
Ma 3 Book Notes
Lim Soon Wei Daniel

1. DeMorgan’s Laws (A ∩B)c = Ac ∪Bc, (A ∪B)c = Ac ∩Bc.

2. Probability function axioms:

(a) Axiom 1: P (A) ≥ 0

(b) Axiom 2: P (S) = 1, S =sample space.

(c) Axiom 3: For two mutually exclusive events A and B, P (A ∪B) = P (A) + P (B).

(d) Axiom 4: When S has an infinite number of members, let A1, A2, . . . be events defined over S. If Ai ∩Aj = 0 for
each i 6= j, then P (∪∞i=1Ai) =

∑∞
i=1 P (Ai).

3. Generalized inclusion-exclusion principle:

P (A ∪B) = P (A) + P (B)− P (A ∩B)

P (A ∪B ∪ C) = P (A) + P (B) + P (C)− P (A ∩B)− P (B ∩ C)− P (A ∩ C) + P (A ∩B ∩ C)

Generally,

P (∪ni=1Ai) =

n∑
k=1

(−1)k+1

 ∑
1≤i1≤···≤ik≤n

P (Ai1 ∩ . . . ∩Aik)


4. Higher-order intersections

P (A1 ∩A2 ∩ · · · ∩An) = P (An|A1 ∩A2 ∩ · · · ∩An−1) · P (An−1|A1 ∩ · · · ∩An−2) · · ·P (A2|A1) · P (A1)

Prove by repeated use of P (A ∩B) = P (A|B)P (B).

5. Derangement: The probability of a random shuffle of n elements producing a result where no element is in the correct
position is given by:

Q = 1− 1

n!

n∑
p=1

(−1)p−1n!

p!
=

n∑
p=0

(−1)p

p!

which is the nth order truncation of the Taylor expansion of e−1.

6. Conditional Probability: P (A|B) = P (A∩B)
P (B) .

7. Rule of average conditional probabilities For a partition B1, . . . , Bn of sample space Ω, we have:

P (A) = P (A|B1)P (B1) + . . . P (A|Bn)P (Bn)

P (A) is the weighted average of the conditional probabilities with weights P (Bi).

8. Bayes’ Rule For a partition B1, . . . , Bn of all possible outcomes, we have:

P (Bi|A) =
P (A|Bi)P (Bi)

P (A|B1)P (B1) + . . .+ P (A|Bn)P (Bn)
, i = 1, 2, . . . , n =

P (A|Bi)P (Bi)

P (A)

9. Multiplication rule for multiple events

P (A1 ∩A2 ∩ · · · ∩An) = P (A1)P (A2|A1)P (A3|A1 ∩A2) · · ·P (An|A1 ∩A2 ∩ · · · ∩An−1)

10. Binomial Distribution

• Mean µ = np

• Mode =


b(n+ 1)pc, (n+ 1)p = 0 or (n+ 1)p 6∈ Z
(n+ 1)p and (n+ 1)p− 1, (n+ 1)p ∈ Z
n, p = 1

.

• PDF: f(k;n, p) = P (X = k,X ∼ Binom(n, p)) =
(
n
k

)
pk(1− p)n−k,

1



• Normal Approximation: given
√
npq large, µ = np, σ =

√
npq.

11. Normal Distribution

• PDF: 1
σ
√

2π
e−

1
2 (x−µ)2/σ2

.

• Converting to standard normal Z = x−µ
σ .

• With Continuity correction: P (a ≤ X ≤ b,X ∼ Binom(n, p)) = N
(
b+ 1

2−µ
σ

)
−N

(
a− 1

2−µ
σ

)
.

• Relation to error function: N(x) = 1
2 + 1

2erf
(
x√
2

)
.

12. Skewness of the Binomial function Skewness(n, p) = (1−2p)/σ = (1−2p)/
√
npq. Skewness is positive for p < 1/2

and called skewed to the right. It is negative for p > 1/2 and called skewed to the left.

13. Skew-normal approximation: For n independent trials with success probability p, P (0 to b successes) ≈ Φ(z) −
1
6Skewness(n, p)(z

2− 1)φ(z) where z =
b+ 1

2−µ
σ , Φ is the standard normal CDF and φ(z) is the standard normal curve.

14. Poisson Approximation to Binomial Condition: n large and p small. P (k successes) = e−µ µ
k

k! .

15. Approximate 95% confidence interval, sampling with replacement p± 1√
n

.

16. Sampling: Consider a population of size N with G good and B bad elements, with N = G+B. For a sample of size
n = g + b, 0 ≤ g ≤ n, the probability of getting g good elements and b bad elements is:

• For sampling with replacement: P(g good and b bad)=
(
n
g

)
GgBb

Nn .

• For sampling without replacement: P(g good and b bad) =
(Gg)(

B
b)

(Nn)
.

17. Hypergeometric Distribution: Number of “good” elements from a sample of size n without replacement from a
population of N elements, G of which are “good”. Three parameters: n,N,G. Gives the probability P(g good, n-g
bad) for g = 0, 1, 2, . . . , n.

18. Random Walk Stuff

• Ballot theorem (ties allowed) - alternatively, non-negative random walk. So the walker can return to zero, but
cannot go under. Then the probability that this occurs is p+1−q

p+1 where p is the number of positive steps, and q is

the number of negative steps. Alternatively, write k = p−q, t = p+q so that p = t+k
2 , q = t−k

2 and the probability

is (t+k)/2+1−(t−k)/2
(t+k)/2+1 = t+k+2−t+k

t+k+2 = 2k−2
t+k+2 . Compare this to the no-tie version probability: p−q

p+q = k
t .

• Deriving the tie case from the no tie case. Note the number of non-tie sequences with p + 1 positive movements
is equal to the number of tie sequences with p positive movements. See this by noting that the first step has to
be (0, 0) → (1, 1). Then use (1, 1) as the origin for the tie sequences. Appending the first movement to all these
tie sequences, we obtain the non-tie sequences with p+ 1 positive movements. Number of non-tie sequences with
p + 1 is then p+1−q

p+1+q

(
p+1+q
q

)
= p+1−q

p+1

(
p+q
q

)
. Hence the probability of a tie sequence with p positive movements is

p+1−q
p+1 .

Progress: Larsen (5th ed), stopped at page 38. Pitman Page 98
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Chapter 1

Border notes

2.2.2 Definition: Odds The odds against an event is P (Ec)
P (E) .

2.3.1 Definition: Probability space A probability space is a triple (S, E , P ) where S is a nonempty sample space, E
is the set of events, P is a countably additive probability measure on E .

2.4.1 Definition: Random Variable A random variable on a probability space (S, E , P ) is a real-valued function on S
such that for every interval I ⊂ R, the inverse image of I is an event.

2.5.1 Boole’s Inequality P ((∪ni=1Ai) ≤
∑n
i=1 P (Ai).

2.7.1 Independence of complements If A and B are independent, A and Bc, Ac and Bc, Ac and B are all independent.

2.8.2 Inclusion-exclusion principle P (∪ni=1Ai) =
∑
i p(Ai)−

∑
i<j p(AiAj)+

∑
i<j<k P (AiAjAk)−. . .+(−1)n+1P (A1A2 · · ·An).

2.10.5 Binomial identity
(
n+1
k+1

)
=
(
n
k+1

)
+
(
n
k

)
.
∑k
i=0

(
n
i

)
(−1)i = (−1)k

(
n−1
k

)
.

3.2.2 Binomial Theorem (a+ b)n =
∑n
k=0

(
n
k

)
akbn−k.

4.2.2 Stirling’s Formula n! ≈ e−nnn
√

2πn(1 + εn).

4.3 Multinomial distribution Let there be m possible outcomes, ith outcome has probability pi, and we take n
independent trials, ki of which result in outcome i, then:

P (ki outcomes of type i, i = 1, . . . ,m) =
n!

k1!k2! · · · km!
pk1

1 p
k2
2 · · · pkmm

4.5.1 Bayes’ Rule P (B|A) = P (A|B)P (B)
P (A) . Let B1, . . . Bn be a partition of S. Then:

P (Bi|A) =
P (A|Bi)P (Bi)∑n
j=1 P (A|Bj)P (Bj)

5.4.1 Definition: Distribution of random variable The distribution of the random variable X : S → R on the prob-
ability space (S, E , P ) is the probability measure PX defined on R by PX(B) = P (X ∈ B). The probability mass function is
pX(x) = P (X = x) for the discrete random variable. The cumulative distribution function is FX(t) = P (X ≤ t) = PX(−∞, t].

5.9 Definition: Stochastic dominance X stochastically dominates Y if for all t ∈ R, P (X ≥ t) ≥ P (Y ≥ t) and for
some t this is a strict inequality. Write this also as FX(t) ≤ FY (t).

5.10.1 Defintion: Expectation EX =
∑
s∈S X(s)P (s) =

∫
xp(x)dx.

5.11 Expectation of a composition Let X be a discrete RV on (S, E , P ) and g : R → R. Then Eg ◦ X =∑
s∈S g (X(s))P (s) =

∑
x∈range X g(x)p(x).

6.2 Definition: Stochastic Independence A set of random variables is stochastically independent if for every finite
subset of random variables {X1, . . . , Xn} and every collection of subsets of R {B1, . . . , Bn} we have P (X1 ∈ B1, . . . , Xn ∈
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Bn) = P (X1 ∈ B1) · · ·P (Xn ∈ Bn).

6.5 Uniform Distribution CDF: F (t) =

{
0, t < a

1, t > b, t−ab−a , a ≤ t ≤ b
.

6.9.2 Definition: Convex Function f is convex on (a, b) iff f ′′(x) ≥ 0,∀x ∈ (a, b).

6.9.3 Jensen’s Inequality Let X be a random variable with finite expectation and let f : R→ R be a convex function.
Then E(f(X)) ≥ f(EX). If X is non degenerate and f is strictly convex, the inequality is strict.

6.11.1 Holder’s inequality If 1 ≤ p < q, if E|Xq| is finite, then E|Xp| is also finite.

7.11.1 Multinomial identity

(1 + x1)(1 + x2) · · · (1 + xn) =

n∑
k=0

∑
i1<···<ik

xi1 · · ·xik

(1− x1)(1− x2) · · · (1− xn) =

n∑
k=0

∑
i1<···<ik

(−1)kxi1 · · ·xik

7.1.3 Indicator function algebra 1AB = 1A ·1B = min(1A, 1B). 1Ac = 1−1A. 1A∪B = max(1A, 1B) = 1A+1B−1A ·1B .

7.5 Definition: Standard Normal Distribution f(x) = 1
σ
√

2π
e−

(x−µ)2

2σ2 .

7.5.1 Gaussian integral
∫∞
−∞ e−x

2/2dx =
√

2π

7.8 Normal Approximation to Binomial (deMoivre-Laplace Limit theorem Let X ∼ B(n, p), then EX =
np, V ar(X) = np(1− p) so ∀a, b ∈ R:

lim
n→∞

P

(
a ≤ X − np√

np(1− p)
≤ b

)
=

1

2π

∫ b

a

e−z
2/2dz

8.2.1 Markov’s inequality Let X be a non-negative RV with mean µ <∞. For every a > 0, P (X ≥ a) ≤ µ
a .

8.2.2 Chebychev’s inequality Let X be a random variable with finite mean µ and variance σ2. For every a > 0:

P (|X − µ| ≥ a) ≤ σ2

a2 .

9.2 Joint Distributions The Joint Distribution of X1, . . . , Xn is PX(B) = P (X ∈ B) for B ∈ Rn. The Joint CDF is
FX(t1, . . . , tn) = P (Xi ≤ ti, i = 1, 2, . . . , n). The Joint PMF is pX(x1, . . . , xn) = P (X1 = x1, . . . , Xn = xn).

9.3 Expectation of Function on Joint Distribution Eg(X,Y ) =
∑
x

∑
y g(x, y)pX,Y (x, y).

9.5 Marginal Distribution pX = P (X = x) =
∑
y pX,Y (x, y) =

∫∞
−∞ fX,Y (x, y)dy.

9.7 Distribution of a Sum Let Z = X + Y . Then P (Z = z) =
∑
x pX,Y (x, z − x) =

∫∞
−∞ fX,Y (t− y, y)dy. If X and Y

are independent, fX+Y (t) =
∫∞
−∞ fX(t− y)fY (y)dy.

9.8 Covariance V ar(X + Y ) = V ar(X) + V ar(Y ) + 2Cov(X,Y ) = V ar(X) + V ar(Y ) + 2E(X −EX)(Y −EY ). Also,
Cov(X,Y ) = E(XY )− E(X)E(Y ).

9.10.1 Variance of a linear combination Let Z = a1X1 + . . . + anXn. Then let X = (X1, . . . , Xn),a = (a1, . . . , an)
so Z = a ·X. Define the covariance matrix Σ = [Cov(Xi, Xj)]

n
i,j=1. Then V ar(Z) = aΣaT =

∑n
i=1

∑n
j=1 Cov(Xi, Xj)aiaj .

Alternatively, Σ = E[(X− µ)(X− µ)T ] so that σi,j = Σi,j = E[(Xi − EXi)(Xj − EXj)].

9.11.2 Cauchy-Schwartz Inequality E(XY )2 ≤ E(X2)E(Y 2) with equality only if X and Y are linearly independent.
Implies |Cov(X,Y )|2 ≤ V ar(X)V ar(Y ).

9.13.1 Sum of independent normals is normal If X ∼ N(µ, σ2), Y ∼ N(λ, τ2) then X + Y ∼ N(µ+ λ, σ2 + τ2).
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10.1.1 Quantile function For any p ∈ (0, 1) and x ∈ R. Q(p) ≤ x ⇐⇒ p ≤ F (x)

10.2 Stochastic dominance on expectation Let X stochastically dominate Y and let g be nondecreasing. Then
Eg(X) ≥ Eg(Y ) with equality when FX = FY .

10.4.1 Central Limit Theorem v1 Let X1, X2 . . . be a sequence of iid random variables. Let µ = EXi and
σ2 = V ar(Xi). Let Sn =

∑n
i=1Xi. Then: Sn−nµ√

nσ
→ N(0, 1) converges in distribution.

11.2 Definition: Gamma Function Γ(s) =
∫ s

0
ts−1e−tdt. Γ(m) = (m− 1)!,m ∈ Z+.

11.3 Defintion: Gamma Distribution For a Gamma(r, λ) distribution, f(t) = λr

Γ(r) t
r−1e−λt, t > 0.

11.4 Random Lifetime Let T be chosen with CDF F (t). The survival function is G(t) = P (T > t) = 1 − F (t) =∫∞
t
f(s)ds. The hazard rate is λ(t) = limh→0

P (T∈(t,t+h)|T>t)
h = f(t)

G(t) , the instantaneous probability of failure.

11.5 Definition: Exponential distribution Exponential(λ) has density f(t) = λe−λt, hazard rate λ constant, mean
1
λ and variance 1

λ2 . Exponential is memoryless: P (T > t+ s|T > t) = P (T > s).

11.8 Sum of independent exponentials The sum of n iiid Exponential(λ) RV has a Gamma(n, λ) distribution.

f(t) = λne−λt tn−1

(n−1)! .

11.10 Definition: Poisson Distribution If X ∼ Poisson(λ), then the PMF is P (X = k) = e−λ λ
k

k! . Mean and variance
is λ.

11.12 Poisson Approximation to Binomial Poisson(λ) ≈ B(n, λ/n) when n is large and p is small.

11.15 Sum of Poissons is also Poisson X ∼ Poisson(µ), Y ∼ Poisson(λ) =⇒ X + Y ∼ Poisson(µ+ λ).

12.1 Defintion: Order Statistics 1st order statistic is the minimum. nth order statistic is the maximum.

12.2 CDF of order statistics The CDF of the kth order statistic from a sample of n of iid RVs with individual CDF
F (x) is Fk,n(x) = P (X(k) ≤ x) =

∑n
j=k

(
n
j

)
(1− F (x))n−jF (x)j .

12.3 PDF of order statistics fk,n(x) = n
(
n−1
k−1

)
(1− F (x))n−kF (x)k−1f(x).

12.5.1 Definition: Beta Function B(r, s) =
∫ 1

0
tr−1(1− t)s−1dt = Γ(s)Γ(r)

Γ(r+s) .

12.5.2 Definition: Beta Distribution The Beta(r, s) distribution has density f(x) = 1
B(r,s)x

r−1(1 − x)s−1, x ∈ [0, 1]

and zero elsewhere. Mean is r
r+s . The (k, n) order statistic of a Uniform[0,1] distribution has a beta(k,n-k+1) distribution

with mean k
n+1 .

12.6 Conditioning on Random Variable Let X and Y be discrete RV with joint PMF p(x, y). Then P (Y = y|X =

x) = P (Y=y,X=s)
P (X=x) = p(x,y)

pX(x) .

12.7 Conditional Expectation E(Y |X = x) =
∑
y y

p(x,y)
pX(x) .

12.9 Conditional Expectation is linear E(aY + bZ|X) = aE(Y |X) + bE(Z|X). If iterated, E(E(Y |X)) = EY
(Statement 12.10).

13.1 Definition: Markov Chain A discrete time stochastic process where the conditional distribution of Xtn+1
given

Xtn , . . . , Xt1 is the same as that given just Xtn alone. A Markov chain is time-invariant if the distribution of Xt+s|Xt does
not depend on t.

13.2 Definition: Transition Matrix A time-invariant Markov chain can be represented by a transition matrix
P = [p(i, j)] = [P (Xt+1 = j|Xt = i)]. Each row probabilities must sum to one.

13.2 Definition: Reachable and Communicate State j is reachable from i if pn(i, j) > 0 for some n. If states i and
j are mutually reachable, they communicate. When every state communicates with every other state, the chain is irreducible.
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13.4 Definition: Invariant Distribution A probability distribution x on states is invariant if xP = x, which is the
eigenvector of P corresponding to the eigenvalue 1.

13.5 Definition: Martingales A martingale is a stochastic process {Xt : t ∈ T} such that E|Xt| < ∞,∀t ∈ T
and E(Xtn+1

|Xtn , . . . , Xt1) = Xtn . The expectation conditioned on past values is the present value. A submartingale has
E(Xtn+1 |Xtn , . . . , Xt1) ≥ Xtn , and a supermartingale has E(Xtn+1 |Xtn , . . . , Xt1) ≤ Xtn .

13.5.2 Martingale Convergence Theorem Let {Xn} be a martingale. If limn→∞E|Xn| = M < ∞, then there is a
random variable X∞ with E|X∞| such that Xn → X∞ as n→∞ almost surely. If Xn ≥ 0 for all n or Xn ≤ 0 for all n, then
M <∞ is satisfied and the martingale converges.

13.8 Definition: Stopping Times Given a discrete-time stochastic process X1, . . . , Xn . . . a stopping time is an integer-
valued random variable N such that P (N <∞) = 1. and the event (N = k) belongs to σ(X1, . . . , Xk),. which is the σ-algebra
of events generated by X1, . . . , Xn.

13.9 Definition: Stopped martingale Z̄n = Zmin(N,n). Identity: Z̄n = Z̄n−1 + 1N≥n(Zn − Zn−1).

13.9.2 Martingale Stopping Theorem EZn = EZ1 if any of the conditions hold:

• The stopped martingales Z̄n are uniformly bounded.

• N is bounded.

• EN <∞ and there is some M <∞ such that for all n, E(Zn+1 − Zn|Zn) < M .

14.1 Defintion: Rademacher Random Variable Xt =

{
1, p = 1/2

−1, p = −1/2
. EXt = 0, V ar(Xt) = 1.

14.3 Criterion for reachability in random walk For (t, k) to be reachable, there must be non-negative integers p,m
where p is the number of plus ones and m is the number of minus ones such that:

p+m = t, p−m = k

p =
t+ k

2
, m =

t− k
2

so both t+ k and t− k must be even =⇒ t, k have the same parity.

14.3.3 Number of paths Nt,k =
(
t
t+k

2

)
=
(
t
t−k

2

)
=
(
p+m
p

)
=
(
p+m
m

)
. Divide by 2t to get the probability. If starting from

a point (t0, k0) that is not the origin, the number of paths to (t1, k1) is Nt1−t0,k1−k0
.

14.3.6 Reflection Principle Let (t1, k1) be reachable from (t0, k0) and on the same side of the time axis. Then there
is a one-to-one correspondence between the set of paths from (t0, k0) to (t1, k1) that meet the time axis and the set of paths
from (t0,−k0) to (t1, k1).

14.3.7 Ballot Theorem If k > 0 there are exactly k
nNn,k paths from the origin to (n, k) satisfying st > 0, t = 1, . . . , n,

that is, paths that never return to zero. Hence the probability that the path does not return to zero is k
n = p−m

p+n .

14.4.1 Probability of equalizing u2m = P (S2m = 0) =
N2m,0

22m =
(

2m
m

)
1

22m .

14.5 Main Lemma The following probabilities are equal:

P (S2m = 0) = u2m

P (S1 6= 0, . . . , S2m 6= 0)

P (S1 ≥ 0, . . . , S2m ≥ 0)

P (S1 ≤ 0, . . . , S2m ≤ 0)

2P (S1 > 0, . . . , S2m > 0)

2P (S1 < 0, . . . , S2m < 0)
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14.5.1 Definition: Types of paths Let Zt be the set of paths satisfying st = 0. Let Pt be the set of paths satisfying
s1 > 0, . . . , st > 0. Let Nt be the set of paths satisfying s1 ≥ 0, . . . , st ≥ 0.

14.5.2/3 One-one correspondences There is a one-to-one correspondence between P2m and N2m−1. Nelson’s Lemma:
There is a one-to-one correspondence between Z2m and N2m. A path in Z2m with minimum value −k corresponds to a path
in N2m with terminal value 2k.

14.6.2 First Return to zero Let ft = f2m denote the probability of the first return to zero occurring at t. f0 = 0 by
definition. Then f2m = u2m−2 − u2m = 1

2m−1

(
2m
m

)
1

22m .

14.8 Definition: Last Return Let L2m be the epoch of the last visit to zero, up t o and including 2m. Let
α2k,2m = P (L2m = 2k), the probability that the last return occurred at 2k after 2m epochs.

14.8.1 Arc-Sine Law for last returns α2k,2m = u2ku2(m−k) ≈ 1
m

1

π
√

k
m (1− k

m )
. Hence for 0 < ρ < 1, P (L2m ≤ ρ2m) ≈

2
π sin−1√ρ. Note that αm,2m = 1

2 .

14.9 Definition: Dual Walk Define the dual walk: S∗t = Sn − Sn−t, t = 1, . . . , n for a fixed n. Every event in S has a
dual event in S∗ that has the same probability. The dual walk can be seen as a rotation 180◦ around the origin, then sliding
the left corner to the origin.

14.10 Probability of First Visit P(first visit to k occurs at epoch n) = k
n

(
n
n−k

2

)
1

2n provided n−k is not a negative integer.

14.11 Expected number of visits before equalization Let Mk be the number of epochs for nonzero k which Sn = k
before the first return to zero. For all k, EMk = 1.

14.12 Sign changes A sign change occurs when St−1 and St+1 have opposite signs. Note that St = 0 and t must be
even. Theorem: P(there are exactly c sign changes before epoch t) = 2P (St = 2c+ 1).

14.14 Definition: Rademacher(p) random variable Xt =

{
1, probability p

−1, probability 1-p
so EXt = 2p − 1, V ar(Xt) =

4p(1− p).

14.15 Probability of reaching zero for asymmetric walk Let p be the probability of an uptick. Start at S0 = m.

Then the probability of reaching zero from m is zm = zm1 , where z1 =

{
1, p ≤ 1/2
1−p
p , p ≥ 1/2

.

15.3.1 Definition: Estimator An estimator is the function T : S → Θ, a map from the sample space to the set of
possible parameter values.

16.1.1 Definition: Unbiasedness An estimator T : χ→ Θ is unbiased if for every θ ∈ Θ, EθT (X) =
∫
T (x)f(x, θ)dx =

θ.

16.1.2. Definition: Consistent Let Tn be the estimator of θ based on n replications. An estimator is consistent if
plimn→∞Tn = θ. That is, ∀θ ∈ Θ, ε > 0, Pθ(|Tn − θ| > ε)→ 0, n→∞. Strongly consistent if Pθ(Tn → θ) = 1.

16.1.3. Definition: Efficient T is efficient if for θ ∈ Θ, T has the minimum variance of any unbiased estimator.

16.3 Multivariable maximization f : Rn → R is maximized at x interior to its domain if all the first order partial
derivatives vanish and the Hessian matrix (matrix of second order partials) is negative definite. That is, for all columns x of
H, x∗Hx < 0.

16.4.1. Maximum likelihood estimator of Bernoulli trial L(p;x) = px+(1−p)(1−x), x = 0, 1. p̂(x) =

{
1, x = 1

0, x = 0
.

16.4.2. Maximum likelihood estimator of Binomial L(p; k) =
(
n
k

)
pk(1− p)n−k. p̂(x) = x

n .

16.4.3 Maximum likelihood estimators of i.i.d. normals L(µ, σ2;x1, . . . , xn) =
∏n
i=1

1
σ
√

2π
e−

1
2 ( xi−µσ )

2

. µ̂MLE =∑n
i=1 xi
n , σ̂2

MLE =
∑n
i=1(xi−x̄)2

n . But Eσ̂2
MLE = n−1

n σ2. Hence define s2 =
∑n
i=1(xi−x̄)2

n−1 = n
n−1 σ̂

2
MLE .
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16.5 MLE of composition The MLE of g(θ) is g(θ̂MLE). But it may not be unbiased (Jensen’s inequality).

16.6 Sufficient statistic Let T = ψ(X1, . . . , Xn) be a statistic with density fT (t, θ). If the likelihood function factors
as: L(θ;x1, . . . , xn) = fT (ψ(x1, . . . , xn); θ)b(x1, . . . , xn) so θ enters the likelihood function only through the distribution
of T , then T is a sufficient statistic for θ. It suffices to maximise fT (ψ(x1, . . . , xn); θ). For example, for iid normals,
L(µ, σ2; x̄, s2) = −n

2

[
log(2π) + log(σ2) + 1

σ2

(
n−1
n s2 − 2µx̄+ x̄2 + µ2

)]
so (x̄, s2) are sufficient for (µ, σ2). In other words,

no other statistic that can be calculated from the same sample provides any additional information about the value of the
parameter.

17.1 Definition: Mean Square Error Let T be an estimator of g(θ). MSET (θ) = Eθ
[
(T − g(θ)2

]
=
∫

(T (x)− g(θ))
2
f(x; θ)dx.

If T is unbiased, MSET (θ) = V ar(T ).

17.1 Definition: Bias bT = Eθ(T )− g(θ). Then MSET (θ) = V arθ(T ) + (bT (θ))2.

17.2 Expectation of log-likelihood Eθ
∂L
∂θ = 0,L(θ;x) = lnL(θ;x).

17.3 Cramer-Rao Lower Bound Let f be continuously differentiable and let the support of x not depend on θ. Let T be

an estimator of θ with differentiable bias function b(θ). Then V arθ(T ) is bounded below by: V arθ(T ) ≥ [1+b′(θ)]2

nEθ

[
( ∂
∂θ log f(X;θ))

2
] .

17.3.2 Theorem: Unbiased sufficient statistic achieves lower bound of variance Let the likelihood factor as
L(θ;x) = b(x)fT (T (x); θ) so T is a sufficient statistic. If fT (t; θ) has the form ea(θ)t+b(θ) and T is unbiased, then its variance
achieves the Cramer-Rao lower bound so T is the minimum variance unbiased estimator of θ.

17.4.1 When MLEs are consistent Multiple conditions; see notes.

17.6 Method of moments The kth sample moment is
∑n
i=1 x

k
i

n and the kth distribution moment is
∫
xkf(x; θ1, . . . , θm)dx.

Solve for the set of parameters (θ̂1, . . . , θ̂m) that satisfy the first m moments:
∫
xkf(x; θ̂1, . . . , θ̂m) =

∑n
i=1 x

k
i

n , k = 1, . . . ,m.

17.8 Confidence interval bounds (Normal, known SD) Define zα = Φ−1(1−α). Then P (−zα/2 ≤ Z ≤ zα/2) = 1−α.

So the 1− α confidence interval when σ is known is: I =
[
µ̂− zα/2 σ√

n
, µ̂+ zα/2

σ√
n

]
, P (µ ∈ I) = 1− α. By the symmetry of

the normal distribution, the symmetric interval is the shortest such interval that satisfies P (µ ∈ I) = 1− α.

17.10 Construction confidence intervals

1. Choose the shortest interval [a, b] containing MLE θ̂ that has Pθ̂([a, b]) = 1− α. This is when the density is largest.

2. Choose an interval such that P (θ < a) = P (θ > b) = α
2 .

18.2 Posterior density The posterior density φ(θ0|x) given the prior density φ(θ) with likelihood f(x; θ) with observa-

tion x is given by Bayes law as: φ(θ0|x) = f(x;θ0)φ(θ0)∫
Θ
f(x;θ)φ(θ)dθ

∝ f(x; θ0)φ(θ0).

18.3 Conjugate Prior A parametric family of distributions is conjugate to a likelihood function if the posterior belongs
to the family whenever the prior does.

18.3 Example: Beta Conjugate Prior Given the Binomial(n,p) likelihood function: L(p; k, n) =
(
n
k

)
pk(1 − p)n−k, if

the prior density is φ(p) = Beta(s, f) = ps−1(1− p)f−1, then the posterior density is φ(p|k) ∝ Beta(s+ k, f + n− k).

18.3 Example: Exponential Conjugate Prior Given the exponential(λ) likelihood function L(λ;T, n) ∝ λne−λT , the
conjugate prior φ(λ) = λn0−1e−λT0 , n0, T0 > 0 is a Gamma(n0, T0) and has posterior density φ(λ|k, n) = λn0−1+ne−λ(T0+T ) =
Gamma(n0 + n, T0 + T ).

18.3 Example: Poisson Conjugate Prior Given the likelihood function L(µ; k, n) ∝ µke−nµ, the conjugate prior is
φ(µ) = µk0−1e−n0µ = Gamma(k0, n0) and the posterior is φ(µ|k, n) ∝ µk0+k−1e−µ(n0+n) = Gamma(k0 + k, n0 + n).

18.4 Definition: Loss function Function of the parameter and the estimate satisfying L(θ̂, θ) ≥ 0 and L(θ, θ) = 0.

18.4 Definition: Risk Function
∫

Θ
L(θ̂, θ)φ(θ|x)dθ. A Bayesian estimate chooses θ̂ to minimize the risk.
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18.4 Examples: Risk-minimizing function When L(θ̂, θ) = |θ̂ − θ|, the risk-minimising θ̂ is the median of f(θ|x).

When L(θ̂, θ) = (θ̂ − θ)2, the risk-minimizing θ̂ is the mean of f(θ|x) :
∫
θf(θ, x)dθ.

19.4 Definition: Significant value for composite null hypothesis The size α is supθ∈Θ0
{Pθ(T ∈ C)}, where C is

the critical region (in which we reject the null hypothesis in favour of the alternative hypothesis).

19.5 Definition: Type I error H0 is rejected when it is true. Always α.

19.5 Definition: Type II error H0 fails to be rejected when it is false. Power is 1− P (Type II error|θ).

19.5 Definition: Uniformly Most Powerful Test Let a test be characterized by (T,C), the test statistic and the
critical region. Let βT,C(θ) be the probability of obtaining a type II error. If a test (T ∗, C∗) has the maximum value of
1− βT,C(θ) for all tests with the same significance level α, then it is called the uniformly most powerful test (UMP).

19.6 Definition: Likelihood ratio test Define f0 to be the area of the PDF under the null hypothesis, and f1 to be

the area of the PDF under the alternative hypothesis. Then define λ = f1(x)
f0(x) . Choose a cutoff k > 0, and reject the null

hypothesis if λ ≥ k.

19.7 Definition: Monotone Likelihood ratio property (MLRP) When Θ ∈ R, the probability model satisfies

MLRP if there exists real-valued statistic T (x) such that for all θ < θ′, f(x;θ′)
f(x;θ) is non-decreasing in T (x). Alternatively, write

(θ < θ′, T (x) < T (x′)) =⇒ f(x;θ′)
f(x;θ) ≤

f(x′;θ′)
f(x′;θ) .

19.9 Likelihood ratio test for composite hypothesis without MLRP Let θ̂0 be the MLE of θ over Θ0 and θ̂1 be

the MLE for θ over Θ1. Then: λ(x) = L(θ̂0(x);x)

L(θ̂1(x);x)
is a test. This is the ratio of the maximum likelihoods at the MLE. Choose

critical value λ∗ and reject the null hypothesis if 0 ≤ λ(x) ≤ λ∗. The size of the test is P (Λ ≤ λ∗|H0 is true) = α.

20.3 Definition: Chi-square distribution If X1, . . . , Xn are i.i.d N(µ, σ2) RVs, then (1). X̄ and S2 are independent,

(2). X̄ ∼ N
(
µ, σ

2

n

)
, (3). (n−1)S2

σ2 = 1
σ2

∑n
i=1(Xi − X̄)2 ∼ χ2(n− 1).

20.4 Definition: F-distribution Let U ∼ χ2(n), V ∼ χ2(m) be independent. Then V/m
U/n ∼ Fm,n.

20.5 Definition: Student t-distribution Let Z ∼ N(0, 1), U ∼ χ2(n) be independent. Then Tn = Z√
U/n
∼ t(n).

20.6 Mean with estimated SD For a sample of n N(µ, σ2) random variables, X̄−µ
S/
√
n
∼ Tn−1

20.11 Difference of means with same variance Given X1, . . . , Xn, and Y1, . . . , Ym normal with same variance, we

test for the null hypothesis µX = µY using the test statistic: t = x̄−ȳ
sp
√

1
n+ 1

m

∼ t(n+m−2) with sp =
∑n
i=1(xi−x̄)2+

∑m
j=1(yj−ȳ)2

n+m−2 .

20.12 Difference of means, unknown variance Define the test statistic W = X̄−Ȳ−(µX−µY )√
S2
x
n +

S2
y
m

∼ t(v) approximately.

Use TTest[data1, data2].

20.13 Paired Data Define Xi − Yi = (µX − µY ) + (εi − ε′i) as a new set of data points and test it using a t-test against
a mean of zero.

20.14 Confidence interval for standard deviation Define χ2
α,n to be the quantile function for the chi-square distri-

bution with n degrees of freedom. The 1− α confidence interval for σ2 is:

[
(n−1)s2

χ2
1−α/2,n−1

, (n−1)s2

χ2
α/2,n−1

]
.

20.15 Testing difference of variances Given n samples from N(µX , σ
2
X) and m samples from N(µy, σ

2
Y ), construct

(m−1)S2
Y

σ2
Y

(n−1)S2
X

σ2
X

∼ Fm−1,n−1.

20.16.1 Testing difference of variances alternative TestH0 = σ2
X = σ2

Y : two tailed: rejectH0 if
s2Y
s2X
≤ Fα/2,m−1,n−1,

s2Y
s2X
≥

F1−α/2,m−1,n−1. One tailed: replace α/2 with α.

21.2 Empirical CDF Fn(x) = |{i:i≤n&Xi≤x}|
n for i.i.d. random variables X1, . . . Xn, . . .. In terms of indicator functions,

Fn(x) = 1
n

∑n
i=1 1(−∞,x](Xi).
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21.2 Kolmogorov-Smirnov Test Null hypothesis: The CDF of the data X1, . . . , Xn is F0. Transform each Xi us-
ing Yi = F0(Xi) so that the range is now [0, 1]. If Xi indeed follows F0, then the transformed variables are drawn from
Uniform[0, 1]. Calculate the test statistic: K = sup0≤y≤1 |Gn(y)− y| = supx |Fn(x)− F0(x)| where Gn is the empirical CDF
of the Yi transformed random variables. Reject the null hypothesis if K is larger than the cut-off value.

21.5.1 Chi-Squared Test Consider the multinomial distribution with t possible results, each of which having probability
pi. Let Xi be the number of occurrences of the ith result in n independent trials. Let p0 be a t-dimensional column vector
of observed probabilities that sum to one. Let the null hypothesis be that the this is the true parameter setH0 : p = p0.

Estimate s parameters that determine p using maximum likelihood. Then calculate the test statistic: D =
∑t
n=1

(Xi−npi)2

npi
which has a chi-squared distribution with t− 1− s degrees of freedom. Ensure each npi ≥ 5.

21.8 Testing independence Given pairs of observations (Xi, Yi), i = 1, . . . , n. Bin the data into columns containing
the X values and rows containing the Y values. Calculate the relative frequency of each column and row (sum of counts in
that column or row divided by the total count). If X and Y are independent, the relative frequency of each cell should be
the row frequency multiplied by the column frequency. The number of degrees of freedom is the (number of rows -1) times
(number of columns -1).

21.10 Minimum chi-squared estimators If p depends on parameter vector θ, we can choose θ̂ to minimise the test

statistic, which is equivalent to minimizing
∑t
i=1

X2
i

pi(θ) .

22.3.1 Definition: Orthogonal Matrix An orthogonal matrix has its transpose as its inverse: AT = A−1. Orthogonal
matrices preserve norms ||Ax|| = ||x|| and inner products: (Ax) · (Ay) = x · y. These are equivalent definitions of orthogonal
matrices.

22.3.4 Definition: Quadratic forms xTAx =
∑n
i=1

∑n
j=1 aijxixj . Identities:

(x+ y)TA(x+ y) = xTAx+ 2xTAy + yTAy

∇(aTAx) = ATa

∇(xTAx) = 2Ax

A matrix is positive definite if xTAx > 0 whenever x 6= 0 and is positive semidefinite if xTAx ≥ 0 whenever x 6= 0.

The rows and columns of an orthogonal matrix A are orthonormal.

22.4.2 Principal Axis Theorem Consider an n × n symmetric matrix A. Let C be the matrix of orthonormal eigen-
vectors of A. Then C is orthogonal and Λ = C−1AC where Λ is the diagonal matrix with eigenvalues on the diagonal.

22.5.1 Orthogonal Complement Theorem Consider a linear subspace M . Any vector x can be written as a unique
sum of xM+x⊥ where xM ∈M and x⊥ ∈M⊥. xM is the orthogonal projection of x onto M , and is the point on M closest to x.

22.5.3 Projection is linear (x+ z)M = xM + zM , (αx)M = αxM .

22.5.3 Projection Operator Let x1, . . . , xk be a basis for M who lives in n dimensional space, and let X be a n × k
matrix whose column are xk. Then the projection operator that maps y to yM is:

yM = Py = X(XTX)−1XT y

22.6 Normal Parameters of Linear Combination Let X be a column vector of n random variables with column
vector of means µ and variance-covariance matrix Σ. Let Y = AX where A is an m×n matrix of constants. Then EY = Aµ
and V ar(Y) = AΣAT .

22.8.1 Defintion: Multivariate Normal A random vector X = (X1, . . . , Xn) ∈ Rn has a multivariate normal distri-
bution if for every constant vector T ∈ Rn, the linear combination TTX =

∑n
i=1 TiXi has a normal N(µT , σ

2
T ) distribution.

By Corollary 22.8.3, if X1, . . . , Xn are independent normals, then the vector X has a multivariate normal distribution.
This holds in the other direction: By Proposition 22.8.5, every component of a multivariate normal distribution is a nor-
mal distribution. By Proposition 22.8.4, AX where A is a constant m×n matrix is an m-dimensional Normal random vector.

10



22.8.9 Multivariate Normal Density Let X = (X1, . . . , Xn) with a non-singular variance-covariance matrix Σ. The
density is:

f(x) =

(
1√
2π

)n
1√

det(Σ)
e−

1
2 (x−µ)TΣ−1(x−µ)

22.9.1 Multivariate Normal and Chi-Square Let X ∼ N(0, In). Then XTAX ∼ χ2(k) iff A is symmetric, idempo-

tent and has rank k. If X ∼ N(µ, σ2In), then
(

X−µ
σ

)T
A
(

X−µ
σ

)
∼ χ2(k) iff A is symmetric, idempotent and has rank k.

22.9.3 Testing independence with idempotent matrices Let X ∼ N(0, σ2I) and let A1 and A2 be symmetric
idempotent matrices that satisfy A1A2 = A2A1 = 0. Then XTA1X and XTA2X are independent.

23.1 Assumptions on Error E(ε|X) = 0,Var(ε|X) = Var(εεT |X) = σ2In×n. Latter is homoskedacity.

23.2 Sum of Squared Residuals (SSR) SSR(b) = (y −Xb)T (y −Xb) = yT y − 2yTXb+ bTXTXb.

23.2 Normal Equation for OLS parameters β̂OLS = (XTX)−1XT y.
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24.2 Statistics of the OLS estimator Eβ̂OLS = β (unbiased),Varβ̂OLS = σ2(XTX)−1.

24.3.1 Gauss-Markov Theorem In the standard linear model, if X has rank K, then the OLS estimator β̂OLS is the
Best Linear Unbiased Estimate in that in among all the estimators b of β which are linear in y and which satisfy E(b) = β

for any possible value of β, Var(b) = Var(β̂OLS) + P where P is positive semi-definite.

24.3.2 Unbiased estimator of error variance Assume (ε) ∼ N(0, σ2I). Then β̂OLS ∼ N(β, σ2(XTX)−1). The

unbiased estimator of σ2 is s2 = eT e
N−K . Also, (N−K)s2

σ2 ∼ χ2(N − K). Also, for any K-vector w of weights, note that

wT (β̂OLS − β) ∼ N(0, σ2wT (XTX)−1w) and wT (β̂−β)

s
√
wT (XTX)−1w

∼ t(N −K). s is the residual standard error.

24.3.4 T-distribution of OLS estimators β̂k−βk
s
√

(XTX)−1
kk

∼ t(N − K). The standard error of β̂OLS = s
√

(XTX)−1
kk .

Note that the kth OLS parameter is associated with the kth column of X.

24.6 Testing complicated Hypotheses Consider the null hypothesis H0 : a = Aβ where A is a q×K constant matrix
of constraints. The test statistic F = 1

qs2 (a−Aβ̂OLS)T [A(XTX)−1AT ](a−Aβ̂OLS) ∼ F (q,N −K).

24.10 Coefficient of multiple correlation 1−R2 = eT e
yT y

.

24.10 Adjusted R-squared (1− R̄2) = N−1
N−K (1−R2), which penalises for too many regressors.

24.11 Confidence intervals for regression predictions Consider the prediction y∗ = x∗β̂OLS where x∗ is a cho-

sen value and the value of y∗ is desired. Then: x∗β̂OLS−y∗
s
√
x∗(XTX)−1x∗+1

∼ t(N − K). Hence the confidence interval is: [y∗ −

tα/2,N−Ks
√
x∗(XTX)−1x∗ + 1, y∗ + tα/2,N−Ks

√
x∗(XTX)−1x∗ + 1].

25.3 ANOVA model Consider Yij = µj + εij , i = 1, . . . , nj , i = 1, . . . , k where there are k different factor levels and nj
different observations for the jth factor level. Let n = n1 + . . .+ nk be the total number of observations. Nomenclature:

E(SSTR) = (k − 1)σ2 +

k∑
j=1

nj(µj − µ)2

s2
j =

∑nj
i=1(Yij − Ȳ•j)2

nj − 1

SSE =

k∑
j=1

(nj − 1)s2
j =

k∑
j=1

nj∑
i=1

(yij − ȳ•j)2
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where SSE is the error sum of squares.

25.4.1 SSE and chi-squared SSE
σ2 ∼ χ2(n− k) and SSE and SSTR are stochastically independent.

25.4.1 Total sum of squares SSTOT=SSTR+SSE=
∑k
j=1(nj − 1)s2

j =
∑k
j=1

∑nj
i=1(yij − ȳ••)2.

25.5 ANOVA testing equality of means Define the test statistic: F = SSTR/(k−1)
SSE/(n−k) and reject the null hypothesis if

F ≥ F1−α,k−1,n−k.

Anova table format:

25.7 Testing contrast hypotheses Define the weighted linear combination C = wTµ. To test the hypothesis that

C = 0, weight the same means Ĉ =
∑k
j=1 wj ȳ•j and define SSC = Ĉ2∑k

j=1

w2
j
nj

. Then F = SSC
SSE/(n−k) ∼ F (1, n− k). Reject the

null hypothesis if F ≥ F1−α,1,n−k.
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Final Review

Likelihoods Consider a distribution Exp(λ) with n draws from it. Then the likelihood of obtaining some sample is (up to
some scaling factor):

L(λ;xi) =

n∏
i=1

f(xi;λ) =

n∏
i=1

1xi>0e
−λxi =

{
0,∃i : xi ≤ 0

e−λ
∑n
i=1 xi , else

The first product follows from independence. Note that if any of the xis are negative, then it is not possible that it
came from the exponential distribution and hence the likelihood is zero.

MLE By definition θ̂MLE is such that for all x:

max
θ∈Θ

L(θ;x) = L(θ̂MLE ;x)

Checking unbiasedness Eµ0
[x̄] = µ0. Use linearity of expectation.

Likelihood ratio tests Let H0 : θ = θ0, H1 : θ = θ1. Then define:

λ(x) ≡ maxθ∈θ0 L(θ, x)

maxθ∈θ1 L(θ, x)

1. α = Type I error = P(reject H0|H0 is true)

2. Power = 1-P(type II error) = P(reject H0|H0 is false). Note that for a simple hypothesis, where the null and
alternate hypotheses are single points, the power is just a number, not a function.

3. Type II error = β = P(accept H0|H0 false)

UMP test A test is uniformly most powerful if for a given α ∈ (0, 1) it yields the best possible power 1− β.

Neyman-Pearson Lemma For simple hypotheses, the likelihood ratio test is UMP.

Theorem 19.8.1 Given composite hypotheses H0 ≤ θ0, H1 : θ > θ0, if the likelihood ratio λ(x) satisfies the maximum
likelihood ratio property (MLRP), then there exists a test that is UMP and this test is constructed explicitly using LR
tests.

Standard linear model Assumptions: the data comes from sampling:

yi = β1xi + β0 + εi

with unknown β0, β1 ∈ R and ε1, . . . , εn ∼ N(0, σ2) and independent with σ2 unknown.

Testing assumptions Ensure that the data points are distributed linearly by eye power. Use Kolmogorov-Smirnov test to
check the normality of the errors (do not include the distribution type!).

Chi-squared test Choose your bins such that the expected number of counts in each bin is ≥ 5.
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