

∂pi

∂λ

∂qi

)
so that:

dω

dt
= {ω,H}

and if the PB vanishes, then ω is con-
served. Further identities (Pg 92):

{ω, λ} = −{λ, ω}
{ω, λ+ σ} = {ω, λ}+ {ω, σ}
{ω, λσ} = {ω, λ}σ + λ{ω, σ}
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Poisson brackets are invariant under
canonical transformations (2.7.19, Pg
96).
Poisson Bracket coordinate rela-
tions (2.7.4a-4b, Pg 92)

{qi, qj} = {pi, pj} = 0

{qi, pj} = δij

These are sufficient conditions for a set
of coordinates to be canonical (Pg 95).
Point Transformation (2.7.11, Pg
93)

qi → q̄i(q1, . . . , qn)

p̄i =
∑
j

∂qj
∂q̄i

pj

Regular transformations (Pg 97)
preserve the range of the variables.
Symmetries (2.8.3, Pg 99) If H is in-
variant under the following infinitesimal
canonical transformation:

q̄i = qi + ε
∂g

∂pi

p̄i = pi − ε
∂g

∂qi

for g(p, q) being any dynamical variable,
then g is conserved. Call g the gen-
erator of the transformation. Also, by
Pg 99, if H is invariant under the regu-
lar, canonical (not necessarily infinitesi-
mal) transformation (q, p)→ (q̄, p̄), and
if (q(t), p(t)) is a solution to the equa-
tions of motion, then (q̄(t), p̄(t)) also is
a solution.
Relation between action S and E
(Pg 104)

∂Scl(xf , tf ;xi, ti)

∂tf
= −H(tf )

Plane Wave (3.1.1-2, Pg 108)

ψ(x, t) = A exp

[
i

(
2π

λ
x− 2π

T
t

)]
ψ(r, t) = Aeik·r−ωt

Postulates of QM (Pg 115-116) I.
The state of a system is represented by
a vector |ψ(t)〉 in Hilbert space. II.
The Hermitian operators corresponding
to position and momentum have the fol-
lowing matrix elements:

〈x|X|x′〉 = xδ(x− x′)
〈x|P |x′〉 = −i~δ′(x− x′)

III. Measurement of Ω yields one of its
eigenvalues ω with probability P (ω) ∝

|〈ω|ψ〉|2. The final state is |ω〉. IV. The
state vector evolves with Schrodinger’s
equation (4.3.1, Pg 143):

i~
d

dt
|ψ(t)〉 = H|ψ(t)〉

Normalized Probability (4.2.1, Pg
118)

P (ωi) =
|〈ωi|ψ〉|2

〈ψ|ψ〉

Expectation and Uncertainty
(4.2.6-7, Pg 127-128)

〈Ω〉 = 〈ψ|Ω|ψ〉

∆Ω =
√
〈(Ω− 〈Ω〉)2〉

Density Matrix (4.2.20-22, Pg 133-
134) For general mixed ensembles with
a collection of systems in different states.

ρ =
∑
i

pi|i〉〈i|

〈Ω̄〉 =
∑
i

pi〈i|Ω|i〉

Tr(Ωρ) = 〈Ω̄〉

More identities (4.2.23, Pg 134):

ρ† = ρ

Tr(ρ) = 1

tr(ρ2) ≤ 1, equality for pure ensemble

For special ensembles:

ρ2 = ρ pure ensemble

ρ =
1

k
I uniformly distributed ensemble

Normalized Gaussian state (Pg
135) Note that the probability is the
magnitude squared.

ψ(x) =
1

(π∆2)1/4
e−(x−a)2/2∆2

〈X〉 = a

∆X =
∆√

2

Electromagnetic Hamiltonian
(4.3.6-7, Pg 144)

Classical:
|p− (q/c)A(r, t)|2

2m
+ qφ(r, t)

Quantum (symmetrized):

H =
1

2m

(
P · P − q

c
P ·A− q

c
A · P

+
q2

c2
A ·A

)
+ qφ

Time evolution propagator (4.3.13-
14, Pg 146)

U(t) =
∑
E

|E〉〈E|e−iEt/~

U(t) = e−iHt/~

so that |ψ(t)〉 = U(t)|ψ(0)〉. This op-
erator is unitary, and hence preserves
norms. More propagator properties
(4.3.16, Pg 149):

U(t3, t2)U(t2, t1) = U(t3, t1)

U†(t2, t1) = U−1(t2, t1) = U(t1, t2)

Free particle time evolution propagator,
position basis (5.1.10, Pg 153):

〈x|U(t)|x′〉 =
( m

2π~it

)1/2

eim(x−x′)2/2~t

so that the time evolution can be written
as the integral (5.1.11, Pg 153):

ψ(x, t) =

∫
〈x|U(t)|x′〉ψ(x′, 0)dx′

Choosing a basis (Pg 149) In coor-
dinate space (X basis):

X → x P → −i~ d

dx

and momentum space (P basis):

X → i~
d

dp
, P → p

If V (X) is a complicated function of X,
use the X basis.
Gaussian Wave Packet (5.1.14, Pg
154)

ψ(x′, 0) = eip0x
′/~ e

−x′2/2∆2

(π∆2)1/4

For time evolution results (highly com-
plicated) see Pg 154, 5.1.15-16. General

results: 〈X〉 = 〈P 〉t
m , width of packet

grows asymptotically like t.
Particle in a box eigenfunctions
(5.2.15-16, Pg 159)

ψn(x) =


√

2
L sin nπx

L , n even√
2
L cos nπxL , n odd

Energy levels (5.2.17c, Pg 159):

En =
~2π2n2

2mL2

Probability Current Density (5.3.8,
Pg 166)

j =
~

2mi
(ψ∗∇ψ − ψ∇ψ∗)
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so that (5.3.7, Pg 166):

∂P

∂t
= −∇ · j

Time Derivative of Expectation
Value (6.1, Pg 179)

d

dt
〈Ω〉 = 〈ψ̇|Ω|ψ〉+ 〈ψ|Ω|ψ̇〉+ 〈ψ|Ω̇|ψ〉

Ehrenfest’s Theorem (6.2, Pg 180)
for operator without explicit time de-
pendence.

d

dt
〈Ω〉 = − i

~
〈[Ω, H]〉

Hermite Polynomials (7.3.21, Pg
195)

H0(y) = 1

H1(y) = 2y

H2(y) = −2(1− 2y2)

H3(y) = −12(y − 2

3
y3)

H4(y) = 12(1− 4y2 +
4

3
y4)

with recursion relations (7.3.24-25, Pg
195):

H ′n(y) = 2nHn−1

Hn+1(y) = 2yHn − 2nHn−1

and orthogonality condition (7.3.26, Pg
195):∫ ∞
−∞

Hn(y)Hn′(y)e−y
2

dy =
√
π2nn!δnn′

1D Harmonic oscillator solution
(7.3.22, Pg 195)(

mω

π~22n(n!)2

)1/4

e−mωx
2/2~Hn

[√
mω

~
x

]
Ground state (7.3.40, Pg 200):

ψ0(x) =
(mω
π~

)1/4

e−mωx
2/2~

Raising and Lowering Operators
(7.4.3-4, Pg 203):

a =

√
mω

2~
X + i

√
1

2mω~
P

a† =

√
mω

2~
X − i

√
1

2mω~
P

with commutation relation (7.4.5, Pg
203):

[a, a†] = 1

We can re-write the 1D Hamiltonian
(7.4.6, Pg 204):

H = (a†a+ 1/2)~ω

The operation of these are (7.4.21-22, Pg
207):

a|n〉 =
√
n|n− 1〉

a†|n〉 =
√
n+ 1|n+ 1〉

Inverting the operators (7.4.28-29, Pg
207):

X =

√
~

2mω
(a+ a†)

P = i

√
mω~

2
(a† − a)

Commutation relations for N de-
grees of freedom (7.4.39, Pg 211)

[Xi, Pj ] = i~δij = i~{xi, pj}PB
[Xi, Xj ] = 0 = i~{xi, xj}PB
[Pi, Pj ] = 0 = i~{pi, pj}PB

Use these relations to promote parame-
ters to operators and quantize the sys-
tem.
Path Integral formulation of prop-
agator (8.1.1, Pg 223)

U(x, t;x′, t′) = A
∑

all paths

eiS[x(t)]/~

where A is a normalization factor. Note
that the sum is dominated by the classi-
cal action because the action is station-
ary around the classical path, allowing
the contributions to add constructively.
Formally, (8.4.1, Pg 226):∫ xN

x0

eiS[x(t)]/~D[x(t)]

where the sum over all paths is per-
formed as (8.4.8, Pg 229):∫

D[x(t)] =

lim
ε→0,N→∞

1

B

∫ ∞
−∞
· · ·
∫ ∞
−∞

dx1

B
· · · dxN−1

B

B =

(
2π~εi
m

)1/2

General Uncertainty Relation
(9.2.12, Pg 239)

(∆Ω)2(∆Λ)2 ≥
1

4
〈ψ|{Ω̂, Λ̂}|ψ〉2 +

1

4
〈ψ|[Ω̂, Λ̂]|ψ〉2

Two particle QM (Pg 247-248)

[Xi, Pj ] = i~δij 10.1.1a

[Xi, Xj ] = 0 10.1.1b

[Pi, Pj ] = 0 10.1.1c

〈x′1x′2|x1x2〉 = δ(x′1 − x1)δ(x′2 − x2)

P (x1, x2) = |〈x1x2|ψ〉|2 10.1.5∫
P (x1, x2)dx1dx2 = 1 10.1.6

Direct Product (10.1.10, Pg 249) is
the product of vectors from two different
spaces. It is linear:

(α|x1〉+ α′|x′1〉)⊗ (β|x2〉)
= αβ|x1〉 ⊗ |x2〉+ α′β|x′1〉 ⊗ |x2〉

The inner product in the direct product
space is (10.1.11, Pg 250):

(〈x′1| ⊗ 〈x′2|)(|x1〉 ⊗ |x2〉)
= 〈x′1|x1〉〈x′2|x2〉 = δ(x′1 − x1)δ(x′2 − x2)

The coordinate-space representation is
(10.1.22a, Pg 253):

ψ(x1, x2) =
∑
ω1

∑
ω2

Cω1,ω2
ω1(x1)ω2(x2)

which corresponds to (10.1.22b, Pg 253):

|ψ〉 =
∑
ω1

∑
ω2

Cω1,ω2
|ω1〉 ⊗ |ω2〉

Direct Product of Two Operators
(10.1.14, Pg 250)

(Γ
(1)
1 ⊗ Λ

(2)
2 )|ω1〉 ⊗ |ω2〉

= |Γ(1)
1 ω1〉 ⊗ |Λ(2)

2 ω2〉

Define the operator Ω
(j)
i as operating on

the i particle in the vector space j. Note
that this operator acts as the identity on
all spaces not j. The direct product has
properties (10.1.17a-17d, Pg 251):

[Ω
(1)
1 ⊗ I(2), I(1) ⊗ Λ

(2)
2 ] = 0

(Ω
(1)
1 ⊗ Γ

(2)
2 )(Θ

(1)
1 ⊗ Λ

(2)
2 )

= (ΩΘ)
(1)
1 ⊗ (ΓΛ)

(2)
2

If [Ω
(1)
1 ,Λ

(1)
1 ] = Γ

(1)
1 ,

Then [Ω
(1)⊗(2)
1 ,Λ

(1)⊗(2)
1 ] = Γ

(1)
1 ⊗ I(2)

(Ω
(1)⊗(2)
1 + Ω

(1)⊗(2)
2 )2

= (Ω2
1)(1) ⊗ I(2) + I(1) ⊗ (Ω2

2)(2) + 2Ω
(1)
1 ⊗ Ω

(2)
2

and commutation relations (10.1.18, Pg
252):

[X
(1)⊗(2)
i , P

(1)⊗(2)
j ] = i~δijI(1)⊗(2)

[X
(1)⊗(2)
i , X

(1)⊗(2)
j ] = 0

[P
(1)⊗(2)
i , P

(1)⊗(2)
j ] = 0
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Time evolution of multi-particle
system For separable Hamiltonian H =
H1(x1, p1) + H2(x2, p2) (10.1.29, Pg
255):

|ψ(t)〉 = |E1〉e−iE1t/~ ⊗ |E2〉e−iE2t/~

Two Interacting Particles (Pg 256-
257) For two particles with potential
that only depends on the separation
V (x1 − x2), move into CM coordinates
with separation operators x = x1 − x2,
p = µẋ, where µ = m1m2

m1+m2
is the re-

duced mass. Then the Hamiltonian is
(10.1.38, Pg 257):

H =
p2
CM

2M
+
p2

2µ
+ V (x)

with quantization conditions (commuta-
tor relations) from 10.1.39a-b, Pg 257:

[XCM , PCM ] = i~
[X,P ] = i~

with all other commutators zero. In the
position basis, the energy eigenfunctions
become (10.1.41, Pg 257):

ψE(xCM , x) =
eipCM ·xCM/~
√

2π~
ψErel

(x)

E =
p2
CM

2M
+ Erel

We can move into the CM frame (assum-
ing CM drifts like a free particle) and set
pCM = 0.
Bosonic and Fermionic Hilbert
spaces (Pg 265-268) The normalized
symmetric eigenvector (discrete vari-
able) is (10.3.10a):

|ω1ω2, S〉 =

{
(|ω1ω2〉+|ω2ω1〉)√

2
, ω1 6= ω2

|ωω〉, ω1 = ω2 = ω

with probability function (10.3.11, Pg
266):

PS(ω1, ω2) = |〈ω1ω2, S|ψS〉|2

and normalization condition (10.3.12a-
b, Pg 266):∑

dist

PS(ω1, ω2) = 1

ωmax∑
ω2=ωmin

ω2∑
ω1=ωmin

PS(ω1, ω2) = 1

where the summation is over all distinct
states.
The wavefunction in position space has

a scale factor (10.3.16, Pg 267), and sim-
ilarly for the asymmetric case:

ψS(x1, x2) =
1√
(2!)
〈x1x2, S|ψs〉

so that the normalization can be per-
formed over all 2D space (10.3.17, Pg
267):

1 =

∫ ∞
−∞

∫ ∞
−∞
|ψS(x1, x2)|2dx1dx2

Note that the probability must be writ-
ten with the scale factor if not over the
entire space (10.3.18), Pg 267):

PS(x1, x2) = 2!|ψS(x1, x2)|2

Translational invariance (11.2.40,
Pg 292)

H(X,P ) = T †(ε)HT (ε) = H(X + εI, P )

Generators and Operators
(11.2.13, Pg 283)

T (ε) = I − iε

~
G

G is the generator and is Hermitian.
Unitary transformation of operator
(Pg 286) For any Ω(X,P ) that can be
expanded in a power series, for any uni-
tary operator U ,

U†Ω(X,P )U = Ω(U†XU,U†PU)

Finite translation operator
(11.2.29, Pg 290):

T (a) = e−iaP/~

Parity transformation (11.4.2-3,
Pg 297)

Π|x〉 = | − x〉
Π|p〉 = | − p〉

and its operation on operators (11.4.7,
Pg 298):

Π†XΠ = −X
Π†PΠ = −P

Parity invariance is defined as (11.4.8,
Pg 298):

Π†HΠ = H(−X,−P ) = H(X,P )

In spherical coordinates (need to prove
this):

r → r

θ → π − θ
φ→ π + φ

The net effect of the parity transforma-
tion is to achieve:

Y ml (π − θ, π + φ) = (−1)lY ml (θ, φ)

so the parity is (−1)l. This can be
proved by examining the Y ll function
(12.5.32, Pg 335):

Y ll ∝ eilφ sinl θ

Then show that [L−,Π] = 0 so that the
parity doesn’t change under lowering.
Translation in arbitrary direction
(12.1.5, Pg 306):

T (~a) = e−i~a·
~P/~

Angular momentum operators
(12.2.11, Pg 308):

Lz = XPy − Y Px

and in polar coordinates (12.2.19, Pg
309):

Lz = −i~ ∂

∂φ

It has normalized eigenfunctions (12.3.9-
10, Pg 315):

Φm(φ) =
1√
2π
eimφ∫ 2π

0

Φ∗mΦm′dφ = δmm′

In the other directions (12.4.1ab, Pg
318):

Lx = Y Pz − ZPy
Ly = ZPx −XPz

Angular momentum commutators
(12.2.16-17, Pg 309)

[X,Lz] = −i~Y
[Y,Lz] = i~X

[Px, Lz] = −i~Py
[Py, Lz] = i~Px

and (12.4.4abc, Pg 318):

[Lx, Ly] = i~Lz
[Ly, Lz] = i~Lx
[Lz, Lx] = i~Ly

or in summary (12.4.5-6, Pg 319):

~L× ~L = i~~L

[Li, Lj ] = i~
3∑
k=1

εijkLk
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Cross Product and Levi-Civita
symbol (12.4.8-9, Pg 319):

~c = ~a×~b

ci =

3∑
j=1

3∑
k=1

εijkajbk

Rotation generator (12.4.12, Pg
320):

U [R(Θ)] = e−iΘ·
~L/~

Angular momentum raising and
lowering operators (12.5.3, Pg
322):

L± = Lx ± iLy

with commutation relations (12.5.4-5,
Pg 322):

[Lz, L±] = ±~L±
[L2, L±] = 0

Inverting,

Jx =
J+ + J−

2

Jy =
J+ − J−

2i

These operators give the effect (12.5.20,
Pg 327):

J±|jm〉 = ~
√

(j ∓m)(j ±m+ 1)|j,m± 1〉

In the coordinate basis (12.5.27, Pg
334),

L± → ±~e±iφ
(
∂

∂θ
± i cot θ

∂

∂φ

)
Angular momentum eigenvalue
equations (12.5.17ab, Pg 326):

J2|jm〉 = j(j + 1)~2|jm〉, j = 0, 1/2, 1 . . .

Jz|jm〉 = m~|jm〉, m = j, j − 1, . . . ,−j

For orbital angular momentum
(12.5.18ab, Pg 326):

L2|lm〉 = l(l + 1)~2|lm〉, l = 0, 1, 2, . . .

Lz|lm〉 = m~|lm〉,m = l, l − 1, . . . ,−l

Spherical harmonics Orthonormality
condition (Pg 335):∫

[Y ml (θ, φ)]
∗
Y m

′

l′ (θ, φ)dΩ = δll′δmm′

dΩ = d(cos θ)dφ

Any wavefunction can be expanded in
spherical harmonics (12.5.37ab, Pg 336):

ψ(r, θ, φ) =

∞∑
l=0

l∑
m=−l

Cml (r)Y ml (θ, φ)

Cml (r) =

∫
[Y ml (θ, φ)]

∗
ψ(r, θ, φ)dΩ

See page 337 for a list of spherical har-
monics. The angular momentum opera-
tors have the effect:

L2Y ml = ~2l(l + 1)Y ml

LzY
m
l = ~mY ml

The physical meaning of the coefficients
are the probabilities that a wavefunction
has particular angular momentum eigen-
values (L2 = l(l + 1)~, Lz = m~):

Pl,m =

∫ ∞
0

|Cml (r)|2r2dr

Negative m values correspond to
(12.5.40, Pg 337):

Y −ml = (−1)m [Y ml ]
∗

Rotationally invariant problems in
spherical coordinates The Laplacian
is (12.6.1, Pg 339):

∇2 =
1

r2

∂

∂r
r2 ∂

∂r
+

1

r2 sin θ

∂

∂θ
sin θ

∂

∂θ

+
1

r2 sin2 θ

∂2

∂φ2

which can be written using the spherical
form of the total angular momentum L2:

∇2 =
1

r2

∂

∂r
r2 ∂

∂r
− L2

~2r2

We seek simultaneous eigenfunctions of
H,L2 and Lz, which have the form
(12.6.2, Pg 339):

ψElm = RElm(r)Y ml (θ, φ)

Make the change of variable (12.6.4, Pg
340):

REl =
UEl
r

and at r → 0, the asymptotic solution is
(12.6.14, Pg 343):

Ul ∼ rl+1, r−l

Reject the irregular solutions r−l since
they do not meet the boundary condi-
tion (12.6.12, Pg 342):

UEl → 0, r → 0

Auxiliary radial function for spher-
ically symmetric potentials (12.6.4-
5, Pg 340)

REl =
UEl
r

{
d2

dr2
+

2µ

~2

[
E − V (r)−

l(l + 1)~2

2µr2

]}
UEl = 0

We also require at the boundaries
(12.6.8ab, Pg 341, 12.6.12, Pg 242):

lim
r→∞

UEl =

{
0, E < 0

eikr, E > 0

lim
r→0

UEl = 0

Free particle in 3D (12.6.36, Pg
349)

ψElm(r, θ, φ) = jl(kr)Y
m
l (θ, φ)

where E = ~2k2

2µ and jl is the spherical
Bessel function of order l.
Free particle, Spherically symmet-
ric differential equation (12.6.20,
Pg 346) Let ρ = kr, k2 = 2µE

~2 , R =
UEl

r : [
− d2

dρ2
+
l(l + 1)

ρ2

]
Ul = Ul

3D Isotropic Harmonic Oscillator
Energies (12.6.50, Pg 352):

E = (2k + l + 3/2)~ω, k = 0, 1, 2, . . .

n ≡ 2k + l

l = n, n− 2, . . . , 1 or 0

m = −l,−l + 1, . . . , l

Hydrogen Atom Principal quantum
number (13.1.15, Pg 355):

n = k + l + 1 = 1, 2, 3, . . .

where k is the index that the summa-
tion terminates at. Energies (13.1.14,
Pg 355):

E = − me4

2~2(k + l + 1)2

k = 0, 1, 2, . . . , n− 1

l = 0, 1, 2, . . . , n− 1

Degeneracy for each n (excluding spin),
(13.1.18, Pg 355):

n−1∑
l=0

(2l + 1) = n2

Bohr radius (13.1.24, Pg 357):

a0 =
~2

me2
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Radial equation (13.1.25, Pg 357):

Rnl ∼ e−r/na0
(

r

na0

)l
L2l+1
n−l−1

(
2r

na0

)
where L is the associated Laguerre poly-
nomial. It has n− l − 1 zeros.
Virial theorem (13.1.33, Pg 358)
For the Coulomb force:

〈T 〉 = −1

2
〈V 〉

More generally (Exercise 13.1.5, Pg
359):

2〈T 〉 =

〈
ri
∂V

∂ri

〉
Spin commutation relations
(14.3.4, Pg 375)

[Ji, Jj ] = i~
∑
k

εijkJk

This applies for L and S as well.
Spin-half spinor (14.3.8a, Pg 375)

〈x, y, z, sz|ψ〉 =

[
ψ+(x, y, z)
ψ−(x, y, z)

]
with normalization constraint (14.3.14,
Pg 377):∫

(|ψ+|2 + |ψ−|2)dxdydz = 1

Spin along arbitrary axis, electron
(14.3.27, Pg 380)

n̂ · S =
~
2

[
cos θ sin θe−iφ

sin θeiφ − cos θ

]
The eigenstates are (14.3.28ab, Pg 380):

|n̂,+〉 =

[
cos θ2e

−iφ/2

sin θ
2e
iφ/2

]
|n̂,−〉 =

[
− sin θ

2e
−iφ/2

cos θ2e
iφ/2

]
Unitary rotation operator (14.3.44,
Pg 383)

U [R(θ)] = e−iθ·S/~

U [R(θ)] = cos
θ

2
I − i(θ̂ · σ) sin

θ

2

Hamiltonian in magnetic field
(14.4.11, Pg 387)

|P |2

2m
− q

2mc
(P ·A+A · P ) +

q2|A|2

2mc2

Interaction Hamiltonian (14.4.14, Pg
388):

Hint = −µ ·B

and for the electron (14.4.19, Pg 389),

Hint =
ge~
4mc

σ ·B

Gyromagnetic ratio (14.4.15, Pg 388):

µ =
q

2mc
L

γ ≡ q

2mc

The precession frequency is ω0 = −γB
so that (14.4.24, Pg 391):

θ(t) = −γBt

Addition of angular momenta
(15.2.4, Pg 409) Let j1 ≥ j2. Then
the eigenkets of the total J = J1 + J2

operator are:

|jm〉, j1 − j2 ≤ j ≤ j1 + j2,−j ≤ m ≤ j

Obtaining the Clebsch-Gordon co-
efficients (Pg 408-412) 1. Consider
the maximum m state of the maximum
value of j = j1 + j2. Hence m = j1 + j2.
There is only one state that achieves
this. 2. Apply the total lowering opera-
tor S− = S1− + S2− to obtain the state
withm = j1+j2−1. Expand the effect of
S− in terms of the individual constituent
eigenstates. 3. Repeat until you get to
m = j1 − j2. 4. Move to the next value
of j = j1 + j2−1. Declare that it should
be a superposition of |j1, j1〉⊗|j2, j2−1〉
and |j1, j1 − 1〉 ⊗ |j2, j2〉, and should be
orthogonal to the state |j1+j2, j1+j2−1〉
obtained earlier. Solve for the real coef-
ficients, then proceed with the total low-
ering operator.
Clebsch-Gordon coefficients prop-
erties (15.2.9-11, Pg 412-413) They
are the overlap values:

〈j1m1, j2m2|jm〉

and satisfy:

〈j1m1, j2m2|jm〉 6= 0,

only if j1 − j2 ≤ j ≤ j1 + j2

and m1 +m2 = m

with the convention that they are real,

〈j1j1, j2(j − j1)|jj〉 > 0

and the effect of flipping the sign of m
is:

(−1)j1+j2−j〈j1(−m1), j2(−m2)|j(−m)〉

Spectroscopic notation (Pg 415)
Denote the angular momentum by L =
SPDF for l = 0, 1, 2, 3. Then write:

2S+1LJ

Scalar, vector and tensor operators
(Pg 416-417) A scalar operator S re-
mains invariant under rotations:

S′ = U†[R]SU [R] = S

A vector operator is a collection of three
operators V = (Vx, Vy, Vz) which trans-
form as the components of a vector un-
der rotations:

V ′i = U†[R]ViU [R] =
∑
j

RijVj

A tensor operator of rank 2 is a collec-
tion of nine operators Tij which respond
as to the basis kets |i〉 ⊗ |j〉 under rota-
tions.
Variational method for finding
ground state (Pg 429-435) 1. Make
a guess for the ground state wavefunc-
tion with some unknown parameter. 2.
Calculate:

E[ψ] =

∫
ψ∗Hψdx∫
ψ∗ψdx

3. Minimize this function with respect
to the unknown parameter. The pa-
rameter that minimizes the energy is
the best estimate given that particular
wavefunction form guess.
WKB approximation (Pg 435-438)
To solve:[

d2

dx2
+
p2(x)

~2

]
ψ(x) = 0

where p2(x) = 2m[E − V (x)], make the
guess:

ψ(x) = eiφ(x)/~

Then expand the phase in orders of ~:

φ = φ0 + ~φ1 + ~2φ2 + . . .

Keeping only the linear terms, and re-
quiring that the first and second order
terms proportional to ~−1, ~−2 all van-
ish. Then the wavefunction approxima-
tion is:

ψ(x) = ψ(x0)

√
p(x0)

p(x)
exp

[
± i

~

∫ x

x0

p(x′)dx′
]

This approximation holds when the
wavefunction wavelength is much
smaller than the characteristic poten-
tial lengthscale (hence we have to avoid
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classical turning points when the wave-
length is large).
Difference between perturbation
schemes To find the new eigenstates
and eigenvalues of a perturbed Hamil-
tonian, use time-independent perturba-
tion theory. To find the transition am-
plitude between orthogonal eigenstates
in a perturbed Hamiltonian, use time-
dependent perturbation theory.
Time-Independent Perturbation
theory (Pg 451-453) Given a solved
Hamiltonian:

H0|n0〉 = E0
n|n0〉

The energy eigenvalues for the per-
turbed Hamiltonian H = H0 +H1 are:

En = E0
n + E1

n + E2
n + . . .

E1
n = 〈n0|H1|n0〉

E2
n =

∑
m6=n

|〈n0|H1|m0〉|2

E0
n − E0

m

(note E2
n is the second order energy cor-

rection, not a square!) and the eigen-
states are:

|n〉 = |n0〉+ |n1〉+ . . .

|n1〉 =
∑
m 6=n

|m0〉〈m0|H1|n0〉
E0
n − E0

m

The necessary condition for |n1〉 to be
small compared to |n0〉 is (17.1.18, Pg
454): ∣∣∣∣ 〈m0|H1|n0〉

E0
n − E0

m

∣∣∣∣ << 1

Selection rules (17.2.12, Pg 458) If
[Ω, H1] = 0, then:

〈α2ω2|H1|α1ω2〉 = 0

unless ω1 = ω2, the eigenvalues of Ω for
the two states are equal.
Parity selection rule (17.2.20, Pg
459) If Π†ΩΠ = −Ω then the matrix
element of Ω between two parity eigen-
states vanishes unless they have opposite
parity.
Dipole selection rule (17.2.21, Pg
459)

〈l2m2|Z|l1m1〉 = 0 unless

{
l2 = l1 ± 1

m2 = m1

〈l2m2|Y |l1m1〉 = 0 unless

{
l2 = l1 ± 1

m2 = m1 ± 1

〈l2m2|X|l1m1〉 = 0 unless

{
l2 = l1 ± 1

m2 = m1 ± 1

Degenerate perturbation theory
(Pg 464-466) When there exists a de-
generate subspace with nonzero opera-
tor matrix elements, we have to find the
basis that diagonalizes the perturbation
H1 in that subspace. The eigenstates
that diagonalize H1 are stable under the
perturbation and hence TIPT can be
used to calculate their energy shifts.
Time-dependent perturbation the-
ory, first order (Pg 474-475) Con-
sider a Hamiltonian H = H0 + H1(t).
Write the wavefunction as a superposi-
tion of original eigenstates:

|ψ(t)〉 =
∑
n

dn(t)e−iE
0
nt/~|n0〉

If the system is initially in the eigenstate
|i0〉 at t = 0, the first order approxi-
mation for the coefficients is (18.2.9, Pg
475):

df (t) = δfi −
i

~

∫ t

0

〈f0|H1(t′)|i0〉eiωfit
′
dt′

where ωfi =
E0

f−E
0
i

~ . The transition
probability is hence:

Pi→f = |df (t)|2

The condition for this approximation to
hold is:

|df (t)| << 1, f 6= i

Adiabatic theorem (Pg 478-479)
Let a Hamiltonian change slowly from
H(0) to H(τ) in time τ . If a sys-
tem starts out in an eigenstate |n(0)〉
of H(0), if the rate of change is slow
enough, it will end up in the correspond-
ing eigenket |n(τ)〉 of H(τ).
Fermi’s golden rule (18.2.42, Pg
483) Let a system be subject to a peri-
odic perturbation H1(t) = H1e−iωt for
a long time −T/2 ≤ t ≤ T/2. The aver-
age transition rate between eigenstates
|i0〉 and |f0〉 is:

Ri→f =
2π

~
|〈f0|H1|i0〉|2δ(E0

f − E0
i − ~ω)

where the rate is defined as:

Ri→f =
Pi→f
T

Unitary Propagator (Pg 484-485)
Given the Schrodinger equation:

i~
d

dt
|ψ(t)〉 = H|ψ(t)〉

we define the propagator:

|ψ(t)〉 = U(t, t0)|ψ(t0)〉

which must satisfy (18.3.5, Pg 485):

i~
dU

dt
= H(t)U

Interaction Picture (Pg 485-490)
Consider the perturbed Hamiltonian
Hs(t) = H0

s + H1
s (t) in the Schrodinger

picture (particle described by state vec-
tor). The unperturbed unitary propaga-
tor satisfies:

i~
dU0

s

dt
= H0

sU
0
s

Define the state vector in the interaction
picture (also applies to eigenstates):

|ψI(t)〉 = [U0
s (t, t0)]†|ψs(t)〉

and the transformed Hamiltonian per-
turbation:

H1
I (t) = (U0

s )†H1
s (t)U0

s

The time evolution of the state in the
interaction picture is hence (18.3.10, Pg
486):

i~
d

dt
|ψI(t)〉 = H1

I (t)|ψI(t)〉

The propagator in the interaction pic-
ture can be calculated to first order
(18.3.21, Pg 488):

UI(t, t0) = I − i

~

∫ t

t0

H1
I (t′)dt′

and the Schrodinger picture propagator
can hence be obtained with (18.3.18, Pg
487):

Us(t, t0) = U (
st, t0)UI(t, t0)

Heisenberg picture (Pg 490-491)
The Heisenberg state vector does not
change in time:

|ψH(t)〉 = U†s (t, t0)|ψs(t)〉 = |ψs(t0)〉

Note that the full propagator is used,
not just the unperturbed propagator.
Operators in the Heisenberg picture are
hence transformed as (18.3.29, Pg 490):

ΩH(t) = U†sΩsUs

and have time derivatives (18.3.30, Pg
490):

i~
dΩH
dt

= [ΩH , HH ]
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Electromagnetic gauge transfor-
mations (18.4.12-13, Pg 493)

A′ = A−∇Λ

φ′ = φ+
1

c

∂Λ

∂t

Coulomb Gauge (18.4.14-15, Pg
494)

∇ ·A = 0

φ = 0

|A| → 0, at infinity

which gives solutions (18.4.17, Pg 494):

A = A0 cos(k · r − ωt)

and dispersion relation (18.4.18):

ω = kc

and electromagnetic field (18.4.20-21,
Pg 495):

E = −ω
c
A0 sin(k · r − ωt)

B = −(k ×A0) sin(k · r − ωt)

The Poynting vector is defined
(18.4.23a, Pg 495):

S =
c

4π
E ×B

with time average (18.4.23b, Pg 496):

Sav =
ω2

8πc
|A0|2

The field energy density is (18.4.24, Pg
496):

u =
1

8π
(|E|2 + |B|2)

Effect of gauge transformations in
Q The action changes by (18.4.29, Pg
496):

SΛ = S +
q

c
[Λ(r′, t′)− Λ(r, t)]

which by the path integral approach,
changes the propagator by (18.4.30, Pg
497):

UΛ = U exp

{
iq

~c
[Λ(r′, t′)− Λ(r, t)]

}
which just changes the coordinate basis
(18.4.32, Pg 497):

|rΛ〉 = eiqΛ/~c|r〉

Electric dipole approximation
(18.5.12, Pg 502)

eik·r ≈ 1

Asymptotic scattering eigenfunc-
tion (19.2.10, Pg 527)

ψsc −−−→
r→∞

eikr

kr

∑
l,m

(−i)lBlY ml (θ, φ)

ψk −−−→
r→∞

eikz + ψsc

Call the coefficient of e
ikr

r the scattering
amplitude f(θ, φ). Then the scattering
cross section is (19.2.18, Pg 529):

dσ

dΩ
= |f(θ, φ)|2

so that the probability flow rate as a
function of solid angle is (19.2.17, Pg
529):

R(dΩ) = |f |2 ~k
µ
dΩ

Probability flux of plane wave
(19.3.3, Pg 530) Consider a plane
wave |pi〉 → (2π~)−3/2eipi·r/~. Then
the probability flux is:

j =
~k
µ

1

(2π~)3/2

Time-dependent Born approxima-
tion Define the S matrix (Pg 529):

S = lim
tf→∞,ti→−∞

U(tf , ti)

so that the transition rate (to first order,
using Fermi’s golden rule) is (19.3.2, Pg
530):

Ri→dΩ =
2π

~
|〈pf |V |pi〉|2µpidΩ

where pi is the incoming momentum of
a plane wave and pf is the momentum
so that the particle enters a detector lo-
cated at (θ, φ) with opening angle dΩ.
The scattering cross section is (19.3.4,
Pg 530):

dσ

dΩ
=

∣∣∣∣ µ

2π~2

∫
e−iq·r

′
V (r′)d3r′

∣∣∣∣2
where ~q = pf − pi represents the mo-
mentum transferred to the particle, and
which has magnitude (19.3.6, Pg 530):

|q|2 = 4k2 sin2 θ

2

where k is the magnitude of the
wavenumber of the incoming or outgoing
wave (should be the same since the en-
ergy must be the same at infinity). The
Born approximation gives the scattering
amplitude (19.3.7, Pg 530):

f(θ, φ) = − µ

2π~2

∫
e−iq·r

′
V (r′)d3r′

If the potential is spherically symmetric,
we can choose z′ to be parallel to q so
that (19.3.8, Pg 531):

f(θ) = −2µ

~2

∫
sin qr′

q
V (r′)r′dr′

where the θ dependence is contained in
q.
Time-independent Born Approxi-
mation Let G0 be the Green’s function
for the Schrodinger equation (19.4.1, Pg
534):

(∇2 + k2)ψk =
2µ

~
V ψk

so that (19.4.3, Pg 534):

(∇2 + k2)G0(r, r′) = δ3(r − r′)

and the formal solution to the wavefunc-
tion will be (19.4.4, Pg 535):

ψk(r) = ψ0(r)

+
2µ

~

∫
G0(r, r′)V (r′)ψk(r′)d3r′

where the homogeneous solution satis-
fies (19.4.5, Pg 535):

(∇2 + k2)ψ0 = 0

and can be written (19.4.6, Pg 535):

ψ0 = eik·r

The Green’s function can be found
(19.4.16, Pg 538):

G0(r, r′) = − eik|r−r
′|

4π|r − r′|

Validity of Born approximation
(19.4.44, Pg 544) when:

2µ

~2k

∣∣∣∣∫ eikr
′
sin kr′V (r′)dr′

∣∣∣∣ << 1

Plane wave expansion (19.5.3, Pg
545)

eikr cos θ =

∞∑
l=0

il(2l + 1)jl(kr)Pl(cos θ)
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Asymptotic behavior of spheri-
cal Bessel and Neumann functions
(19.2.9, Pg 527)

jl(kr)→
sin(kr − lπ/2)

kr

ηl(kr)→ −
cos(kr − lπ/2)

kr

in the limit r →∞.
Partial wave expansion First note
the relationship between Legendre poly-
nomials of trigonometric functions and
spherical harmonics (19.5.1, Pg 545):

Pl(cos θ) =

√
4π

2l + 1
Y 0
l

then expand the scattering amplitude in
Legendre polynomials (19.5.2, Pg 545):

f(θ, k) =

∞∑
l=0

(2l + 1)al(k)Pl(cos θ)

where al is the lth partial wave ampli-
tude, which is a measure of the scat-
tering for components with angular mo-
mentum l. Now require that the radial
wavefunctions in the presence of a po-
tential reduce to the free-particle wave-
function at r → ∞, up to a phase δl(k)
(19.5.9, Pg 546):

Rl(r)→
Al sin[kr − lπ/2 + δl(k)]

r

The expansion coefficients are (19.5.14,
Pg 547):

al(k) =
e2iδl(k) − 1

2ik

which hence reduces the scattering prob-
lem to finding the phase shifts. Repul-
sive potentials give negative phase shifts
and attractive potentials give negative
phase shifts (Pg 550). Define the par-
tial wave S matrix element for angular
momentum l (19.5.15, Pg 546):

Sl(k) = e2iδl(k)

which gives the ratio of the outgoing
wave amplitude to the incoming wave
amplitude (up to a complex factor of
unit norm) Sl(k) = A/B for the ra-
dial function of the asymptotic form as
r →∞ (19.5.37, Pg 552):

Rkl →
Aeikr

r
+
Be−ikr

r

The total cross section can be written as
a sum of the individual cross sections at
each l (19.5.19, Pg 548):

σl =
4π

k2
(2l + 1) sin2 δl

σ =

∞∑
l=0

σl

which turns out to be (19.5.21, Pg 548):

σ =
4π

k
=[f(0)]

which is called the Optical theorem.
Scattering resonances Let δl(k) rise
rapidly near k0 (or equivalently near E0

(19.5.30, Pg 550):

δl = δb + tan−1

(
Γ/2

E0 − E

)
where δb is a slowly-varying background
phase. Then the cross section for each
angular momentum l can be written in
Breit-Wigner form around E ≈ E0

(19.5.31, Pg 551):

σl =
4π

k2
(2l + 1)

(Γ/2)2

(E0 − E)2 + (Γ/2)2

so that the half-width is Γ/2. Γ depends
on k with (19.5.32, Pg 551):

Γ/2 = (kr0)2l+1γ

where r0 is the characteristic range of
the potential and γ is a constant with
energy dimensions.
Two-particle scattering The rate of
scattering events per volume of interac-
tion for two beams of density ρ1, ρ2 mov-
ing with velocities v1, v2 is (19.6.2, Pg
556):

σρ1ρ2(v1 + v2) = σρ1ρ2vrel

Hence the differential cross section is de-
fined based on the number of particles
scattered into dΩ per volume of interac-
tion (19.6.3, Pg 556):

dσ

dΩ
dΩρ1ρ2vrel

The relationship between lab (L) and
CM (unprimed) differential cross sec-
tions is (19.6.5, Pg 556):

dσ

dΩL
=
dσ

dΩ

dΩ

dΩL

Write the asymptotic solution in terms
of a CM part and a relative part (19.6.9,
Pg 557):

ψ −−−→
r→∞

ψCM (zCM )

[
eikz + f(θ, φ)

eikr

r

]
where zCM = (z1 + z2)/2, ψCM =
ei(k1+k2)zCM and k = (k1 − k2)/2. The
scattering cross section is hence (19.6.13,
Pg 558):

dσ

dΩ
= |f |2

Scattering angle relationship be-
tween lab and CM frames (19.6.17,
Pg 559) where θ is the angle between
the initial direction of the beam and the
final direction.

θL =
θ

2

Note: non-relativistic.

Scattering amplitude, identical
particles (19.6.19, Pg 560) after
symmetrizing the scattering wavefunc-
tion, the symmetric scattering ampli-
tude is:

fsym(θ, φ) = f(θ, φ) + f(π − θ, φ+ π)

To find the total scattering cross section,
integrate over 2π radians only.
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