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Where unstated, the reference book is Analytical Mechanics (Hand and Finch). GS≡Goldstein, Classical Mechanics.

Definition of potential

V (~r) = −
∫ ~r

O

~F · d~s

~F = −∇V

Fictitious forces

~aCor = −2~Ω× ~v

~aCen = −~Ω× (~Ω× ~r)

Angular velocity

~ω =
~r × ~v
|r|2

And by 7.10, Pg 256,

~v = ~ω × ~r

Method of virtual work

• Identify constraints and define
compatible displacements orthog-
onal to them.

• Write virtual displacements in
Cartesian coordinates.

• Identify the external forces (not
constraint forces) acting on each
component to form the virtual
work.

• Declare that the sum of all the vir-
tual work (for all components of
the system) is equal to the vir-
tual work done by external non-
constraint forces.

• Set δW =
∑
ṗ · δ~r, equate the co-

efficients of each virtual displace-
ment (independent coordinates)
and solve for the equations of mo-
tion for the coordinates.

d’Alembert’s Principle (1.18-19,
p5)

δW − ~̇p · δ~r = 0

=⇒ δW =
d

dt
(~p · δ~r)− ~p · δ~̇r

Energy identity (1.24, p6)

~p · δ~r =
∑
i

∂T

∂ẋi
δxi

where xi is the ith independent coordi-
nate.

Types of constraints (1.39-1.40,
p11) For constraints that do not depend
on the generalized velocities (i sums over
all particles, N is the number of degrees
of freedom):

Scleronomic: ~ri(q1, . . . , qN )

Rheonomic: ~ri(q1, . . . , qN , t)

Holonomic = Scleronomic ∪ Rheonomic

Types of constraints (Lecture
4, Cross notes) Holonomic constraints
have N generalized coordinates such
that the coordinates uniquely define the
system allowed by the constraints and
the N coordinates can be varied inde-
pendently. The number of degrees of
freedom is equal to the number of gen-
eralized coordinates.

Scleronomic (time independent) con-
straints and Rheonomic (time depen-
dent) constraints are subsets of holo-
nomic constraints.

Independence of coordinates
(MIT OCW) With all coordinates
fixed but one, the last coordinate still
has full range of motion.

Holonomic Constraint Identity
(1.44, p14) aka “cancelling the dots”.
Let ~ri be the position of the ith parti-
cle and qk be the kth generalized coor-
dinate. Then:

∂~̇ri
∂q̇k

=
∂~ri
∂qk

Generalized force (1.49, p15)
The generalized force associated with
the kth degree of freedom is:

Fk =
∑
i

~Fnci ·
∂~ri
∂qk

=
δW

δqk

where nc refers to the non-constraint
forces only. ~r refers to the point of ap-
plication of the force. Then the virtual
work can be written as a sum over gener-
alized coordinates and not objects (1.48,
p15):

δW =
∑
k

Fkδqk

Also, the generalized force can be ob-
tained from the potential for a conserva-
tive system where V does not depend on

the generalized velocities as (1.58, p18):

Fk = − ∂V
∂qk

Rayleigh’s dissipation function
(GS 1.67, Pg 23) is a generalized force
for friction:

F =
1

2

M∑
i=1

(kxv
2
ix + kyv

2
iy + kzv

2
iz)

but the derivative is taken with respect
to velocity:

~Ffric = −∇vF

Qj = −∂F
∂q̇j

Changing Frames It is alright to
write the Lagrangian in a non-inertial
frame, but be sure to define the ki-
netic and potential energies in an inertial
frame first.

Derivatives of T (1.51-52, pg16-
17)

∂T

∂qk
=
∑
i

~pi ·
∂~̇ri
∂qk

∂T

∂q̇k
=
∑
i

~pi ·
∂~ri
∂qk

Generalized Equations of mo-
tion for holonomic system (1.54,
p17)

Fk =
d

dt

(
dT

dq̇k

)
− dT

dqk

k = 1, 2, . . . , N

for the N degrees of freedom.
Euler-Lagrange Equations

(1.60, p19)

d

dt

(
∂L

∂q̇k

)
− ∂L

∂qk
= 0

L = T − V
k = 1, 2, . . . , N

for N degrees of freedom
Electromagnetic Lagrangian

(GS 1.63, Pg 22) In SI units:

L =
1

2
mv2 − qφ+ q ~A · ~v

Constant magnetic field vector potential
(5.78, Pg 193):

~A =
B

2
(−yî+ xĵ) =

1

2
~B × ~r
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For CGS units (5.74, Pg 192):

L =
1

2
mv2 − qΦ +

q

c
~v · ~A

Hamiltonian (1.65, p21)

H ≡
∑
k

q̇k
∂L

∂q̇k
− L

and the time derivative is (1.68, p21)

dH

dt
= −∂L

∂t

A coordinate that is cyclic in the La-
grangian will also be absent from the
Hamiltonian (GS Pg 344).

Constructing the Hamiltonian
The Hamiltonian only contains the co-
ordinate q and conjugate momentum p.
Hence we need to eliminate q̇ or v by
expressing it in terms of q and p.

Canonically conjugate momen-
tum (1.70, p22)

p =
∂L

∂q̇

Hamilton’s canonical equations
(Shankar, 2.5.12, Pg 88)

∂H
∂pi

= q̇i

∂H
∂qi

= −ṗi

Eliminating cyclic/ignorable co-
ordinates If the Lagrangian only de-
pends on the time derivative but
not the coordinate, that coordinate is
cyclic/ignorable. Define the Routhian,
which behaves like the Lagrangian (1.71,
p23):

R = L− pq̇

with N − 1 degrees of freedom. For
more than one cyclic coordinate, just
sum their contributions (GS 8.48, Pg
348):

R =

n∑
i=s+1

piq̇i − L

where the cyclic coordinates are
qs+1, . . . , qn. Then it obeys:

δR

δqi
= 0, i = 1, . . . , s

∂R

∂qi
= 0,

∂R

∂pi
= q̇i, i = s+ 1, . . . , n

Euler’s Equation (2.2, p46)

∂F

∂y
=

d

dx

(
∂F

∂ dydx

)

for a function that minimizes the func-
tional integral:

I[y] =

∫ x1

x0

F

(
y,
dy

dx
, x

)
dx

Action (2.16, p51)

S[q] =

∫
L(q(t), q̇(t), t)dt

Hamilton’s principle: The physical path
minimizes the action.

Variational Derivative (2.24,
p53)

δL

δq
≡ ∂L

∂q
− d

dt

(
∂L

∂q̇

)

For N degrees of freedom (2.25, p54):

δS =

∫ ( N∑
k=1

δL

δqk
δqk

)
dt

and if the degrees of freedom are inde-
pendent and there are the same number
of generalized coordinates as degrees of
freedom, each variational derivative van-
ishes.

Using Lagrange Multipliers De-
fine the generalized constraint force
(2.39, p60):

Nk ≡
M∑
i=1

~Ni ·
∂~ri
∂qk

where ~Ni is the constraint force on the
ith part of the system. These constraint
forces can also be obtained from the
variation derivative of the Lagrangian
(2.41, Pg 60):

δL

δqk
= −Nk

Intermediate calculations on

Page 60

δT

δqk
= −

∑
i

(
−∇iV + ~Ni

)
· ∂~ri
∂qk

=
∑
i

∇iV ·
∂~ri
∂qk
−
∑
i

~Ni ·
∂~ri
∂qk

=⇒ δT

δqk
=
∂V

∂qk
−Nk

=⇒ δT

δqk
− ∂V

∂qk
= −Nk

=⇒ δT

δqk
− ∂V

∂qk
+
d

dt

(
∂V

∂q̇k

)
= −Nk

because
∂V

∂q̇k
= 0

=⇒ δ(T − V )

δqk
=

δL

δqk
= −Nk

Method of Lagrange Multipliers
(GS 2.22 Pg 46) Given C constraint
equations Gα = 0, α = 1, . . . , C, where
the constraints are on positions and not
velocities:

δL

δqk
+

C∑
α=1

λα
∂Gα
∂qk

= 0

For non-holonomic constraints on the
differential motion of the form (Lecture
7, Yanbei): ∑

k

fjkδqk = 0

the extremization condition gives:

δL

δqk
+
∑
j

λjfjk = 0, ∀k

Lagrangian near equilibrium
points (3.13-14, Pg 85)

L =
1

2
(q̇2 − q2), stable

L =
1

2
(q̇2 + q2), unstable

Damped Simple Harmonic Os-
cillator + Quality Factor (3.29, Pg
90)

q̈ +
q̇

Q
+ q = 0

with roots (3.31, Pg 91):

α =
i

2Q
±
√

1− 1

4Q2

Damping Cases Underdamped
(Q > 1/2) (3.32, Pg 91):
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q(t) ∝ e−t/2Qe±iωt, ω =

√
1− 1

4Q2

Overdamped Q < 1/2 (3.34, Pg 92):

q(t) = Aeλ+t +Beλ−y

λ± = − 1

2Q
±
√

1

4Q2
− 1

Critically damped Q = 1/2 (Pg 92):

q(t) = Aeλt +Bteλt,

λ = − 1

2Q

Quality Factor and energy loss
(3.39, Pg 94)

dE

dt
= −E

Q

Finding the Green’s Function
(Pg 103) Set the homogeneous part of
the ODE to δ(t − t′). Set G = Ġ = 0
for t < t′. Require that G is continu-
ous about t = t′ and integrate the ODE
to obtain the discontinuity in Ġ about
that point. Use linearly independent
homogeneous solutions to construct the
unique Green’s function.

Using the Green’s Function for
arbitrary forces (3.70, Pg 104) A
particular solution can be written as a
convolution with the Green’s function:

qp(t) =

∫ t

−∞
F (t′)G(t− t′)dt′

where we take the upper limit of the in-
tegral to be t′ = t because G(t− t′) = 0
for t′ > t in causal systems.

General solution for driving
simple harmonic oscillator 1. Re-
move the external driving force. Use the
initial conditions to write down the tran-
sient decay. 2. Solve for the Green’s
function using zero initial velocity and
zero initial position. 3. Convolve the
Green’s function with the external force
to construct the particular solution. 4.
Add the transient decay and the partic-
ular solution to obtain the full solution.

Lorentzian for resonance,
scaled-time system (3.83-84, Pg
109).

E ∼ 1

(1− ω)2 + 1
4Q2

∆ω

ω0
=

1

Q

and the relative phase is (3.89, Pg 111):

tanφ(ω) = −
ω
Q

1− ω2

so that the steady-state response is
(3.86, Pg 111):

q(t) = A(ω) cos(ωt+ φ(ω))

Lagrangian of forced harmonic
oscillator (Problem 3.16d, Pg 120)

L =
q̇2 − q2

2
+ qF (t)

Formal solution to 1D problem
(4.4, Pg 125) Consider the Hamilto-

nian H = T + V = q̇2

2 + V (q). The
implicit solution is

t =

∫ q

0

dq′√
2(E − V (q′))

Central force Lagrangian (4.34-
35, Pg 138)

L =
µ

2

(
ṙ2 + r2θ̇2 + r2φ̇2 sin2 θ

)
− V (r)

pφ = µr2φ̇ sin2 θ = lz

Central force Energy (4.40, Pg
140)

E =
1

2
µ(ṙ)2 +

l2

2µr2
+ V (r)

Central Force Equations (4.41,
Pg 141)

µr̈ =
l2

µr3
− dV

dr

which can be parametrized by u = 1/r
to get (4.48-49, Pg 143):

E =
l2

2µ

[(
du

dφ

)2

+ u2

]
− ku

d2u

dφ2
+ u =

µk

l2

where we used the change of indepen-
dent variable (4.46, Pg 142):

d

dt
→ L

µ
u2 d

dφ

More generally for any central force, the
DE is (GS 3.34, Pg 87):

d2u

dφ2
+ u = − µ

l2
d

du
V

(
1

u

)
Hence if you have u(φ), you can deter-
mine the form of the central force. The

orbit can be solved for the Kepler case
to give (4.51, Pg 143):

r =
p

1 + ε cosφ

p =
l2

µk
, ε = pA

Observe that for φ = π
2 , r = p is the

semi-latus rectum. The energy of the
orbit is (4.54, Pg 144):

E =
k

2p
(ε2 − 1)

In terms of the semimajor axis a, E =
− k

2a , a = p
1−ε2 by equation 4.55, Pg 144.

This is used to determine the eccentric-
ity.

Ellipse parameters (Page 146)

a =
p

1− ε2

b =
p√

1− ε2

c =
εp

1− ε2
= aε

rmin =
p

1 + ε

rmax =
p

1− ε

Ellipse parameters (GS Pg 94-
95)

ε =

√
1 +

2El2

mk2
, 3.57

a =
−k
2E

, 3.61

Equation of ellipse (4.57, Pg
145)

(x− xc)2

a2
+
y2

b2
= 1

xc = − εp

1− ε2

is an ellipse centered at (xc, 0) with
the origin at one focus, and a, b are the
semi-major and semi-minor axes.

Kepler’s Third Law (4.61, Pg
147)

τ = 2π

√
µ

k
a3/2

Eccentric and true anomalies
(Pg 148) Eccentric anomaly E is mea-
sured from the origin when the vertical
component of the ellipse is projected
onto a circle with the semi-major axis
as the radius (circumscribing the el-
lipse). The azimuthal angle φ is the
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true anomaly, measured from the focus.

The orbit can be written in terms of
the eccentric anomaly (4.65-66, Pg 149):

r = a(1− ε cos E)

x = a(cos E − ε)

y = a
√

1− ε2 sin E

Kepler’s Equation (4.70, Pg
149)

T (E) =

√
µa3

k
(E − ε sin E)

Laplace-Runge-Lenz Vector
(GS 3.82, Pg 103) For Kepler problem
only.

~A = ~p× ~L−mk~r
r

with magnitude (GS 3.86-87, Pg 104-
105):

A = mkε

A2 = m2k2 + 2mEl2

The LRL vector is conserved in time:
d ~A
dt = 0.

Scattering (GS Pg 106+)

dΩ = sin θdθdφ

σ(Ω)dΩ =
intensity scattered into dΩ

incident intensity

σ(θ) =
s

sin θ

∣∣∣∣dsdθ
∣∣∣∣ , 3.93

where θ is the angle the asymptote
makes with the incoming direction.

Equation of hyperbola (4.73, Pg
150)

(x− xc)2

a2
− y2

b2
= 1

where xc = εp
ε2−1 , note no negative sign.

Hyperbolic Orbits (4.79-81, Pg
153) For the attractive force,

T (E) =

√
µa3

k
(ε sinh E − E)

r = a(ε cosh E − 1)

x = a(ε− cosh E)

y = a
√
ε2 − 1 sinh E

with a = p
ε2−1 , p = l2

µ|k| (Pg 151). The

energy is given by E = |k|
2a > 0 (Pg 151).

For the repulsive force (4.82-84, Pg 153):

T (E) =

√
µa3

k
(ε sinh E + E)

r = a(ε cosh E + 1)

x = a(ε+ cosh E)

y = a
√
ε2 − 1 sinh E

Scattering Distance of closest ap-
proach (4.77, Pg 152):

rmin =
p

ε− 1
= a(ε+ 1)

Scattering angle relation (4.78, Pg 152):

sin
θ

2
=

1

ε

Virial theorem (GS 3.29, Pg 86)

T̄ =
n+ 1

2
V̄

for power-law potentials V = arn+1. For
n = −2, T̄ = − 1

2 V̄ .
Noether’s Theorem (5.14, Pg

174) Let a continuous general transfor-
mation of coordinates Q(s, t) with N de-
grees of freedom be defined by s1, s2, . . ..
If the Lagrangian is invariant under this
symmetry transformation, then the fol-
lowing parameters are constants:

Ii =

N∑
k=1

pk
dQk
dsi

∣∣∣∣∣
s1=s2=...=0

Theory of small oscillations (GS
Pg 238+)

L =

N∑
i,j=1

Tij q̇iq̇j − Vijqiqj
2

, 6.7

where the subscripts denote partial
derivatives. The EoM is:

N∑
j=1

Tij q̈j + Vijqj = 0, 6.8

A normal mode in matrix form is (6.14,
Pg 242):

V a = λTa

=⇒ det |V − λT | = 0

where V = Vij ,T = Tij . We can define
the inner product for distinct eigenfre-
quencies without degeneracy:

〈al,ak〉 = aTl Tak = δlk

where we required that the normal mode
amplitudes be normalized aTTa = 1.

LetA be the matrix of normalized mode
amplitudes. Then (6.23, 6.26, Pg 244):

ATTA = I, ATV A = λ

where λ is a diagonal matrix of eigen-
frequencies (squared). Hence V is di-
agonalized through a congruence trans-
formation. The eigenfrequencies can be
obtained using (6.26’):

det |V − λI| = 0

The normal coordinates of the motion ζ
are obtained using (6.41’, Pg 251):

q = Aζ

The Lagrangian in normal coordinates is
(implicit summing, 6.45, Pg 252):

L =
1

2
(ζ̇k ζ̇k − ω2

kζ
2
k)

with EoMs (6.46, Pg 252):

ζ̈k + ω2
kζk = 0

Legendre Transform (Pg 176)
Consider a passive variable x and an ac-
tive variable y. Let A(x, y) be a function
of these two variables. Define z(x, y) =
∂A
∂y . Define B(x, y, z) = yz − A(x, y).
Then:

∂B

∂z
= y

∂B

∂x
= −∂A

∂x

Hamiltonian for special La-
grangian (GS Pg 339-340) Suppose
the Lagrangian can be written as:

L = L0(q, t) + q̇iai(q, t) + q̇2
i Ti(q, t)

=⇒ L = L0(q, t) + q̇Ta+
1

2
q̇TT q̇

=⇒ p = T q̇ + a

H =
1

2
(pT − aT )T−1(p− a)− L0(q, t)

Small oscillations, Yanbei nota-
tion, Lecture 13

L =
1

2
q̇T tq − 1

2
qTvq

=⇒ p =
∂L

∂q̇
= tq̇

H = q̇Tp− L =
1

2
pT t−1p+

1

2
qTvq

and the canonical equations are:

q̇ = t−1p

ṗ = −vq

Conditions to write H = T+V
(GS, Pg 339) 1. Lagrangian is the sum
of functions homogeneous in the gener-
alized velocities of degrees 0, 1, or 2,
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2. Equations defining generalized coor-
dinates do not depend on time explicitly,
3. Forces are derivable from a conserva-
tive potential.

Hamilton’s Equations of motion
(5.32, Pg 181)

q̇k =
∂H

∂pk

ṗk = −∂H
∂qk

dH

dt
= −∂L

∂t

Hamilton’s Equations in sym-
plectic notation (GS Pg 342-343)

~η ≡



q1

q2

...
qN
p1

...
pN



∂H

∂~η
≡



∂H
∂q1
...
∂H
∂qN
∂H
∂p1
...
∂H
∂pN


J ≡

[
0n In
−In 0n

]
=⇒ ~̇η = J

∂H

∂~η

J is orthogonal (GS 8.38, Pg 343):

JJT = JTJ = I

Liouville’s Theorem (Pg 186)
The area of a patch of phase space is
preserved as time progresses.

Continuity equation for phase
space density (5.57, Pg 188)

∂ρ

∂t
+
∂(ρq̇)

∂q
+
∂(ρṗ)

∂p
= 0

This can be simplified as (5.61, Pg 189):

dρ

dt
+ ρ

[
∂q̇

∂q
+
∂ṗ

∂p

]
= 0

For systems that obey Hamilton’s equa-
tions, the term in the square brackets
vanishes. Liouville’s Theorem can hence
be stated as (5.60, Pg 189):

dρ

dt
= 0

Momentum space Lagrangian
(5.63, Pg 190)

K(p, ṗ, t) = L(q, q̇, t)− pq̇ − qṗ

which is dynamically equivalent to the
Lagrangian since the last two terms are
a total time derivative.

Hamiltonian in rotating refer-
ence frame (5.71, Pg 191)

Hω 6=0 = Hω=0 − ωlz

Larmor Frequency (5.80, Pg
193)

ωL = − eB

2mc

Hamiltonian in linearly acceler-
ated frame (5.86, Pg 194)

H =
p2

2m
+ V (x, y, z)− ~̇R0 · ~p

where ~R0 represents the motion of the
frame.

Types of transformations Point
transformation (6.1, Pg 208):

Q = Q(q(t), t)

Contact transformations (6.3, Pg 208):

Q = Q(q, p, t), P = P (q, p, t)

Canonical transformation: contact
transformations such that the structure
of Hamilton’s equations for all dynami-
cal systems is preserved. That is, there
exists a function K(Q,P, t), the trans-
formed Hamiltonian, that satisfies (9.5,
Pg 370 Goldstein):

Q̇i =
∂K

∂Pi
, Ṗi = − ∂K

∂Qi

The simultaneously validity of
Hamilton’s principle of stationary ac-
tion for the sets {p, q,H} and {P,Q,K}
imply that the Lagrangian in both cases
differs by a total time derivative and
some scale factor (which is usually set
to unity) (6.4, Pg 209 and GS 9.8, Pg
370):

L̄(Q, Q̇, t) = L(q, q̇, t)− dF (q,Q, t)

dt

where F is called a generating function.
F cannot contain q̇ or Q̇ but can depend
on (q, p, t) or (Q,P, t) or any mixture of
these coordinates since these have zero

variation at the endpoints. A necessary
and sufficient condition for F1 is:

∂2F1

∂q∂Q
6= 0

To make sure that L̄ does not depend on
Q̇ and q̇, we want (6.9, Pg 210):

P = −∂F1

∂Q

p =
∂F1

∂q

where P ≡ ∂L̄
∂Q̇

. These are actually 2N

equations that determine F1.
Canonical transformed Hamil-

tonian of the first type (6.12, Pg
211)

H̄(Q,P, t) = H(q(Q,P ), p(Q,P ), t)

+
∂F1(q(Q,P ), Q, t)

∂t

4 types of canonical transforma-
tions (6.21,24,26, Pg 214-215)

F3(p,Q, t) = F1(q,Q, t)− qp
F4(p, P, t) = F3(p,Q, t) + PQ

F2(q, P, t) = F1(q,Q, t) +QP

and one more relation (GS Table 9.1, Pg
373):

F4(p, P, t) = F1(q,Q, t) +QP − qp

Canonical transformation
derivatives (6.22,23,25,27, Pg 214-
215)

∂F3

∂p
= −q ∂F3

∂Q
= −P

∂F4

∂p
= −q ∂F4

∂P
= Q

∂F2

∂q
= p

∂F2

∂P
= Q

Deriving Canonical Transfor-
mation equations (GS Pg 371-373)
Start with GS Eq 9.11 with implicit
summation:

pq q̇i −H = PiQ̇i −K +
dF

dt

Then F takes the following forms:

F = F1(q,Q, t)

F = F2(q, P, t)−QiPi
F = F3(p,Q, t) + qipi

F = F4(p, P, t) + qipi −QiPi

Expand the total derivative and com-
pare coefficients of the time-derivative
terms to obtain the generating function
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derivatives. The final expression should
be (9.14c, Pg 372):

K = H +
∂Fn
∂t

Special canonical transforma-
tions Identity (6.28, Pg 215):

F2 = qP =⇒ Q = q, P = p

Exchanged roles (6.29, Pg 215):

F1 = qQ =⇒ Q = p, P = −q

Infinitesimal (6.35, Pg 216):

F2 = qP + εG(q, P )

=⇒

{
Q = q + dt∂G∂P
P = p− dt∂G∂q

Direct conditions for canonicity
(GS 9.48ab, Pg 381-382)(

∂Qi
∂qj

)
q,p

=

(
∂pj
∂Pi

)
Q,P(

∂Qi
∂pj

)
q,p

= −
(
∂qj
∂Pi

)
Q,P(

∂Pi
∂qj

)
q,p

= −
(
∂pj
∂Qi

)
Q,P(

∂Pi
∂pj

)
q,p

=

(
∂qj
∂Qi

)
Q,P

where the subscripts also indicate what
the functions should be expressed in
terms of.

Poisson Brackets (6.36, Pg 217)

[F,G]q,p =

N∑
k=1

(
∂F

∂qk

∂G

∂pk
− ∂F

∂pk

∂G

∂qk

)
the Poisson bracket is invariant un-
der canonical transformations (6.38, Pg
217):

[F̄ , Ḡ]Q,P = [F,G]q,p

The position momentum Poisson
bracket is (6.39, Pg 217):

[Q,P ]Q,P = 1

and this is a necessary and sufficient
condition for a transformation to be
canonical. For a multi-dimensional sys-
tem, remember to check that the Poisson
bracket is unity for each set of conjugate
coordinates and momenta.

Poisson Brackets on coordinates
(GS 9.69ab, Pg 388)

[qj , qk]q,p = [pj , pk]q,p = 0

[qj , pk]q,p = δjk

Poisson Bracket Identities (GS
Pg 390)

[u, u] = 0, 9.75a

[u, v] = −[v, u], 9.75b

[au+ bv, w] = a[u,w] + b[v, w], 9.75c

[uv,w] = [u,w]v + u[v, w], 9.75d

[u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0

and deduced from GS 9.126, Pg 410,

[~F · ~G, u] = ~F · [~G, u] + ~G · [~F , u]

Poisson Bracket as a time
derivative (GS 9.94, Pg 396 and HF
6.130, Pg 244)

du

dt
= [u,H] +

∂u

∂t

Matrix form of Poisson Bracket
(GS 9.68, Pg 388)

[u, v]η =

(
∂u

∂η

)T
J
∂v

∂η

Poisson bracket with symplectic
vector (GS 9.99, Pg 398)

[η, u] = J
∂u

∂η

Levi-Civita Symbol and Cross
Products with Einstein summation:

a× b = εijkeiajbk

=⇒ (a× b)i = εijkajbk

The product of two Levi-Civita symbols
is (implicit summing over i):

εijkεimn = δjmδkn − δjnδkm

Infinitesimal Canonical trans-
formation (GS Pg 385-386) The gen-
erating function for an ICT is (GS 9.62,
Pg 385):

F2 = qiPi + εG(q, P, t)

which allows us to relate the old and new
coordinates (GS 9.63ab, Pg 386):

δpj ≡ Pj − pj = −ε ∂G
∂qj

δqj ≡ Qj − qj = ε
∂G

∂pj

and the transformation equations can be
written in matrix form:

δη = εJ
∂G

∂η

so that the transformed canonical vari-
ables differ only infinitesimally from the
initial coordinates (9.98, Pg 398):

ζ = η + δη

Using Poisson brackets, the infinitesimal
displacement is (GS 9.100, Pg 399):

δη = ε[η, G]

Hamilton-Jacobi Equation
(6.42, Pg 219)

H

(
qk,

∂S

∂qk
, t

)
+
∂S

∂t
= 0

where k runs from 1 to N. The solution
S = F2(qk, Pk, t) is called Hamilton’s
Principal Function.

Notation: Define Pk ≡ αk, which are
constants obtained by solving the H-J
equation. If separation of variables is
used, αk are the separation constants.
Define Qk ≡ βk = ∂S

∂Pk
. The constants

are obtained by solving the 2N implicit
equations (6.44, Pg 220):

pk(0) =
∂S

∂qk

∣∣∣∣
t=0

βk =
∂S

∂αk

∣∣∣∣
t=0

Hamilton’s Characteristic Func-
tion (6.57, Pg 222) is the solution
W (qk, αk) to the second form of the
Hamilton-Jacobi equation:

H

(
qk,

∂W

∂qk

)
= E

where E is a constant.

Matrix elements (9.24, 9.28, Pg
350-351)

vij =
1

2

∂2V

∂φiφj

∣∣∣∣
φ1=φj=0

tij =
1

2

∂2T

∂φ̇iφ̇j

∣∣∣∣∣
φ̇1=φ̇j=0

so that the Lagrangian is (9.30, Pg 351):

L = φ̇T tφ̇− φTvφ

with EoM (9.33, Pg 352):

tφ̈+ vφ = 0
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Normal modes can be written as φ(t) =
Φei(ωt−δ) and satisfy (9.35, Pg 352):

(−ω2t+ v)Φ = 0

The necessary and sufficient condition
for stability is for all the eigenvalues
ω2 to be positive. Mode inner product
(9.43, Pg 355 and Pg 364):

(Φi,Φj) = ΦTi tΦj = δij

ΦTi vΦj = ω2
i δij

Time evolution and initial state (9.50-
52, Pg 357):

φ(0) = <[
∑

AiΦi]

=⇒

{
<[Ai] = ΦTi tφ(0)

ωi=[Ai] = ΦTi tφ̇(0)

φ(t) = <
(∑

Aie
iωitΦi

)
Note that Ai is complex! Use initial ve-
locities.

Normal coordinates Let:

ρi(t) = <[Aie
iωit]

so that the solution becomes:∑
ρi(t)Φi

where the EoM for each normal coordi-
nate is decoupled (9.63, Pg 359):

ρ̈i + ω2
i ρi = 0

Hill Equation (10.14, Pg 389)

q̈ + a(t)q̇ + b(t)q = 0

where a(t), b(t) are periodic. The most
general solution is a superposition of
cosine-like and sine-like terms (10.16, Pg
390):

θ(t) = θ(0)θc(t) + θ̇(0)θs(t)

Define the following constants at one full
period of the periodic variation T of the
coefficients:

A = θc(T ), B = θs(T )

C = θ̇c(T ), D = θ̇s(T )

and the matrix:

M =

(
A B
C D

)

so that we can write (10.20, Pg 391):

(
θ(nT )

θ̇(nT )

)
= Mn

(
θ(0)

θ̇(0)

)

By Liouville’s theorem, detM = 1 for
systems without damping. A stable
1DoF system has Tr(M) ≤ 2. This gives
complex eigenvalues forM which we can
write as λ = eiµT . The period of oscil-
latory motion is Tosc = 2π

µ .

Floquet theorem (10.15, Pg
390) Complex solutions of the Hill
Equation can be put in the form:

q(t) = P (t)e±iµt, P (t+ T ) = P (t)

If µ is real, there is bounded motion.
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Ph106a Misc Notes
Lim Soon Wei Daniel

Trigonometric functions

sin π
6 = 1

2 , sin
π
4 =

√
2

2 , sin
π
3 =

√
3

2 , sin
π
2 = 1.

cos π6 =
√

3
2 , cos π4 =

√
2

2 , cos π3 = 1
2 , cos π2 = 0.

tan π
6 = 1√

3
, tan π

4 = 1, tan π
3 =
√

3, tan π
2 =∞.

More definitions and identities:

• sin z = eiz−e−iz

2i

• cos z = eiz+e−iz

2

• 2 sin z1 cos z2 = sin(z1 + z2) + sin(z1 − z2)

• sin(z + π/2) = cos z

• sin(z − π/2) = − cos z

• sin(iy) = i sinh y, sin z = −i sinh(iz), sinh z = −i sin(iz)

• cos(iz) = cosh z, cosh(iz) = cos z

• sin z = sinx cosh y + i cosx sinh y

• cos z = cosx cosh y − i sinx sinh y

• | sin z|2 = sin2 x+ sinh2 y, | cos z|2 = cos2 x+ sinh2 y

• sin z = 0 ⇐⇒ z = nπ, n ∈ Z

• cos z = 0 ⇐⇒ z = π/2 + nπ, n ∈ Z

• d
dz tan z = sec2 z, ddz cot z = − csc2 z, ddz sec z = sec z tan z, ddz csc z = − csc z cot z

• cosh2 y − sinh2 y = 1

• sinh(z1 + z2) = sinh z1 cosh z2 + cosh z1 sinh z2, cosh(z1 + z2) = cosh z1 cosh z2 + sinh z1 sinh z2

• sinh z = sinhx cos y + i coshx sin y, cosh z = coshx cos y + i sinhx sin y

• | sinh z|2 = sinh2 x+ sin2 y, | cosh z|2 = sinh2 x+ cos2 y

• d
dz tanh z = sech2z, ddz coth z = −csch2z, ddz sechz = −sechz tanh z, ddz cschz = −cschz coth z

Inverse trigonometric functions

• sin−1 z = −i log[iz + (1− z2)1/2]

• cos−1 z = −i log[z + i(1− z2)1/2], branch points at ±1

• tan−1 z = i
2 log i+z

i−z = 1
2i log 1+iz

1−iz , branch points at ±i.

• d
dz sin−1 z = 1

(1−z2)1/2
, depends on what branch square root is defined on. Branch points at ±1.

• d
dz cos−1 z = −1

(1−z2)1/2
, depends on what branch square root is defined on. Branch points at ±1

• d
dz tan−1 z = 1

1+z2 , branch points at ±i

• sinh−1 z = log[z + (z2 + 1)1/2], branch points at ±i

• cosh−1 z = log[z + (z2 − 1)1/2]

• tanh−1 z = 1
2 log 1+z

1−z , branch points at ±1.

• coth−1 z = 1
2 log z+1

z−1

• csch−1z = log
(

1
z + ( 1

z2 + 1)1/2
)
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• sech−1z = log
(

1
z + ( 1

z2 − 1)1/2
)

Useful Taylor series:

• ez =
∑∞
n=0

zn

n!

• sin z =
∑∞
n=0(−1)n z2n+1

(2n+1)! , |z| <∞

• cos z =
∑∞
n=0(−1)n z2n

(2n)! , |z| <∞

• sinh z =
∑∞
n=0

z2n+1

(2n+1)! , |z| <∞. Substitute z → iz in sine expansion, then multiply by −i since sinh z = −i sin(iz).

• cosh z =
∑∞
n=0

z2n

(2n)! , |z| <∞. Obtain from cosh z = cos(iz).

• 1
1−z =

∑∞
n=0 z

n, |z| < 1.

• 1
z =

∑∞
n=0(−1)n(z − 1)n, |z − 1| < 1.

• 1
z−s =

∑N−1
n=0

1
s−n

1
zn+1 + 1

zN
sN

z−s , note finite number of terms.

• ln(1 + z) =
∑∞
n=1

(−1)n+1zn

n .

• tan−1(z) =
∑∞
n=1

(−1)n+1z2n−1

2n−1 .

More Trigonometric Identities

• sin(x+ π/2) = cosx

• sin(x− π/2) = − cosx

• sin(x± π) = − sinx

• cos(x+ π/2) = − sinx

• cos(x− π/2) = sinx

• cos(x± π) = − cosx

• tan(x+ π) = tanx

• tan(x± π/2) = − cotx

• cos 3x = 4 cos3 x− 3 cosx

• sin 3x = 3 sinx− 4 sin3 x

• sin a sin b = 1
2 (cos(a− b)− cos(a+ b))

• cos a cos b = 1
2 (cos(a− b) + cos(a+ b))

• sin a+ sin b = 2 sin a+b
2 cos a−b2

• cos a+ cos b = 2 cos a−b2 cos a+b
2
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