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Implicit Function Theorem (Wikipedia) Let F (x, y) be defined on an open disk containing (a, b) where F (a, b) =
0, Fy(a, b) 6= 0 and Fx, Fy are continuous on the disk. Then F (x, y) = 0 defines y as a function of x near that point,

and the derivative of that function is dy
dx = −∂F/∂x∂F/∂y .

Definition 2.1.1: Integral Curve A curve C in Ω is an integral curve of the vector field V if V is tangent to C at each
of its points.

Definition 2.1.2: Functionally independent Two functions u1(x, y, z) and u2(x, y, z) that satisfy∇u1×∇u2 6= 0, (x, y, z) ∈
Ω are called functionally independent in Ω.

Notation Parametric form: Write x′ = P (x, y, z), y′ = Q(x, y, z), z′ = R(x, y, z). Equivalent Non-parametric form: dx
P =

dy
Q = dz

R . Equate any two of the equalities to solve for two variables in terms of a third (ensure that the function in the

denominator is nonvanishing).

Definition 2.1.3 First Integral A function u ∈ C1(Ω) is first integral of the vector field V = (P,Q,R) or dx
P = dy

Q = dz
R

in Ω if at each point of Ω, V is orthogonal to ∇u. That is:

P
∂u

∂x
+Q

∂u

∂y
+R

∂u

∂z
= 0, (x, y, z) ∈ Ω

Any solution of the above PDE is a first integral of V .

Theorem 2.1.1 Let u1, u2 be any two functionally independent first integrals of V in Ω. Then the equations u1(x, y, z) =
c1, u2(x, y, z) = c2 describe the collection of all integral curves of V in Ω. This is a two-parameter family of curves in
Ω.

Theorem 2.1.2 (a) If f(u) is a C1 function of a single variable u and if u(x, y, z) is a first integral of V , then w(x, y, z) =
f(u(x, y, z)) is also a first integral of V . (b) If f(u, v) is a C1 function of two variables and if u(x, y, z) and v(x, y, z)
are any two first integrals of V then w(x, y, z) = f(u(x, y, z), v(x, y, z)) is also a first integral of V .

Non-parametric form to find first integrals dx
P = dy

Q = dz
R = d(ax+by+cz)

aP+bQ+cR , where a, b, c are chosen so that the RHS can

be written as some df(x,y,z)
f(x,y,z) and be separable.

The general problem Pux +Quy +Ruz = 0 with P,Q,R not vanishing simultaneously at any point of Ω.

Theorem 2.3.1: Composition of solutions Let u1 and u2 be two solutions of the general problem in Ω and let F (u1, u2)
be any C1 function of two variables. Then u(x, y, z) = F (u1(x, y, z), u2(x, y, z)) is also a solution to the problem in Ω.

Theorem 2.3.2 Let u1 and u2 be two functionally independent solutions of the general problem in Ω and let (x0, y0, z0)
be any point of Ω. Let u(x, y, z) be any solution of the general problem in Ω. Then there is an open neighbourhood
U ∈ Ω of (x0, y0, z0) and a C1 function F (u1, u2) of two variables such that u(x, y, z) = F (u1(x, y, z), u2(x, y, z)) for
(x, y, z) ∈ U .

Definition 2.4.1: Integral Surface A surface S ∈ Ω ⊂ R3 is an integral surface of the vector field V if S is a level surface
of a first integral of V . In other words, S is described by an equation of the form u(x, y, z) = c where u is a solution to
the equation Pux +Quy + Ruz = 0 in Ω such that ∇u 6= 0 in Ω. An integral surface of V is called a solution surface
of Pux +Quy +Ruz.

Theorem 2.4.1 If S is a solution surface of Pux + Quy + Ruz in Ω, then for every point of S, the solution curve of
dx
P = dy

Q = dz
R passing through that point lies in S. Conversely, if u is a C1 function in Ω, and if at each point

(x0, y0, z0) ∈ Ω the solution curve of dx
P = dy

Q = dz
R passing through (x0, y0, z0) lies on the level surface of u passing

through (x0, y0, z0), then u is a solution of Pux +Quy +Ruz in Ω.

Theorem 2.4.2: Local integral surface existence, curve not an integral curve Let curve C be described paramet-
rically by C1 functions x0(t), y0(t), z0(t) with derivatives that do not vanish simultaneously on the interval. Suppose
that V = (P,Q,R) is not tangent to curve C at (x0, y0, z0), which lies on the curve. Then in some neighbourhood Ω0

of (x0, y0, z0), there is a unique integral surface of V containing the part of C in Ω0.

Finding an integral surface that contains a particular curve (not part of an integral curve) :
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1. Express the curve parametrically in the neighbourhood of the point in terms of t.

2. Calculate the gradients of the curve in terms of t,

3. Calculate the vector field direction on the curve C, and show that it is nowhere tangent to C in some neighbourhood
of the point.

4. Identify two functionally independent first integrals of V and express them parametrically in terms of t on the
curve C.

5. Eliminate t by combining the equations for the two first integrals to obtain a single equation in terms of the first
integrals.

6. Express the first integrals in (x, y, z) to obtain the integral surface.

Theorem 2.4.3 Finding an integral surface when the required curve is part of an integral curve Suppose that
V = (P,Q,R) is tangent to C at one of its points contained in a neighbourhood Ω0 of a point (x0, y0, z0) ∈ C.
Then in some neighbourhood Ω1 ⊂ Ω0 of that point there are infinitely many integral surfaces of V containing the part
of C in Ω1.

Theorem 2.5.1 Vector potential existence Let V = (P,Q,R) be a non vanishing vector field defined on Ω ⊂ R3 with
P,Q,R ∈ C1. If V is solenoidal in Ω, which means that ∇ · V = 0, then given any point (x0, y0, z0) ∈ Ω, there is a
neighbourhood Ω0 of that point and a vector field W with C1 components such that V = ∇×W (x, y, z), (x, y, z) ∈ Ω0.
W is called a vector potential for the given field V .

Vector Calculus Identities

∇ · (fu) = ∇f · u + f∇ · u
∇ · (u× v) = (∇× u) · v − (∇× v) · u

∇× (∇f) = 0

∇× (fu) = (∇f)× u + f∇× u

∇G(u1, u2) =
∂G

∂u1
∇u1 +

∂G

∂u2
∇u2

Calculating the vector potential Define λ(x, y, z) such that V (x, y, z) = λ(x, y, z)∇u1 ×∇u2 because the two gradients
of the first integrals must be perpendicular to the vector field, hence their cross product will be parallel to it. Then write
it in terms of the first integrals λ(x, y, z) = F (u1, u2). Find a function G(x, y, z) such that F (u1, u2) = ∂G

∂u1
(u1, u2).

Then W = G∇u2, and V = ∇×W .

Definition: Quasi-linear An equation of the form P (x, y, z)zx +Q(x, y, z)zy = R(x, y, z) is called quasi-linear.

Definition: Almost-linear An equation of the form P (x, y)zx +Q(x, y)zy = R(x, y, z) is called almost linear.

Definition: Linear An equation of the form a(x, y)zx + b(x, y)zy + c(x, y)z = d(x, y) is called linear.

Lemma 3.2.1 Solution to Quasi-linear form Consider the quasi-linear equation P (x, y, z)zx +Q(x, y, z)zy = R(x, y, z).
Let u be in C1 in Ω̄, the domain of the functions P,Q,R. Suppose that at every point we have that (i) Pux+Quy+Ruz =
0, (ii) uz 6= 0. Then u(x, y, z) = 0 implicitly defines z as a function of x, y and this function z(x, y) satisfies the quasi-
linear equation.

Theorem 3.2.1 Solution to quasi-linear form Let u1 and u2 be two functionally independent solutions of Pux +Quy +
Ruz = 0 in a domain Ω̄ of R3. Let F (u1, u2) be an arbitrary C1 function and consider the level surface F (u1(x, y, z), u2(x, y, z)) =
0. Every part of this surface having a normal with non-zero z-component defines z implicitly as a function of x and y,
and this function is a solution of the quasi-linear equation P (x, y, z)zx +Q(x, y, z)zy = R(x, y, z). If u1 is independent
of z, then the general integral can be written as u2(x, y, z) = f(u1(x, y)) for an arbitrary function f of a single variable.

Definition 3.2.1: General Integral F (u1(x, y, z), u2(x, y, z)) = 0 is called a general integral of P (x, y, z)zx+Q(x, y, z)zy =
R(x, y, z) in Ω̄, where u1, u2 are two functionally independent solutions of Pux + Quy + Ruz = 0. Note that it is not
the general solution of the quasi-linear equation.

Cauchy Problem Require a solution z(x, y) to P (x, y, z)zx + Q(x, y, z)zy = R(x, y, z) which has given values on a given
curve C in R2, where C is a 2D curve parametrised by (x0(t), y0(t)). A solution is a function z(x, y) that satisfies
the quasi-linear equation and that is equal to a given function z0(t) when described parametrically on an interval:
z(x0(t), y0(t)) = z0(t), t ∈ I. The given curve C is called the initial curve and z0(t) is the initial data.
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Theorem 3.3.1 Existence and uniqueness of solution to Cauchy problem Suppose P,Q,R ∈ C1 in domain Ω̄ con-
taining (x0, y0, z0). Let C be parametrized by x = x0(t), y = y0(t), z = z0(t), t ∈ I. Let t0 be such that (x0(t0), y0(t0), z0(t0)) =

(x0, y0, z0). Suppose that P (x0, y0, z0)dy0(t0)
dt −Q(x0, y0, z0)dx0(t0)

dt 6= 0. Then there exists a unique solution of the Cauchy
Problem satisfying the initial condition at every point of C contained in a neighbourhood of (x0, y0).

Corollary 3.3.1 Existence and Uniqueness for curves along axis Let P,R ∈ C1 in R3 and f ∈ C1 in R. Then for
the following problem: P (x, y, z)zx + zy = R(x, y, z), z(x, 0) = f(x), that is, the solution is required to be equal to f(x)
along the x-axis. Then in the neighbourhood of every point in the x-axis, there is a unique solution of the problem.

Theorem 3.4.1 Nonexistence condition Suppose:

P (x0, y0, z0)
dy0(t0)

dt
−Q(x0, y0, z0)

dx0(t0)

dt
= 0 ⇐⇒

dx0(t0)
dt

P (x0, y0, z0)
=

dx0(t0)
dt

Q(x0, y0, z0)
= µ

which is the negation of the condition required for Theorem 3.3.1. Now suppose:
dz0(t0)

dt

R(x0,y0,z0) 6= µ. Then there is no

solution to the initial value problem P (x, y, z)zx + Q(x, y, z)zy = R(x, y, z) for the initial condition curve C in any
neighbourhood of the point (x0, y0).

Theorem 3.4.2 Non-uniqueness when the curve is an integral curve Let T (t) = (x′0(t), y′0(t), z′0(t)) , t ∈ I, the tan-
gent vector to the curve C parametrised by x0(t), y0(t), z0(t). Suppose that T (t0) = µ(t)V , t ∈ I, so that the two
quantities are proportional at every point of C near (x0, y0, z0). Then the initial-value problem has infinitely many
solutions in a neighbourhood of (x0, y0) since every integral surface passing through that point will contain the integral
curve.

IVP for conservation laws Consider the system a(z)zx + zy = 0, z(x, 0) = f(x) where a, f ∈ C1. The associated system

of ODEs can be written as dx
a(z) = dy

1 = dz
0 with two functionally independent first integrals as u1 = z, u2 = x− a(z)y.

Hence the general integral is z = f(x− a(z)y), where we include the boundary condition z(x, 0) = f(x). This solution
exists as long as 1 + f ′(x− a(z)y)a′(z)y > 0 (the denominator of zx, zy is non-zero and positive).

Probability generating function G(t, s) =
∑∞
n=0 Pn(t)sn.

Stopped at Page 100, Chapter 4 Cauchy-Kovalevsky Theorem

Principal part Highest order terms appearing in the equation. Denote this operator as Pm(x,D), where m represents the
highest order, x is the independent variable, D represents the differentiation operator.

Characteristic direction at a point x ∈ Rn is a non-zero vector (made of numbers!) ζ = (ζ1, . . . , ζn) ∈ Rn such that
Pm(x, ζ) = 0. This is the characteristic equation. Basically, replace all D1 with ζ1, etc.

Characteristic Surface The surface S is said to be characteristic at x0 with respect to P (x,D) if a vector normal to S at
x0 defines an unsigned direction which is characteristic with respect to P (x,D) at x0. If S is characteristic with respect
to P (x,D) for all of its points, it is a characteristic surface. In R2, it is a characteristic curve. Note that the normal

vector to a parametrised curve (x0(t), y0(t)) is (up to a scaling factor) (dy0(t)
dt ,−dx0(t)

dt ).

Linear First Order Equation with 2 independent variables Consider an initial curve C parametrized by (x0(t), y0(t)), t ∈
I, x0, y0 ∈ C1 and initial data a function φ(t) ∈ C1. Then we want to find u(x, y) defined on Ω ⊂ R2 with C ⊂ Ω such
that a(x, y)ux + b(x, y)uy + c(x, y)u = f(x, y) and on the curve C, u(x0(t), y0(t)) = φ(t), t ∈ I.

Theorem 5.4.1 Existence and Uniqueness of First Order Equation Let (x0, y0) ∈ C and suppose C is not charac-
teristic there with respect to the PDE a(x, y)ux + b(x, y)uy + c(x, y)u = f(x, y). Then in a neighbourhood U of that
point there exists a unique solution of the PDE satisfying the initial condition at every point of C ∩ U .

Theorem 5.4.2 Initial curve is characteristic but does not match Suppose that the initial curve C is characteristic
with respect to the PDE a(x, y)ux + b(x, y)uy + c(x, y)u = f(x, y) at (x0, y0) and that:

dφ(t0)
dt

f(x0 − y0)− c(x0, y0)φ(t0)
6= µ ≡

dx0(t0)
dt

a(x0, y0)
=

dy0(t0)
dt

b(x0, y0)

where the last equality has to hold because of the characteristic requirement. Then there is not solution to the initial
value problem in any neighbourhood of the point (x0, y0).
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Theorem 5.4.3 Initial curve is characteristic and matches ratio Suppose that

dφ(t0)
dt

f(x0 − y0)− c(x0, y0)φ(t0)
= µ ≡

dx0(t0)
dt

a(x0, y0)
=

dy0(t0)
dt

b(x0, y0)

is satisfied for all t ∈ I. Then in a neighbourhood of (x0, y0) = (x0(t0), y0(t0)) the initial value problem has infinitely
many solutions.

Analytic surface A surface S ∈ Rn is analytic if it is a level surface of an analytic function F (x1, . . . , xn) = 0 with
non-vanishing gradient.

Theorem 5.5.1 Cauchy-Kovalesky Theorem Consider the linear PDE
∑
|α|≤m a

αDαu = f . Let x0 be a point of the

initial surface S. Suppose that the coefficients aα, the RHS f , the initial data u|s = φ0,
∂u
∂n

∣∣
s

= φ1, . . . ,
∂m−1u
∂nm−1

∣∣∣
s

= φm−1

functions φ0, . . . , φm−1 and the initial surface S are all analytic in some neighbourhood of x0. Suppose that the initial
surface S is not characteristic at x0 with respect to the PDE, so

∑
|α|=m a

α(x0)[n(x0)]α 6= 0. Then the Cauchy Problem

has a solution u(x) defined and analytic in a neighbourhood of x0 and this solution is unique in the class of analytic
functions.

Theorem 5.5.2 Holmgren’s Uniqueness Theorem Suppose that all assumptions of the Cauch-Kovalevsky Theorem
hold. Then any two solutions of the Cauchy problem which are defined and are of class Cm in some neighbourhood of
x0 must be equal in some neighbourhood of x0.

Definition: Canonical Form of General Linear First Order PDE Consider a(x, y)ux+b(x, y)uy+c(x, y)u+d(x, y) =
0. Then in some new coordinate system (ξ, η), we have uξ + γ(ξ, η)u + δ(ξ, η) = 0. The coordinate transform η(x, y)
must be a solution (which will be non-unique anyway) of the PDE aηx + bηy = 0 and ξ(x, y) is subject only to the
condition that the transformation Jacobian is non-zero.

Stopped at Page 137 Chapter 5 Classification of 2nd order eqns
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ACM95c Book Notes (Ch7-9)
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Definition 7.1.1 Harmonic Function Let Ω ⊂ Rn. A function u ∈ C2(Ω) which satisfies Laplace’s equation ∂2u
∂x2

1
+ ∂2u

∂x2
2

+

· · ·+ ∂2u
∂x2

n
= 0 in Ω is called Harmonic in Ω.

Theorem 7.1.1 Solutions to Laplace Equation are Analytic Let u be a continuous solution of Laplace’s equation in
Ω. Then u is analytic in Ω.

Laplace Operator in Polar Coordinates (Equation 7.2.2)

∆u =
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2

∂2u

∂θ2

Laplace Operator in Spherical Coordinates (Equation 7.2.3-4)

∆u =
1

r2

∂

∂r

(
r2 ∂u

∂r

)
+

1

r2 sinφ

∂

∂φ

(
sinφ

∂u

∂φ

)
+

1

r2 sin2 φ

∂2u

∂θ2

NOTE: φ is the polar angle and θ is the azimuthal angle here!

Solutions to Laplace Equation in 2D (Equation 2.19)

uµ(r, θ) = Rµ(r)Θµ(θ) =

{
1, rn cosnθ, rn sinnθ, n = 1, 2, . . .

log r, r−n cosnθ, r−n sinnθ, n = 1, 2, . . .

if Ω does not contain the origin of R2, all functions above are harmonic in Ω. If it does contain the origin, only functions
on the first line are harmonic in Ω.

Solutions to Laplace Equation in 3D (Equation 2.27)

un,k(r, θ, φ) =

{
rnY kn (θ, φ), k = 1, 2, . . . , 2n+ 1, n = 0, 1, 2, . . .

r−n−1Y kn (θ, φ), k = 1, 2, . . . , 2n+ 1, n = 0, 1, 2, . . .

If Ω does not contain the origin, all functions above are harmonic in Ω. Otherwise, only the first line functions are
harmonic in Ω.

Change of variables ] Let Ω and Ω′ be two domains in R2 and let there be a one-to-one mapping from Ω to Ω′: x′ =
x′(x, y), y′ = y′(x, y) with inverse mapping x = x(x′, y′)y = y(x′, y′). Let the mappings be C2 in their respective
domains. Let u(x, y) be a given function in Ω. Define u(x′, y′) = u(x(x′, y′), y(x′, y′)). Under the following elementary
transformations, u(x′, y′) satisfies Laplace’s equation whenever u(x, y) satisfies Laplace’s equation:

• Translations:

x′ = x+ x0, y′ = y + y0

x = x′ − x0, y = y′ − y0

• Rotations:

x′ = x cosα+ y sinα, y′ = −x sinα+ y cosα

x = x′ cosα− y′ sinα, y = x′ sinα+ y′ cosα

• Reflections about any straight line in R2.

• Similarity transformations (i.e. scaling).

Theorem 7.3.1 Linear Transformation that preserves Harmoniticity A linear transformation of coordinates pre-
serves the harmoniticity of every harmonic function iff it is given by a transformation of the form: A = λB where λ is
a positive constant and B is an orthogonal matrix. Recall that a matrix is orthogonal if

∑n
i=1 bikbjk = δij . Then the

transformation is x = Ax′ with inverse x′ = A−1x.
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Inversion with respect to a circle (Equation 7.3.13-15) Consider the boundary of a circle centred at the origin and

with radius a : S(0, a). Then the mapping r∗ = a2

r , θ
∗ = θ with inverse r = a2

r∗ , θ = θ∗ is an inversion with respect to
the circle. Then u(r∗, θ∗) is harmonic whenever u(r, θ) is harmonic.

Inversion with respect to a sphere (Equation 7.3.16-17)

rr∗ = a2, θ∗ = θ, φ∗ = φ

If u(r, θ, φ) is harmonic in Ω, then a
r∗u

(
a2

r∗ , θ
∗, φ∗

)
is harmonic in Ω∗ with respect to r∗, θ∗, φ∗.

Harmonic Function from Inversion with respect to circular thing (Equation 7.3.18-22) Let r, r∗ be positions vec-

tors a point and its inverse in either R2 or R3. Then if u(r) is harmonic in Ω, then u∗(r∗) ≡ a
r∗u

(
a2

(r∗)2 r
∗
)

is also

harmonic in Ω∗.

Dirichlet Problem or First Boundary Value Problem Let Ω be a bounded domain in Rn with smooth boundary ∂Ω,
and let f be a given function which is defined and continuous on ∂Ω. We want to find a function u which is defined
and continuous on the closure Ω̄ of Ω such that u is harmonic and u is equal to f on ∂Ω. f is the boundary data and
u(x) = f(x), x ∈ ∂Ω is the boundary condition.

Neumann Problem or Second Boundary Value Problem Let Ω be a bounded domain in Rn with smooth boundary
∂Ω and let n(x) be the outward unit normal vector to ∂Ω at the point x. Let f be a given function defined and
continuous on ∂Ω. We want to find a function u defined and continuous in Ω̄ such that u is harmonic in Ω and such
that the outer normal derivative ∂u(x)

∂n on ∂Ω equal to f(x).

Mixed Problem or Third Boundary Value Problem Let Ω be a bounded domain in Rn with smooth boundary ∂Ω
and let n(x) be the outward unit normal vector to ∂Ω at the point x. Let α, β, f be given functions defined and

continuous on ∂Ω. We want to find a function u such that ∆u = 0 in Ω and α(x)∂u(x)
∂n + β(x)u(x) = f(x) for x ∈ ∂Ω.

Theorem 7.5.1 Representation theorem for n=3 Let Ω0 be a bound normal domain in R3 and let n be the unit exterior
normal to the boundary ∂Ω0. Let u be any function in C2(Ω̄0). Then the value of u at any interior point r0 ∈ Ω0 is:

u(r0) =
1

4π

∫
∂Ω0

[
1

|r − r0|
∂u(r)

∂n
− u(r)

∂

∂n

1

|r − r0|

]
dσ − 1

4π

∫
Ω0

∇2u(r)

|r − r0|
dv

Note that the last term vanishes if u is a solution to Laplace’s equation.

Theorem 7.5.2 Representation theorem for n=2 Let Ω0 be a bounded normal domain in R2 and let n be the unit
exterior normal to the boundary ∂Ω0. Let u be any function in C2(Ω̄0). Then the value of u at any point r0 ∈ Ω0 is
given by:

u(r0) =
1

2π

∫
∂Ω0

[
log

1

|r − r0|
∂u(r)

∂n
− u(r)

∂

∂n
log

1

|r − r0|

]
ds− 1

2π

∫
Ω0

∇2u(r) log
1

|r − r0|
dxdy

Note that the last term vanishes if u is a solution to Laplace’s equation.

Definition 7.5.1 Mean Value Property A function u(r) defined on Ω ⊂ Rn satisfies the mean value property in Ω if:

u(r0) =
1

|S(r0, δ)|

∫
S(r0,δ)

u(r)dσ

for every δ > 0 such that B̄(r0, δ) ⊂ Ω. Note that |S(r0, δ)| is the area of the sphere (or circle) centred at r0 with
radius δ.

Theorem 7.5.3 Mean Value Theorem Let u be a harmonic function in a domain Ω ⊂ Rn. Then u has the mean value
property in Ω.

Theorem 7.5.4 Maximum Principle Let Ω be a bounded domain in Rn and suppose that u is defined and continuous in
Ω̄ and harmonic in Ω. Then u attains its maximum and minimum values on the boundary ∂Ω. If u is not constant on
Ω̄, then u attains is maximum and minimum values only on ∂Ω.

6



Well-posedness (i) There exists a solution, (ii) the solution is unique (iii) the solution depends continuously on the boundary
data.

Theorem 7.6.1 Uniqueness of Dirichlet problem The Dirichlet problem has at most one solution.

Theorem 7.6.2 Continuous dependence on data for Dirichlet problem Let f1 and f2 be two functions defined and
continuous on ∂Ω. Let u1 be the solution of the Dirichlet problem with f = f1 and let u2 be the solution of the problem
with f = f2. For any ε > 0, if |f1(x)− f2(x)| < ε,∀x ∈ ∂Ω then |u1(x)− u2(x)| < ε,∀x ∈ Ω̄.

Theorem 7.6.3 Existence of solution for Dirichlet problem for n=3 Let Ω be a bounded domain in R3. Then if
each point x ∈ ∂Ω can be touched by the tip of some probe, which is formed by rotating the curves y = xk, x ≥ 0, k ≥ 1
about the axis, such that all points of the probe within some positive number ρ from the tip of the probe lie outside Ω,
then the Dirichlet problem always has a solution.

Theorem 7.7.1 Formal Solution of Dirichlet Problem on Unit Disk We want to find function u(r, θ) ∈ C2(Ω) ∩
C0(Ω̄) (that is, twice continuously differentiable on the interior and continuous on the boundary) such that ∇2u(r, θ) =
0, 0 ≤ r < 1,−π ≤ θ ≤ π and u(1, θ) = f(θ),−π ≤ θ ≤ π where f is a given function in C0(∂Ω) that satisfies
f(−π) = f(π) and has piecewise continuous derivative. Then the solution u(r, θ) of the Dirichlet problem is given by
the series

u(r, θ) =
a0

2
+

∞∑
n=1

rn(an cosnθ + bn sinnθ)

with coefficients

an =
1

π

∫ π

−π
f(θ) cosnθdθ, bn =

1

π

∫ π

−π
f(θ) sinnθdθ

Theorem 7.7.2 Solution to Dirichlet problem on Unit Disk without piecewise continuous derivative Suppose that
f ∈ C0(∂Ω). Then the solution of the Dirichlet problem on the unit disk is:

u(r, θ) =

{
a0
2 +

∑∞
n=1 r

n(an cosnθ + bn sinnθ), r < 1

f(θ), r = 1

Theorem 7.7.3 Solution to Dirichlet problem using Poisson’s integral Suppose that f ∈ C0(∂Ω). Then the solu-
tion of the Dirichlet problem is given by:

u(r, θ) =

{
1

2π

∫ 2π

0
(1−r2)f(φ)

1+r2−2r cos(θ−φ)dφ, r < 1

f(θ), r = 1

When the disk has radius a, then:

u(r, θ) =

{
1

2π

∫ 2π

0
(a2−r2)f(φ)

a2+r2−2ar cos(θ−φ)dφ, r < a

f(θ), r = a

and the series solution looks like

u(r, θ) =
a0

2
+

∞∑
n=1

( r
a

)n
(an cosnθ + bn sinnθ)
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Definition 7.8.2 Fourier Series Let f be a piecewise continuous function on [−π, π]. The Fourier series is:

a0

2
+

∞∑
n=1

(an cosnx+ bn sinnx)

an =
1

π

∫ π

−π
f(x) cosnxdx

bn =
1

π

∫ π

−π
f(x) sinnxdx

Theorem 7.8.1 Fourier Theorem Suppose a function f and its derivative are piecewise continuous on [−π, π] and that f
is periodic of period 2π. Then the Fourier series converges to f(x) at every point x where f is continuous and converges
to 1

2 [f(x+ 0) + f(x− 0)] where f has a jump discontinuity.

Parseval Relation (Equation 7.8.34) For every function piecewise continuous on [−π, π], the Fourier series satisfies:

a2
0

2
+

∞∑
n=1

(a2
n + b2n) =

1

π

∫ π

−π
[f(x)]2dx

Theorem 7.8.2 Convergence of Fourier Series Let f be continuous on the interval [−π, π], with f(−π) = f(π). Let
the first derivative be piecewise continuous on [−π, π]. Then the Fourier series converges absolutely and uniformly on
the interval [−π, π].

Fourier series over an arbitrary interval (Equation 7.8.37-38) Let f(x) be periodic of period 2L that is piecewise
continuous on [−L,L]. Then the Fourier series is:

a0

2
+

∞∑
n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)
an =

1

L

∫ L

−L
f(x) cos

nπx

L
dx

bn =
1

L

∫ L

−L
f(x) sin

nπx

L
dx

Fourier cosine and sine series (Equations 7.8.39-40) Let f(x) be defined on [0, L].

a0

2
+

∞∑
n=1

an cos
nπx

L
, an =

2

L

∫ L

0

f(x) cos
nπx

L
dx

∞∑
n=1

bn sin
nπx

L
, bn =

2

L

∫ L

0

f(x) sin
nπx

L
dx

Definition 7.9.1 Green’s Function in 3D Let Ω ⊂ R3. Let h(r′, r) satisfy:

∆′h(r′) = 0, r′ ∈ Ω

h(r′) = − 1

4π

1

|r′ − r|
, r′ ∈ ∂Ω

for all r ∈ Ω. Then the function:

G(r′, r) =
1

4π

1

|r′ − r|
+ h(r′, r), r′, r ∈ Ω̄, r′ 6= r
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is called the Green’s function for the Dirichlet problem for Ω.

The solution to the Dirichlet problem:

∆u = 0, r ∈ Ω

u = f, r ∈ ∂Ω

is hence given by:

u(r) = −
∫
∂Ω

f(r′)
∂

∂n
G(r′, r)dσ, r ∈ Ω

Definition 7.9.2 Green’s function in 2D Let Ω ⊂ R2. Let h(r′, r) satisfy:

∆′h(r′, r) = 0, r′ ∈ Ω

h(r′, r) = − 1

2π
log

1

|r′ − r|
, r′ ∈ ∂Ω

for all r ∈ Ω. Then the function:

G(r′, r) =
1

2π
log

1

|r′ − r|
+ h(r′, r), r′, r ∈ Ω̄, r′ 6= r

is called the Green’s function for the Dirichlet problem for Ω. The general solution is given by the same form as the
3D case.

Poisson Kernel (Equation 7.10.13) Consider the Dirichlet problem for Ω = B(0, a)

Leibniz Rule for Differentiating under Integral sign

d

dy

(∫ b(y)

a(y)

f(x, y)dx

)
=

∫ b(y)

a(y)

∂yf(x, y)dx+ f(b(y), y)b′(y)− f(a(y), y)a′(y)
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