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1. Abel’s Theorem: If y1 and y2 are solutions to the differential equation y′′ + p(t)y′ + q(t)y = 0 where p and q are
continuous on the open interval I, then the Wronskian is given by:

W (y1, y2)(t) = ce−
∫ t p(s)ds

2. Regular Singular Point: Given P (x)y′′ +Q(x)y′ +R(x)y = 0, a regular singular point of the DE is a point x0 such

that limx→x0(x− x0)Q(x)
P (x) is finite and limx→x0(x− x0)2R(x)

P (x) is finite as well.

3. Reduction of order Consider y′′ + p(t)y′ + q(t)y = 0. Suppose we know one solution y1(t). To find the second
solution, let y = v(t)y1(t) and sub to obtain y1v

′′ + (2y′1 + py1)v′ = 0 which is first order in v′.

4. Variation of parameters Consider y′′ + p(t)y′ + q(t)y = g(t) with homogeneous solution yc(t) = c1y1(t) + c2y2(t).
Then let c1, c2 vary with t and introduce the additional condition c′1(t)y1(t) + c′2(t)y2(t) = 0. Then solve to get

c1(t) = −
∫ y2(t)g(t)
W (y1,y2)(t)dt+ c3, c2(t) =

∫ y1(t)g(t)
W (y1,y2)(t)dt+ c4 so that the particular solution is

yp(t) = −y1(t)

∫ t

t0

y2(s)g(s)

W (y1, y2)(s)
ds+ y2(t)

∫ t

t0

y1(s)g(s)

W (y1, y2)(s)
ds

5. Variation of Parameters - nth order Consider the system y(n) + p1(t)y(n−1) + . . . + pn−1(t)y′ + pn(t)y = g(t)

with homogenous solution c1y1(t) + . . . cnyn(t). Let the coefficients vary with t and impose the conditions u′1y
(j)
1 +

u′2y
(j)
2 + . . . + u′ny

(j)
n = 0, j = 0, 1, . . . , n − 2. Then use Cramer’s rule to write the particular solution as yp(t) =∑n

m=1 ym(t)
∫ t
t0

g(s)Wm(s)
W (s) ds where Wm is the determinant obtained from the Wronskian matrix by replacing the mth

column by (0, 0, . . . , 0, 1).

6. Euler Equations Consider x2y′′ + αxy′ + βy = 0. Making the substitution y = xr, we obtain the indicial equation
F (r) = r(r − 1) + αr + β = 0.

• Real, distinct roots: y = c1|x|r1 + c2|x|r2

• Equal roots: y = (c1 + c2 ln |x|)|x|r1

• Complex roots r = λ± iµ : y = c1|x|λ cos(µ ln |x|) + c2|x|λ sin(µ ln |x|).

7. Series solutions at ordinary points Given:

y′′ +

∞∑
n=0

pn(x− x0)ny′ +

∞∑
n=0

qn(x− x0)ny = 0

The recursion relation is:

(n+ 1)(n+ 2)an+2 +

n∑
k=0

(n− k + 1)pkan−k+1 +

n∑
k=0

qkan−k = 0

8. Singular Points Given P (x)y′′ +Q(x)y′ +R(x)y = 0 and P (x0) = 0 and at least one of Q(x0), R(x0) 6= 0, then x0 is
a singular point.

• Regular Singular Point:

lim
x→x0

(x− x0)
Q(x)

P (x)
is finite

lim
x→x0

(x− x0)2R(x)

P (x)
is finite
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• Regular singular point (higher order). Assume unity coefficient for y(n):

(x− x0)np0(x) is finite

(x− x0)n−1p1(x) is finite

...

(x− x0)pn−1(x) is finite

• Point at infinity. Make the substitution x = 1
t and change differentiation variables:

d

dx
= −t2 d

dt
d2

dx2
= t4

d2

dt2
+ 2t3

d

dt

Then consider point at t→ 0.

9. Series solutions near regular singular points: Given P (x)y′′ + Q(x)y′ + R(x)y = 0 and a regular singular point

x0 = 0 (make change of variables to shift regular singular point to origin), write p(x) = Q(x)
P (x) and q(x) = R(x)

P (x) . Then

we have:

xp(x) =

∞∑
n=0

pnx
n

x2q(x) =

∞∑
n=0

qnx
n

on some interval containing the origin. We make the guess y = xr
∑∞
n=0 anx

n. This results in

a0F (r)xr +

∞∑
n=1

{
F (r + n)an +

n−1∑
k=0

ak[(r + k)pn−k + qn−k]

}
xr+n = 0

Then we obtain the recurrence relation of an in terms of the n− 1 previous terms:

F (r + n)an +

n−1∑
k=0

ak[(r + k)pn−k + qn−k] = 0

and the zeroth order indicial equation (a0 6= 0):

F (r) = r(r − 1) + p0r + q0 = 0

p0 = lim
x→0

x
Q(x)

P (x)

q0 = lim
x→0

x2R(x)

P (x)

with roots r1 and r2.

• If r1 6= r2 and they do not differ by an integer, then we have the solutions:

y1 = |x|r1
[

1 +

∞∑
n=1

an(r1)xn

]

y2 = |x|r2
[

1 +

∞∑
n=1

an(r2)xn

]

• Complex roots do not differ by an integer. Hence just take the real and imaginary parts of the complex solution.

2



• Equal roots: The first solution is the same.

From the result of the substitution:

a0F (r)xr +

∞∑
n=1

{
F (r + n)an +

n−1∑
k=0

ak[(r + k)pn−k + qn−k]

}
xr+n = 0

and let r be a continuous variable. Then an(r) be such that they solve the recurrence relation. In that case,

L(r, x) = a0F (r)xr

where L represents the operator for the homogeneous system. For repeated roots F (r) = C(r− r1)2. Differentiate
and evaluate at r = r1.

The second solution can be found to be:

y1 = |x|r1
[

1 +

∞∑
n=1

an(r1)xn

]

y2 = y1(x) ln |x|+ |x|r1
∞∑
n=1

a′n(r1)xn

where a′n(r1) is dan
dr

∣∣
r=r1

.

• Roots differing by integer: Pick the larger root r2:

y2 = ay1(x) ln |x|+ |x|r2
[

1 +

∞∑
n=1

cn(r2)xn

]

cn(r2) =
d

dr
[(r − r2)an(r)]|r=r2

a = lim
r→r2

(r − r2)aN (r), N = r1 − r2 > 0

Substitute this guess into the original equation to solve for a and cn(r2).

10. Bessel’s Equation: Consider x2y′′ + xy′ + (x2 − v2)y = 0. x = 0 is a regular singular point.

• Bessel Equation of order Zero: Roots of Indicial equation are equal. Pick v = 0. Then the roots of the indicial
equation are at 0. If we choose a1 = 0 then we obtain the Bessel function of the first kind of order zero:

y1(x) = a0J0(x) = a0

[
1 +

∞∑
m=1

(−1)mx2m

22m(m!)2

]
, x > 0

Note that J0 → 1 as x→ 0. The second solution is given by:

y2(x) = J0 lnx+

∞∑
m=1

(−1)m+1Hm

22m(m!)2
x2m, x > 0

where Hm =
∑m
k=1

1
k . We hence define the Bessel function of the second kind of order zero:

Y0(x) =
2

π
[y2(x) + (γ − ln 2)J0(x)]

where γ is the Euler-Mascheroni constant given by:

γ = lim
n→∞

(Hn − lnn) ≈ 0.5772

Equivalently,

Y0(x) =
2

π

[(
γ + ln

x

2

)
J0(x) +

∞∑
m=1

(−1)m+1Hm

22m(m!)2
x2m

]
, x > 0

Note that Y0(x) has a logarithmic singularity at x = 0. Then the general solution for the Bessel equation of order
zero is:

y = c1J0(x) + c2Y0(x)
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• Bessel equation of order one-half: Let v = 1
2 so that the roots are − 1

2 and 1
2 . The general solution is a linear

combination of the Bessel functions of the first kind order of order plus or minus one-half:

y = c1J1/2(x) + c2J−1/2(x)

J1/2(x) =

(
2

πx

)1/2

sinx

J−1/2(x)

(
2

πx

)1/2

cosx

• Bessel Equation of order one: Let v = 1. Then the roots of the indicial equation are −1 and 1.

11. Laplace Transform

• Sufficient condition for existence of Laplace transform: Suppose that f is piecewise continuous on the interval
0 ≤ t ≤ A for any positive A. Also assume that |f(t)| ≤ Keat when t ≥ M for positive constants K,M and real
a. Then the Laplace transform

∫∞
0
e−stf(t)dt exists for s > a.

• Laplace Transform of derivatives: Suppose that f is continuous and f ′ is piecewise continuous on any interval
0 ≤ t ≤ A, and that f is of exponential order as t→∞. Then:

L(f ′(t)) = sL(f(t))− f(0)

• Higher order derivatives: Suppose that f, f ′, . . . , f (n−1) are continuous and f (n) is piecewise continuous on any
interval 0 ≤ t ≤ A. Suppose that all of the n − 1 derivatives are of exponential order (compared to Keat) for all
t ≥M > 0. Then L(f (n)(t)) exists for s > a and is given by:

L(f ′′(t)) = s2L(f(t))− sf(0)− f ′(0)

L(f (n)(t)) = snL(f(t))− sn−1f(0)− · · · − sf (n−2)(0)− f (n−1)(0)

• Displacement: If F (s) = L(f(t)) exists for s > a, and if c > 0, then:

L(uc(t)f(t− c)) = e−csL(f(t)) = e−csF (s), s > a

• General solution to second order differential equation: Given ay′′ + by′ + cy = g(t), obtain:

(as2 + bs+ c)Y (s)− (as+ b)y0 − ay′0 = G(s)

Y (s) = Φ(s) + Ψ(s) ⇐⇒ y(t) = φ(t) + ψ(t)

where φ(t) is the solution to ay′′ + by′ + cy = 0, y(0) = y0, y
′(0) = y′0 and ψ(t) is the solution to ay′′ + by′ + cy =

g(t), y(0) = 0, y′(0) = 0. Also define the transfer function H(s) = 1
as2+bs+c so that Ψ(s) = H(s)G(s). Then

by the convolution theorem: ψ(t) =
∫ t

0
h(t − τ)g(τ)dτ with h(t) being the solution to the initial value problem

ay′′ + by′ + cy = δ(t), y(0) = 0, y′(0) = 0. Notice that h(t) here is the Green’s function!

12. Linear Operators Consider a linear operator T : Rn → Rn.

• Operator norm: ||T || = max|x|≤1 |T (x)|, where |x| =
√
x2

1 + x2
2 + . . .+ x2

n is the Euclidean norm.

– ||T || ≥ 0, ||T || = 0 ⇐⇒ T = 0

– ||kT || = |k|||T ||, k ∈ R.

– ||S + T || ≤ ||S||+ ||T ||.
– ||T (x)|| ≤ ||T |||x|.
– ||TS|| ≤ ||T ||||S||
– ||T k|| ≤ ||T ||k, k = 0, 1, 2, . . ..

• Convergence: A sequence of linear operators Tk ∈ L(Rn) is said to converge to a linear operator T ∈ L(Rn) as
k →∞: limk→∞ Tk = T iff for all ε > 0 there exists an N such that for k ≥ N, ||T − Tk|| < ε.

• Operator exponential convergence theorem: Given T ∈ L(Rn) and t0 > 0, the series
∑∞
k=0

Tktk

k! is absolutely and
uniformly convergent for all |t| ≤ t0.

• Operator exponential: eT =
∑∞
k=0

Tk

k! is absolutely convergent.

13. Systems of first order linear equations
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• Existence and Uniqueness: Suppose we have the system:

x′1 = F1(t, x1, x2, . . . , xn)

...

x′n = Fn(t, x1, x2, . . . , xn)

and let Fi, i = 1, 2, . . . , n and all the first order partial derivatives ∂Fi

∂xj
be continuous in a region R in tx1x2 · · ·xn

space with the initial conditions (t0, x
0
1, . . . , x

0
n) ∈ R. Then there exists an interval |t − t0| < h in which there

exists a unique solution x1 = φ1(t), . . . , xn = φn(t) of the system that satisfies the initial conditions.

• Linear system of equations: Consider the system:

x′1 = p11(t)x1 + . . .+ p1n(t)xn + g1(t)

...

x′n = pn1(t)x1 + . . .+ pnn(t)xn + gn(t)

that is linear in all xi. If the functions pij and gi are continuous on the interval α < t < β then there exists a
unique solution that satisfies the initial conditions for t0 ∈ I = (α, β). Moreover, the solution exists throughout I.

• Scalar inner product:

(x,y) =

n∑
i=1

xiȳi

for two column vectors x,y.

• Hermitian matrices: A† = A. Properties: Real eigenvalues, exactly n linearly independent eigenvectors, eigenvec-
tors corresponding to different eigenvalues are orthogonal, within each eigenvalue of multiplicity m, it is possible
to choose m mutually orthogonal eigenvectors. Hence the eigenvectors of A can be chosen to be orthogonal and
linearly independent.

• Abel’s Theorem for Linear Matrix systems: Given d
dtx = A(t)x, the Wronskian can be determined up to a scaling

constant by: W = C exp
(∫ t

t0
Tr(A(t′))dt′

)
.

• Homogenous linear system with constant coefficients: Consider the matrix differential equation x’ = Ax where A
is an n× n matrix. Consider solutions of the form x = ξert, which gives the eigenvalue equation (A− rI)ξ = 0.
There are now the following possibilities:

– Eigenvalues are real and distinct: General solution is x = c1ξ1e
r1t + · · · + cnξne

rnt for the n eigenvalues
r1, . . . , rn with corresponding linearly independent eigenvectors ξ1, . . . , ξn. If A is real and symmetric (special
case of Hermitian), then we know that the eigenvalues will be real.

– One set of complex eigenvalues. The complex eigenvalues and corresponding eigenvectors will be complex
conjugates of each other (see by taking the complex conjugate of the eigenvalue equation). Let ξ1,2 = a± ib
and r1,2 = λ± iµ. Then the vectors:

u(t) = eλt (a cos(µt)− b sin(µt))

v(t) = eλt (a sin(µt) + b cos(µt))

are two real-valued solutions (taking the real and imaginary parts of the complex-valued (ξ)ert). Assume that
all other eigenvalues are real and distinct. Then the general solution is x = c1u(t) + c2v(t) + c3ξ3e

r3t + . . .+
cnξne

rnt.

• General solution to constant coefficient system

x =

k∑
j=1

mj∑
i=1

cijz
i−1 exp(λjz)

For roots λj with multiplicities mj such that m1 +m2 + . . .+mk = n, the order of the system.

• Fundamental matrix: Consider the matrix differential equation x′ = P(t)x with the fundamental set of solutions
x1(t), . . . ,xn(t). Then the matrix:
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Ψ(t) = [x1(t), . . . ,xn(t)]

is called the fundamental matrix for the system. The fundamental matrix is non-singular because the columns are
linearly independent. Then we can write the general solution of the initial value problem as x = Ψ(t)c where c is
the constant vector of coefficients c1, . . . , cn. Then the initial condition can be written as x(t0) = x0 = Ψ(t)c so
c = Ψ−1(t0)x0 =⇒ x = Ψ(t)Ψ−1(t0)x0.

• Special Fundamental Matrix: Let Φ(t) be the fundamental matrix that satisfies Φ(t0) = I. Its inverse at t = t0 is
clearly still the identity. Then the general solution can be written as x = Φ(t)x0. Clearly, Φ(t) = Ψ(t)Ψ−1(t0).

• Matrix exponential: Define:

exp(At) = I +

∞∑
n=1

Antn

n!

This matrix exponential clearly satisfies exp(At)|t=0 = I and satisfies the initial value problem Φ′ = AΦ,Φ(0) = I.
Hence the general solution is eAtx0. More generally, for a non-homogeneous system,

x = exp(Az)x0 +

∫ z

0

exp(A(z − t))f(t)dt

For a general fundamental solution:

x = Ψ(z)Ψ−1(0)x0 + Ψ(z)

∫ z

0

Ψ−1(t)f(t)dt

• Obtaining the Matrix Exponential. Consider eAt. Let A be diagonalized by T: D = T−1AT. Then:

eAt = eTDT−1t = TeDtT−1

(show this by Taylor expansion).

• Diagonalisable matrix. A matrix A is diagonalisable if it is similar to a diagonal matrix D. That is, there exists
an invertible matrix T such that T−1AT = D. If A has less than n linearly independent eigenvectors, then it
is not diagonalisable. If A is Hermitian, then its eigenvectors are mutually orthogonal, and can be normalised
such that the inner product (ξi, ξi) = 1,∀i = 1, 2, . . . , n. It can be shown that in such as case T−1 = T∗ so T is
Hermitian as well.

• Repeated Eigenvalues: Note that there are two cases: either there are k linearly independent eigenvectors
corresponding to the eigenvalue of algebraic multiplicity k (i.e. geometric multiplicity k) or there are fewer than
k linearly independent eigenvectors (geometric multiplicity less than k).

– In the first case, tack on the exponential ert and each of the eigenvectors becomes a linearly independent
solution to the system: ξ1e

rt, . . . , ξke
rt. This first case always occurs when the coefficient matrix is Hermitian.

– In the second case, let eigenvalue have algebraic multiplicity two and geometric multiplicity one. Let the
eigenvalue be r and the eigenvector be ξ. Then solve for the vector η that satisfies (A− rI)η = ξ. Then the
second solution is x2 = ξtert + ηert. η is a generalised eigenvector corresponding to the eigenvalue r.

14. Linear Inhomogeneous Matrix Differential Equation (Finding particular solution with n eigenvectors).
Consider d

dtx = Ax + g(t) with A is a constant matrix with n linearly independent eigenvectors. Construct the
matrix of eigenvectors T and introduce the change of variable x = Ty and substitute to obtain y′ = Dy + h(t) where
h(t) = T−1g(t). Then we have the decoupled equations:

y′j(t) = rjyj(t) + hj(t), j = 1, 2, . . . , n

in terms of the eigenvalues rj . Integrating, we obtain:

yj(t) = erjt
∫ t

t0

e−rjshj(s)ds+ cje
rjt, j = 1, 2, . . . , n

for constants cj so that they can be absorbed into the homogeneous solutions erjt. Then the particular solution is:

yj(t) = erjt
∫ t

t0

e−rjshj(s)ds, j = 1, 2, . . . , n
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15. Linear Inhomogeneous Matrix Differential Equation (Defective Matrix) If A is not diagonalisable, then we
reduce it to Jordan form instead. The equations are not totally uncoupled but can still be solved consecutively starting
from yn(t).

16. Undetermined Coefficients for Systems: Consider x′ = Ax + g(t). If A is a constant coefficient matrix, and g is
a polynomial, exponential or sinusoidal function (or a composition of these), then make the following guesses:

• g(t) = ta + b. Make the guess tc + d.

• g(t) = ueλt when λ is a simple root of the characteristic equation. Assume solution of form ateλt + beλt.

17. Variation of Parameters (coefficient matrix not constant or not diagonalisable) Consider x′(t) = P(t)x+g(t).
Assume that we can find the fundamental matrix for the homogenous system: Ψ(t), which is non-singular on any interval
when P(t) is continuous. We seek a solution of the non homogenous system in the form: x = Ψ(t)u(t) for some vector
u(t) to be found. Then:

u(t) =

∫
Ψ−1(s)g(s)ds+ c

=⇒ x = Ψ(t)

∫
Ψ−1(s)g(s)ds+ Ψ(t)c

If the initial values are given:

x(t) = Ψ(t)Ψ−1(t0)x0 + Ψ(t)

∫ t

t0

Ψ−1(s)g(s)ds

18. Method of Adjoint Solution Let x′ = A(z)x + f(z). Define the adjoint system:

y′ = −AT (z)y

Define the matrix

Φ(z) =


y11 y12 · · · y1n

y21 y22 · · · y2n

...
...

. . .
...

yn1 yn2 · · · ynn


Where the solutions to the adjoint equation are in rows. Then the solution is:

x = Φ−1(z)Φ(z0)x0 + Φ−1(z)

∫ z

z0

Φ(t)f(t)dt

The adjoint fundamental matrix solves the equation: Φ′ = −ΦA. Note that the inverse of the adjoint matrix is the
fundamental matrix!

19. Laplace Transform of Linear Systems Transform of a vector is computed component by component. Then we have
the following identities, taking X(s) = L(x(t)) :

L(x′(t)) = sX(s)− x(0)

20. Boundary Value Problems If the boundary value function has value zero for each x, then the problem is homoge-
neous. Otherwise it is non-homogeneous.

21. Fourier methods
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• Discrete series:

f(x) =
a0

2
+

∞∑
m=1

(
am cos

mπx

L
+ bm sin

mπx

L

)
• Coefficients

an =
1

L

∫ L

−L
f(x) cos

nπx

L
dx

bn =
1

L

∫ L

−L
f(x) sin

nπx

L
dx

a0 =
1

L

∫ L

−L
f(x)dx

• Sufficient conditions for Fourier series convergence: Suppose f and f ′ are piecewise continuous on the interval
−L ≤ x < L. Suppose that f is defined outside the interval −L ≤ x < L so that it is periodic with period
2L. Then f has a Fourier series whose coefficients can be calculated using the formulae above. The Fourier

series converges to f(x) at all points where f continuous, and it converges to f(x+)+f(x−)
2 at all points where f is

discontinuous, where f(x+) is the limit of f(x) from the right and f(x−) is the limit from the left.

22. Even and odd function properties

• Sum (difference) and Product (quotient) of two even functions are even.

• Sum (difference) of two odd functions is odd. Product (quotient) of two odd functions is even.

• Sum (difference) of an odd function and an even function is neither even nor odd. Product (quotient) of an odd
function and an even function is odd.

23. Table of Laplace Transforms
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f(t) F (s)
1 1

s
eat 1

s−a
tn n!

sn+1

tp, p > −1 Γ(p−1)
sp+1√

t
√
π

2s3/2

tn−1/2, n = 1, 2, 3 . . . 1·3·5···(2n−1)
√
π

2nsn+1/2

sin(at) a
s2+a2

cos(at) s
s2+a2

t sin(at) 2as
(s2+a2)2

t cos(at) s2−a2
(s2+a2)2

sin(at+ b) s sin b+a cos b
s2+a2

cos(at+ b) s cos b−a sin b
s2+a2

sinh(at) a
s2−a2

cosh(at) s
s2−a2

eat sin bt b
(s−a)2+b2

eat cos bt s−a
(s−a)2+b2

eat sinh bt b
(s−a)2−b2

eat cosh bt s−a
(s−a)2−b2

tneat n!
(s−a)n+1

f(ct) 1
cF (s/c)

u(t− c) e−cs

s
δ(t− c) e−cs

u(t− c)f(t− c) e−csF (s)
u(t− c)g(t) e−csL(g(t+ c))
ectf(t) F (s− c)
tnf(t) (−1)nF (n)(s)
f(t)
t

∫∞
s
F (u)du∫ t

0
f(v)dv F (s)

s

f ∗ g =
∫ t

0
f(t− τ)g(τ)dτ F (s)G(s)

f(t+ T ) = f(t)
∫ T
0
e−stf(t)dt

1−e−sT

f ′(t) sF (s)− f(0)
f ′′(t) s2F (s)− sf(0)− f ′(0)

f (n)(t) snF (s)−
∑n−1
i=0 s

n−1−if (i)(0)
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Essential Formulae

Reduction of order y′′+p(x)y′+q(x)y = 0 with y1 known.
Then y2 = v(x)y1 and solve for v in v′(2y′1 + py1) +
v′′y1 = 0.

v(x) = c

∫ x 1

y2
1(t)

exp

[
−
∫ t

p(s)ds

]
dt

ygen = c1y1 + c2v(x)y1

Variation of Parameters Let yp = u1y1 + u2y2. Then set
u′1y1 + u′2y2 = 0. Then:

yp = c1y1 + c2y2 − y1

∫ x y2(t)r(t)

W (t)
+ y2

∫ x y1(t)r(t)

W (t)

Systems of Equations dx
dz = A(z)x + F(z).

Reduction of order for systems Assume we know x1 is a
solution to x′ = Ax. Define Γ to be the matrix with
the last column of x1 and the last element of x1 must
be nonzero. Then solve:

x ≡ Γy

y′ = Γ−1(AΓ− Γ′)y = By

y′i =

n−1∑
j=1

bijyj , i = 1, 2, . . . , n− 1

y′n =

n−1∑
j=1

bnjyj

Adjoint System Given x′ = Ax + f, the adjoint system is
y′ = −ATy. Put the solutions to y in rows in Φ, which
satisfies Φ′ = −ΦA. Then:

x = Φ−1(z)Φ(z0)x0 + Φ−1(z)

∫ z

z0

Φ(t)f(t)dt

Fundamental matrix solution Suppose you have the fun-
damental matrix Ψ. Then for the inhomogeneous sys-
tem,

x = Ψ(z)Ψ(z0)−1x0 + Ψ(z)

∫ z

z0

Ψ−1(t)f(t)dt

Series solution Write an in terms of a0!!! and check
for series convergence

Cauchy Product

∞∑
n=0

an

∞∑
n=0

bn =

∞∑
n=0

n∑
j=0

ajbn−j

Point at infinity Let x = 1
t . Then:

d

dx
= −t2 d

dt
d2

dx2
= t4

d2

dt2
+ 2t3

d

dt

Laplace Transform of Derivative

L[fn(t)] = snL[f(t)]− sn−1f(0) . . . sf (n−2)(0)− f (n−1)(0)

Inverse Laplace Transform

f(t) =
1

2πi

∫ c+i∞

c−i∞
F (s)estds

where c is chosen so that all the poles are to the left.
Close in the direction that est does not blow up.

Convolution for Laplace Transform

f ∗ g =

∫ t

0

f(t− τ)g(τ)dτ

Sturm-Liouville ODE

d

dx

(
p(x)

dy

dx

)
− q(x)y(x) + λr(x)y(x) = 0

c1y(a) + c2y
′(a) = 0

d1y(b) + d2y
′(b) = 0

p(x) > 0, r(x) > 0

p, q, r ∈ C

Legendre Equation

(1− x2)y′′ − 2xy′ + v(v + 1)y = 0

[(1− x2)y′]′ + v(v + 1)y = 0,−1 ≤ x ≤ 1

Lagrange Identity Define:

L[y(x)] = − d

dx

(
p(x)

dy(x)

dx

)
+ q(x)y(x)

Then with separated homogeneous boundary condi-
tions, ∫ b

a

L[u(x)]v(x)dx =

∫ b

a

u(x)L[v(x)]dx∫ b

a

ū(x)L[v(x)]dx =

∫ b

a

v(x)L[ū(x)]dx

Fourier Series

f(x) =

∞∑
n=1

An sin(nπx) ⇐⇒ An = 2

∫ 1

0

f(x) sin(nπx)dx

f(x) =

∞∑
n=0

Bn sin(nπx) ⇐⇒ Bn = 2

∫ 1

0

f(x) cos(nπx)dx

f(x) =

∞∑
n=1

An sin(2nπx) +

∞∑
n=0

Bn cos(2nπx)

⇐⇒ An = 2

∫ 1

0

f(x) sin(2nπx)dx

& Bn = 2

∫ 1

0

f(x) cos(2nπx)dx
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Full Fourier Series

f(x) =

∞∑
n=1

An sin(nπx/L) +

∞∑
n=0

Bn cos(nπx/L),−L < x < L

⇐⇒ An =
1

L

∫ L

−L
f(x) sin(nπx/L)dx

Bn =
1

L

∫ L

−L
f(x) cos(nπx/L)dx

B0 =
1

2L

∫ L

−L
f(x)dx

f(x) =

∞∑
n=−∞

Cne
inπx/L

Cn =


Bn−iAn

2 , n > 0
Bn+iAn

2 , n < 0

B0, n = 0

Parseval’s Theorem∫ L

−L
f(x)2dx = L

[
2B2

0 +

∞∑
n=1

(A2
n +B2

n)

]

Uniform Convergence of Fourier Series The Fourier se-
ries of f(x) converges uniformly to f(x) where f(x) is
differentiable. If f(x) has a discontinuity at x = a, then
the series converges to:

F (a) =
f(a+) + f(a−)

2

and the convergence is not uniform.

Rate of convergence of Fourier Series If you have k− 1
continuous derivatives including the zeroth derivative,
the coefficients decay at least as fast as 1

nk .

Riemann-Lebesgue Lemma If g(x) is any L1 integrable

function, then
∫ 2π

0
g(x)eikxdx→ 0 as k →∞.

Inhomogeneous S-L Form

d

dx

(
p(x)

dy

dx

)
− q(x)y(x) + λr(x)y(x) = r(x)f(x)

y(x) =

∞∑
n=0

fn
λ− λn

φn(x)

Fredholm Alternative If λ = λm and fm vanishes,

y(x) =

∞∑
n=0,n6=m

fn
λ− λn

φn(x) + Cφm(x)

without uniqueness.

Inhomogeneous boundary conditions Let y(0) =
y0, y(L) = y1. Then define:

u(x) = y(x)− 1

L
[y1x+ y0(L− x)]

Green’s functions

G(x, x′;λ) =

∞∑
n=0

φn(x)φn(x′)

λ− λn

y(x) =

∫ b

a

f(x′)r(x′)G(x, x′;λ)dx′

d

dx

(
p(x)

dG

dx

)
− q(x)G+ λr(x)G = δ(x− x′), a < x < b

and it satisfies the homogeneous boundary conditions
(clearly).

Fourier Transform

F (k) =
1√
2π

∫ ∞
−∞

f(x)e−ikxdx

f(x) =
1√
2π

∫ ∞
−∞

F (k)eikxdk

Fourier Transform of Derivative Requires the function
and its derivative to vanish at infinity.

F [y(n)] = (ik)nY (k)

Convolution for Fourier Transform

f ∗ g =
1√
2π

∫ ∞
−∞

f(ζ)g(x− ζ)dζ

Parseval’s Theorem (Transform)∫ ∞
−∞
|F (k)|2dk =

∫ ∞
−∞
|f(x)|2dx

Sine and Cosine Transforms

Fc(k) =

√
2

π

∫ ∞
0

f(x) cos kxdx

f(x) =

√
2

π

∫ ∞
0

Fc(k) cos kxdk√
2

π

∫ ∞
0

y′′(x) cos kxdx = −k2Yc(k)−
√

2

π
y′(0)√

2

π

∫ ∞
0

y′′(x) sin kxdx = −k2Ys(k) +

√
2

π
y(0)
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Fourier Transforms

f(x) F (k) = 1√
2π
f(x)e−ikxdx

f(x− a) e−ikaF (k)
eiaxf(x) F (k − a)
f(ax) 1

|a|F
(
k
a

)
f (n)(x) (ik)nF (k)

xnf(x) in d
nF (k)
dkn

Purely real, even Purely real transform
Purely real odd Purely imaginary transform

f(x) F (−k)

1
√

2πδ(k)
δ(x) 1√

2π

eiax
√

2πδ(k − a)
cos(ax)

√
π
2 (δ(k − a) + δ(k − a))

sin(ax)
√

π
2

1
i (δ(k − a)− δ(k + a))

xn in
√

2πδ(n)(k)
1
x −i

√
π
2 sgn(k)

sgn(x)
√

2
π

1
ik

u(x)
√

π
2

(
1
iπk + δ(k)

)
For finding Sturm-Liouville form
Recall that the Sturm-Liouville equation was of the form:

d

dx

(
p(x)

dy

dx

)
− q(x)y(x) + λr(x)y(x) = 0

Expanding,

p(x)
d2y

dx2
+ p′(x)

dy

dx
− q(x)y(x) + λr(x)y(x) = 0

and hence comparing,

p(x) =

p′(x) =

q(x) =

r(x) =

We hence have the differential equation for p(x) which we can separate variables and solve to obtain:

∫
p′(x)

p(x)
dx =

∫
dx
a(x)

b(x)
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