ACM95b Book Notes

LIM SOON WEI DANIEL

1. **Abel's Theorem**: If y_1 and y_2 are solutions to the differential equation y'' + p(t)y' + q(t)y = 0 where p and q are continuous on the open interval I, then the Wronskian is given by:

$$W(y_1, y_2)(t) = ce^{-\int^t p(s)ds}$$

- 2. Regular Singular Point: Given P(x)y'' + Q(x)y' + R(x)y = 0, a regular singular point of the DE is a point x_0 such that $\lim_{x\to x_0} (x-x_0) \frac{Q(x)}{P(x)}$ is finite and $\lim_{x\to x_0} (x-x_0)^2 \frac{R(x)}{P(x)}$ is finite as well.
- 3. Reduction of order Consider y'' + p(t)y' + q(t)y = 0. Suppose we know one solution $y_1(t)$. To find the second solution, let $y = v(t)y_1(t)$ and sub to obtain $y_1v'' + (2y'_1 + py_1)v' = 0$ which is first order in v'.
- 4. Variation of parameters Consider y'' + p(t)y' + q(t)y = g(t) with homogeneous solution $y_c(t) = c_1y_1(t) + c_2y_2(t)$. Then let c_1, c_2 vary with t and introduce the additional condition $c'_1(t)y_1(t) + c'_2(t)y_2(t) = 0$. Then solve to get $c_1(t) = -\int \frac{y_2(t)g(t)}{W(y_1,y_2)(t)}dt + c_3, c_2(t) = \int \frac{y_1(t)g(t)}{W(y_1,y_2)(t)}dt + c_4$ so that the particular solution is

$$y_p(t) = -y_1(t) \int_{t_0}^t \frac{y_2(s)g(s)}{W(y_1, y_2)(s)} ds + y_2(t) \int_{t_0}^t \frac{y_1(s)g(s)}{W(y_1, y_2)(s)} ds$$

- 5. Variation of Parameters nth order Consider the system $y^{(n)} + p_1(t)y^{(n-1)} + \ldots + p_{n-1}(t)y' + p_n(t)y = g(t)$ with homogenous solution $c_1y_1(t) + \ldots c_ny_n(t)$. Let the coefficients vary with t and impose the conditions $u_1'y_1^{(j)} + u_2'y_2^{(j)} + \ldots + u_n'y_n^{(j)} = 0, j = 0, 1, \ldots, n-2$. Then use Cramer's rule to write the particular solution as $y_p(t) = \sum_{m=1}^n y_m(t) \int_{t_0}^t \frac{g(s)W_m(s)}{W(s)} ds$ where W_m is the determinant obtained from the Wronskian matrix by replacing the mth column by $(0,0,\ldots,0,1)$.
- 6. **Euler Equations** Consider $x^2y'' + \alpha xy' + \beta y = 0$. Making the substitution $y = x^r$, we obtain the indicial equation $F(r) = r(r-1) + \alpha r + \beta = 0$.
 - Real, distinct roots: $y = c_1|x|^{r_1} + c_2|x|^{r_2}$
 - Equal roots: $y = (c_1 + c_2 \ln |x|)|x|^{r_1}$
 - Complex roots $r = \lambda \pm i\mu : y = c_1|x|^{\lambda}\cos(\mu \ln |x|) + c_2|x|^{\lambda}\sin(\mu \ln |x|).$
- 7. Series solutions at ordinary points Given:

$$y'' + \sum_{n=0}^{\infty} p_n (x - x_0)^n y' + \sum_{n=0}^{\infty} q_n (x - x_0)^n y = 0$$

The recursion relation is:

$$(n+1)(n+2)a_{n+2} + \sum_{k=0}^{n} (n-k+1)p_k a_{n-k+1} + \sum_{k=0}^{n} q_k a_{n-k} = 0$$

8. Singular Points Given P(x)y'' + Q(x)y' + R(x)y = 0 and $P(x_0) = 0$ and at least one of $Q(x_0)$, $R(x_0) \neq 0$, then x_0 is a singular point.

1

• Regular Singular Point:

$$\lim_{x \to x_0} (x - x_0) \frac{Q(x)}{P(x)}$$
 is finite

$$\lim_{x \to x_0} (x - x_0)^2 \frac{R(x)}{P(x)}$$
 is finite

• Regular singular point (higher order). Assume unity coefficient for $y^{(n)}$:

$$(x-x_0)^n p_0(x)$$
 is finite
 $(x-x_0)^{n-1} p_1(x)$ is finite
 \vdots
 $(x-x_0) p_{n-1}(x)$ is finite

• Point at infinity. Make the substitution $x = \frac{1}{t}$ and change differentiation variables:

$$\frac{d}{dx} = -t^2 \frac{d}{dt}$$
$$\frac{d^2}{dx^2} = t^4 \frac{d^2}{dt^2} + 2t^3 \frac{d}{dt}$$

Then consider point at $t \to 0$.

9. Series solutions near regular singular points: Given P(x)y'' + Q(x)y' + R(x)y = 0 and a regular singular point $x_0 = 0$ (make change of variables to shift regular singular point to origin), write $p(x) = \frac{Q(x)}{P(x)}$ and $q(x) = \frac{R(x)}{P(x)}$. Then we have:

$$xp(x) = \sum_{n=0}^{\infty} p_n x^n$$
$$x^2 q(x) = \sum_{n=0}^{\infty} q_n x^n$$

on some interval containing the origin. We make the guess $y = x^r \sum_{n=0}^{\infty} a_n x^n$. This results in

$$a_0 F(r) x^r + \sum_{n=1}^{\infty} \left\{ F(r+n) a_n + \sum_{k=0}^{n-1} a_k [(r+k) p_{n-k} + q_{n-k}] \right\} x^{r+n} = 0$$

Then we obtain the recurrence relation of a_n in terms of the n-1 previous terms:

$$F(r+n)a_n + \sum_{k=0}^{n-1} a_k[(r+k)p_{n-k} + q_{n-k}] = 0$$

and the zeroth order indicial equation $(a_0 \neq 0)$:

$$F(r) = r(r-1) + p_0 r + q_0 = 0$$

$$p_0 = \lim_{x \to 0} x \frac{Q(x)}{P(x)}$$

$$q_0 = \lim_{x \to 0} x^2 \frac{R(x)}{P(x)}$$

with roots r_1 and r_2 .

• If $r_1 \neq r_2$ and they do not differ by an integer, then we have the solutions:

$$y_1 = |x|^{r_1} \left[1 + \sum_{n=1}^{\infty} a_n(r_1) x^n \right]$$
$$y_2 = |x|^{r_2} \left[1 + \sum_{n=1}^{\infty} a_n(r_2) x^n \right]$$

• Complex roots do not differ by an integer. Hence just take the real and imaginary parts of the complex solution.

2

• Equal roots: The first solution is the same. From the result of the substitution:

$$a_0 F(r) x^r + \sum_{n=1}^{\infty} \left\{ F(r+n) a_n + \sum_{k=0}^{n-1} a_k [(r+k) p_{n-k} + q_{n-k}] \right\} x^{r+n} = 0$$

and let r be a continuous variable. Then $a_n(r)$ be such that they solve the recurrence relation. In that case,

$$\mathcal{L}(r,x) = a_0 F(r) x^r$$

where \mathcal{L} represents the operator for the homogeneous system. For repeated roots $F(r) = C(r - r_1)^2$. Differentiate and evaluate at $r = r_1$.

The second solution can be found to be:

$$y_1 = |x|^{r_1} \left[1 + \sum_{n=1}^{\infty} a_n(r_1) x^n \right]$$
$$y_2 = y_1(x) \ln|x| + |x|^{r_1} \sum_{n=1}^{\infty} a'_n(r_1) x^n$$

where $a'_n(r_1)$ is $\frac{da_n}{dr}\Big|_{r=r_1}$.

• Roots differing by integer: Pick the larger root r_2 :

$$y_2 = ay_1(x) \ln|x| + |x|^{r_2} \left[1 + \sum_{n=1}^{\infty} c_n(r_2) x^n \right]$$
$$c_n(r_2) = \frac{d}{dr} [(r - r_2) a_n(r)]|_{r=r_2}$$
$$a = \lim_{r \to r_2} (r - r_2) a_N(r), N = r_1 - r_2 > 0$$

Substitute this guess into the original equation to solve for a and $c_n(r_2)$.

- 10. Bessel's Equation: Consider $x^2y'' + xy' + (x^2 v^2)y = 0$. x = 0 is a regular singular point.
 - Bessel Equation of order Zero: Roots of Indicial equation are equal. Pick v = 0. Then the roots of the indicial equation are at 0. If we choose $a_1 = 0$ then we obtain the Bessel function of the first kind of order zero:

$$y_1(x) = a_0 J_0(x) = a_0 \left[1 + \sum_{m=1}^{\infty} \frac{(-1)^m x^{2m}}{2^{2m} (m!)^2} \right], x > 0$$

Note that $J_0 \to 1$ as $x \to 0$. The second solution is given by:

$$y_2(x) = J_0 \ln x + \sum_{m=1}^{\infty} \frac{(-1)^{m+1} H_m}{2^{2m} (m!)^2} x^{2m}, x > 0$$

where $H_m = \sum_{k=1}^m \frac{1}{k}$. We hence define the Bessel function of the second kind of order zero:

$$Y_0(x) = \frac{2}{\pi} \left[y_2(x) + (\gamma - \ln 2) J_0(x) \right]$$

where γ is the Euler-Mascheroni constant given by:

$$\gamma = \lim_{n \to \infty} (H_n - \ln n) \approx 0.5772$$

Equivalently,

$$Y_0(x) = \frac{2}{\pi} \left[\left(\gamma + \ln \frac{x}{2} \right) J_0(x) + \sum_{m=1}^{\infty} \frac{(-1)^{m+1} H_m}{2^{2m} (m!)^2} x^{2m} \right], x > 0$$

Note that $Y_0(x)$ has a logarithmic singularity at x = 0. Then the general solution for the Bessel equation of order zero is:

$$y = c_1 J_0(x) + c_2 Y_0(x)$$

• Bessel equation of order one-half: Let $v = \frac{1}{2}$ so that the roots are $-\frac{1}{2}$ and $\frac{1}{2}$. The general solution is a linear combination of the Bessel functions of the first kind order of order plus or minus one-half:

$$y = c_1 J_{1/2}(x) + c_2 J_{-1/2}(x)$$
$$J_{1/2}(x) = \left(\frac{2}{\pi x}\right)^{1/2} \sin x$$
$$J_{-1/2}(x) \left(\frac{2}{\pi x}\right)^{1/2} \cos x$$

• Bessel Equation of order one: Let v=1. Then the roots of the indicial equation are -1 and 1.

11. Laplace Transform

- Sufficient condition for existence of Laplace transform: Suppose that f is piecewise continuous on the interval $0 \le t \le A$ for any positive A. Also assume that $|f(t)| \le Ke^{at}$ when $t \ge M$ for positive constants K, M and real a. Then the Laplace transform $\int_0^\infty e^{-st} f(t) dt$ exists for s > a.
- Laplace Transform of derivatives: Suppose that f is continuous and f' is piecewise continuous on any interval $0 \le t \le A$, and that f is of exponential order as $t \to \infty$. Then:

$$\mathcal{L}(f'(t)) = s\mathcal{L}(f(t)) - f(0)$$

• Higher order derivatives: Suppose that $f, f', \ldots, f^{(n-1)}$ are continuous and $f^{(n)}$ is piecewise continuous on any interval $0 \le t \le A$. Suppose that all of the n-1 derivatives are of exponential order (compared to Ke^{at}) for all $t \ge M > 0$. Then $\mathcal{L}(f^{(n)}(t))$ exists for s > a and is given by:

$$\mathcal{L}(f''(t)) = s^2 \mathcal{L}(f(t)) - sf(0) - f'(0)$$

$$\mathcal{L}(f^{(n)}(t)) = s^n \mathcal{L}(f(t)) - s^{n-1} f(0) - \dots - sf^{(n-2)}(0) - f^{(n-1)}(0)$$

• Displacement: If $F(s) = \mathcal{L}(f(t))$ exists for s > a, and if c > 0, then:

$$\mathcal{L}(u_c(t)f(t-c)) = e^{-cs}\mathcal{L}(f(t)) = e^{-cs}F(s), s > a$$

• General solution to second order differential equation: Given ay'' + by' + cy = q(t), obtain:

$$(as^2 + bs + c)Y(s) - (as + b)y_0 - ay'_0 = G(s)$$

$$Y(s) = \Phi(s) + \Psi(s) \iff y(t) = \phi(t) + \psi(t)$$

where $\phi(t)$ is the solution to ay'' + by' + cy = 0, $y(0) = y_0$, $y'(0) = y'_0$ and $\psi(t)$ is the solution to ay'' + by' + cy = g(t), y(0) = 0, y'(0) = 0. Also define the transfer function $H(s) = \frac{1}{as^2 + bs + c}$ so that $\Psi(s) = H(s)G(s)$. Then by the convolution theorem: $\psi(t) = \int_0^t h(t - \tau)g(\tau)d\tau$ with h(t) being the solution to the initial value problem $ay'' + by' + cy = \delta(t)$, y(0) = 0, y'(0) = 0. Notice that h(t) here is the Green's function!

12. **Linear Operators** Consider a linear operator $T: \mathbb{R}^n \to \mathbb{R}^n$.

- Operator norm: $||T|| = \max_{|\mathbf{x}| \le 1} |T(\mathbf{x})|$, where $|\mathbf{x}| = \sqrt{x_1^2 + x_2^2 + \ldots + x_n^2}$ is the Euclidean norm.
 - $-||T|| > 0, ||T|| = 0 \iff T = 0$
 - $-||kT|| = |k|||T||, k \in \mathbb{R}.$
 - $||S + T|| \le ||S|| + ||T||.$
 - $-||T(\mathbf{x})|| \le ||T|||\mathbf{x}|.$
 - $||TS|| \le ||T||||S||$
 - $-||T^k|| < ||T||^k, k = 0, 1, 2, \dots$
- Convergence: A sequence of linear operators $T_k \in L(\mathbb{R}^n)$ is said to converge to a linear operator $T \in L(\mathbb{R}^n)$ as $k \to \infty$: $\lim_{k \to \infty} T_k = T$ iff for all $\epsilon > 0$ there exists an N such that for $k \ge N, ||T T_k|| < \epsilon$.
- Operator exponential convergence theorem: Given $T \in L(\mathbb{R}^n)$ and $t_0 > 0$, the series $\sum_{k=0}^{\infty} \frac{T^k t^k}{k!}$ is absolutely and uniformly convergent for all $|t| \le t_0$.
- Operator exponential: $e^T = \sum_{k=0}^{\infty} \frac{T^k}{k!}$ is absolutely convergent.

13. Systems of first order linear equations

• Existence and Uniqueness: Suppose we have the system:

$$x'_1 = F_1(t, x_1, x_2, \dots, x_n)$$

 \vdots
 $x'_n = F_n(t, x_1, x_2, \dots, x_n)$

and let $F_i, i = 1, 2, ..., n$ and all the first order partial derivatives $\frac{\partial F_i}{\partial x_j}$ be continuous in a region R in $tx_1x_2 \cdots x_n$ space with the initial conditions $(t_0, x_1^0, ..., x_n^0) \in R$. Then there exists an interval $|t - t_0| < h$ in which there exists a unique solution $x_1 = \phi_1(t), ..., x_n = \phi_n(t)$ of the system that satisfies the initial conditions.

• Linear system of equations: Consider the system:

$$x'_1 = p_{11}(t)x_1 + \ldots + p_{1n}(t)x_n + g_1(t)$$

$$\vdots$$

$$x'_n = p_{n1}(t)x_1 + \ldots + p_{nn}(t)x_n + g_n(t)$$

that is linear in all x_i . If the functions p_{ij} and g_i are continuous on the interval $\alpha < t < \beta$ then there exists a unique solution that satisfies the initial conditions for $t_0 \in I = (\alpha, \beta)$. Moreover, the solution exists throughout I.

• Scalar inner product:

$$(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} x_i \bar{y}_i$$

for two column vectors \mathbf{x}, \mathbf{y} .

- Hermitian matrices: $\mathbf{A}^{\dagger} = \mathbf{A}$. Properties: Real eigenvalues, exactly n linearly independent eigenvectors, eigenvectors corresponding to different eigenvalues are orthogonal, within each eigenvalue of multiplicity m, it is possible to choose m mutually orthogonal eigenvectors. Hence the eigenvectors of \mathbf{A} can be chosen to be orthogonal and linearly independent.
- Abel's Theorem for Linear Matrix systems: Given $\frac{d}{dt}\mathbf{x} = \mathbf{A}(t)\mathbf{x}$, the Wronskian can be determined up to a scaling constant by: $W = C \exp\left(\int_{t_0}^t Tr(\mathbf{A}(t'))dt'\right)$.
- Homogenous linear system with constant coefficients: Consider the matrix differential equation $\mathbf{x'} = \mathbf{A}\mathbf{x}$ where \mathbf{A} is an $n \times n$ matrix. Consider solutions of the form $\mathbf{x} = \boldsymbol{\xi} e^{rt}$, which gives the eigenvalue equation $(\mathbf{A} r\mathbf{I})\boldsymbol{\xi} = \mathbf{0}$. There are now the following possibilities:
 - Eigenvalues are real and distinct: General solution is $\mathbf{x} = c_1 \boldsymbol{\xi}_1 e^{r_1 t} + \cdots + c_n \boldsymbol{\xi}_n e^{r_n t}$ for the *n* eigenvalues r_1, \ldots, r_n with corresponding linearly independent eigenvectors $\boldsymbol{\xi}_1, \ldots, \boldsymbol{\xi}_n$. If **A** is real and symmetric (special case of Hermitian), then we know that the eigenvalues will be real.
 - One set of complex eigenvalues. The complex eigenvalues and corresponding eigenvectors will be complex conjugates of each other (see by taking the complex conjugate of the eigenvalue equation). Let $\xi_{1,2} = \mathbf{a} \pm i\mathbf{b}$ and $r_{1,2} = \lambda \pm i\mu$. Then the vectors:

$$\mathbf{u}(t) = e^{\lambda t} \left(\mathbf{a} \cos(\mu t) - \mathbf{b} \sin(\mu t) \right)$$

$$\mathbf{v}(t) = e^{\lambda t} \left(\mathbf{a} \sin(\mu t) + \mathbf{b} \cos(\mu t) \right)$$

are two real-valued solutions (taking the real and imaginary parts of the complex-valued $(\boldsymbol{\xi})e^{rt}$). Assume that all other eigenvalues are real and distinct. Then the general solution is $\mathbf{x} = c_1 \mathbf{u}(t) + c_2 \mathbf{v}(t) + c_3 \boldsymbol{\xi}_3 e^{r_3 t} + \ldots + c_n \boldsymbol{\xi}_n e^{r_n t}$.

• General solution to constant coefficient system

$$\mathbf{x} = \sum_{j=1}^{k} \sum_{i=1}^{m_j} c_{ij} z^{i-1} \exp(\lambda_j z)$$

For roots λ_i with multiplicities m_i such that $m_1 + m_2 + \ldots + m_k = n$, the order of the system.

• Fundamental matrix: Consider the matrix differential equation $\mathbf{x}' = \mathbf{P}(t)\mathbf{x}$ with the fundamental set of solutions $\mathbf{x}_1(t), \dots, \mathbf{x}_n(t)$. Then the matrix:

$$\Psi(t) = [\mathbf{x}_1(t), \dots, \mathbf{x}_n(t)]$$

is called the fundamental matrix for the system. The fundamental matrix is non-singular because the columns are linearly independent. Then we can write the general solution of the initial value problem as $\mathbf{x} = \mathbf{\Psi}(t)\mathbf{c}$ where \mathbf{c} is the constant vector of coefficients c_1, \ldots, c_n . Then the initial condition can be written as $\mathbf{x}(t_0) = \mathbf{x}_0 = \mathbf{\Psi}(t)\mathbf{c}$ so $\mathbf{c} = \mathbf{\Psi}^{-1}(t_0)\mathbf{x}_0 \implies \mathbf{x} = \mathbf{\Psi}(t)\mathbf{\Psi}^{-1}(t_0)\mathbf{x}_0$.

- Special Fundamental Matrix: Let $\mathbf{\Phi}(t)$ be the fundamental matrix that satisfies $\mathbf{\Phi}(t_0) = \mathbf{I}$. Its inverse at $t = t_0$ is clearly still the identity. Then the general solution can be written as $\mathbf{x} = \mathbf{\Phi}(t)\mathbf{x}_0$. Clearly, $\mathbf{\Phi}(t) = \mathbf{\Psi}(t)\mathbf{\Psi}^{-1}(t_0)$.
- Matrix exponential: Define:

$$\exp(\mathbf{A}t) = \mathbf{I} + \sum_{n=1}^{\infty} \frac{\mathbf{A}^n t^n}{n!}$$

This matrix exponential clearly satisfies $\exp(\mathbf{A}t)|_{t=0} = \mathbf{I}$ and satisfies the initial value problem $\mathbf{\Phi}' = \mathbf{A}\mathbf{\Phi}, \mathbf{\Phi}(0) = \mathbf{I}$. Hence the general solution is $e^{\mathbf{A}t}\mathbf{x}_0$. More generally, for a non-homogeneous system,

$$\mathbf{x} = \exp(\mathbf{A}z)\mathbf{x}_0 + \int_0^z \exp(\mathbf{A}(z-t))\mathbf{f}(t)dt$$

For a general fundamental solution:

$$\mathbf{x} = \Psi(z)\Psi^{-1}(0)\mathbf{x}_0 + \Psi(z)\int_0^z \Psi^{-1}(t)\mathbf{f}(t)dt$$

• Obtaining the Matrix Exponential. Consider $e^{\mathbf{A}t}$. Let **A** be diagonalized by **T**: $\mathbf{D} = \mathbf{T}^{-1}\mathbf{A}\mathbf{T}$. Then:

$$e^{\mathbf{A}t} = e^{\mathbf{T}\mathbf{D}\mathbf{T}^{-1}t} = \mathbf{T}e^{\mathbf{D}t}\mathbf{T}^{-1}$$

(show this by Taylor expansion).

- Diagonalisable matrix **A** matrix **A** is diagonalisable if it is similar to a diagonal matrix **D**. That is, there exists an invertible matrix **T** such that $\mathbf{T}^{-1}\mathbf{A}\mathbf{T} = \mathbf{D}$. If **A** has less than n linearly independent eigenvectors, then it is not diagonalisable. If **A** is Hermitian, then its eigenvectors are mutually orthogonal, and can be normalised such that the inner product $(\boldsymbol{\xi}_i, \boldsymbol{\xi}_i) = 1, \forall i = 1, 2, ..., n$. It can be shown that in such as case $\mathbf{T}^{-1} = \mathbf{T}^*$ so **T** is Hermitian as well.
- Repeated Eigenvalues: Note that there are two cases: either there are k linearly independent eigenvectors corresponding to the eigenvalue of algebraic multiplicity k (i.e. geometric multiplicity k) or there are fewer than k linearly independent eigenvectors (geometric multiplicity less than k).
 - In the first case, tack on the exponential e^{rt} and each of the eigenvectors becomes a linearly independent solution to the system: $\xi_1 e^{rt}, \dots, \xi_k e^{rt}$. This first case always occurs when the coefficient matrix is Hermitian.
 - In the second case, let eigenvalue have algebraic multiplicity two and geometric multiplicity one. Let the eigenvalue be r and the eigenvector be $\boldsymbol{\xi}$. Then solve for the vector $\boldsymbol{\eta}$ that satisfies $(\mathbf{A} r\mathbf{I})\boldsymbol{\eta} = \boldsymbol{\xi}$. Then the second solution is $\mathbf{x}_2 = \boldsymbol{\xi} t e^{rt} + \boldsymbol{\eta} e^{rt}$. $\boldsymbol{\eta}$ is a generalised eigenvector corresponding to the eigenvalue r.
- 14. Linear Inhomogeneous Matrix Differential Equation (Finding particular solution with n eigenvectors). Consider $\frac{d}{dt}\mathbf{x} = \mathbf{A}\mathbf{x} + \mathbf{g}(t)$ with \mathbf{A} is a constant matrix with n linearly independent eigenvectors. Construct the matrix of eigenvectors \mathbf{T} and introduce the change of variable $\mathbf{x} = \mathbf{T}\mathbf{y}$ and substitute to obtain $\mathbf{y}' = \mathbf{D}\mathbf{y} + \mathbf{h}(t)$ where $\mathbf{h}(t) = \mathbf{T}^{-1}\mathbf{g}(t)$. Then we have the decoupled equations:

$$y'_{i}(t) = r_{i}y_{i}(t) + h_{i}(t), j = 1, 2, \dots, n$$

in terms of the eigenvalues r_i . Integrating, we obtain:

$$y_j(t) = e^{r_j t} \int_{t_0}^t e^{-r_j s} h_j(s) ds + c_j e^{r_j t}, j = 1, 2, \dots, n$$

for constants c_j so that they can be absorbed into the homogeneous solutions $e^{r_j t}$. Then the particular solution is:

$$y_j(t) = e^{r_j t} \int_{t_0}^t e^{-r_j s} h_j(s) ds, j = 1, 2, \dots, n$$

- 15. Linear Inhomogeneous Matrix Differential Equation (Defective Matrix) If A is not diagonalisable, then we reduce it to Jordan form instead. The equations are not totally uncoupled but can still be solved consecutively starting from $y_n(t)$.
- 16. Undetermined Coefficients for Systems: Consider $\mathbf{x}' = \mathbf{A}\mathbf{x} + \mathbf{g}(t)$. If **A** is a constant coefficient matrix, and **g** is a polynomial, exponential or sinusoidal function (or a composition of these), then make the following guesses:
 - $\mathbf{g}(t) = t\mathbf{a} + \mathbf{b}$. Make the guess $t\mathbf{c} + \mathbf{d}$.
 - $\mathbf{g}(t) = \mathbf{u}e^{\lambda t}$ when λ is a simple root of the characteristic equation. Assume solution of form $\mathbf{a}te^{\lambda t} + \mathbf{b}e^{\lambda t}$.
- 17. Variation of Parameters (coefficient matrix not constant or not diagonalisable) Consider $\mathbf{x}'(t) = \mathbf{P}(t)\mathbf{x} + \mathbf{g}(t)$. Assume that we can find the fundamental matrix for the homogenous system: $\mathbf{\Psi}(t)$, which is non-singular on any interval when $\mathbf{P}(t)$ is continuous. We seek a solution of the non homogenous system in the form: $\mathbf{x} = \mathbf{\Psi}(t)\mathbf{u}(t)$ for some vector $\mathbf{u}(t)$ to be found. Then:

$$\begin{aligned} \mathbf{u}(t) &= \int \mathbf{\Psi}^{-1}(s)\mathbf{g}(s)ds + \mathbf{c} \\ \implies \mathbf{x} &= \mathbf{\Psi}(t) \int \mathbf{\Psi}^{-1}(s)\mathbf{g}(s)ds + \mathbf{\Psi}(t)\mathbf{c} \end{aligned}$$

If the initial values are given:

$$\mathbf{x}(t) = \mathbf{\Psi}(t)\mathbf{\Psi}^{-1}(t_0)\mathbf{x}_0 + \mathbf{\Psi}(t)\int_{t_0}^t \mathbf{\Psi}^{-1}(s)\mathbf{g}(s)ds$$

18. Method of Adjoint Solution Let $\mathbf{x}' = A(z)\mathbf{x} + f(z)$. Define the adjoint system:

$$\mathbf{y}' = -A^T(z)\mathbf{y}$$

Define the matrix

$$\Phi(z) = \begin{pmatrix} y_{11} & y_{12} & \cdots & y_{1n} \\ y_{21} & y_{22} & \cdots & y_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ y_{n1} & y_{n2} & \cdots & y_{nn} \end{pmatrix}$$

Where the solutions to the adjoint equation are in **rows**. Then the solution is:

$$\mathbf{x} = \Phi^{-1}(z)\Phi(z_0)\mathbf{x}_0 + \Phi^{-1}(z)\int_{z_0}^z \Phi(t)f(t)dt$$

The adjoint fundamental matrix solves the equation: $\Phi' = -\Phi A$. Note that the inverse of the adjoint matrix is the fundamental matrix!

19. Laplace Transform of Linear Systems Transform of a vector is computed component by component. Then we have the following identities, taking $\mathbf{X}(s) = \mathcal{L}(\mathbf{x}(t))$:

$$\mathcal{L}(\mathbf{x}'(t)) = s\mathbf{X}(s) - \mathbf{x}(0)$$

- 20. **Boundary Value Problems** If the boundary value function has value zero for each **x**, then the problem is homogeneous. Otherwise it is non-homogeneous.
- 21. Fourier methods

• Discrete series:

$$f(x) = \frac{a_0}{2} + \sum_{m=1}^{\infty} \left(a_m \cos \frac{m\pi x}{L} + b_m \sin \frac{m\pi x}{L} \right)$$

Coefficients

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} dx$$
$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} dx$$
$$a_0 = \frac{1}{L} \int_{-L}^{L} f(x) dx$$

• Sufficient conditions for Fourier series convergence: Suppose f and f' are piecewise continuous on the interval $-L \le x < L$. Suppose that f is defined outside the interval $-L \le x < L$ so that it is periodic with period 2L. Then f has a Fourier series whose coefficients can be calculated using the formulae above. The Fourier series converges to f(x) at all points where f continuous, and it converges to $\frac{f(x_+)+f(x_-)}{2}$ at all points where f is discontinuous, where $f(x_+)$ is the limit of f(x) from the right and $f(x_-)$ is the limit from the left.

22. Even and odd function properties

- Sum (difference) and Product (quotient) of two even functions are even.
- Sum (difference) of two odd functions is odd. Product (quotient) of two odd functions is even.
- Sum (difference) of an odd function and an even function is neither even nor odd. Product (quotient) of an odd function and an even function is odd.

23. Table of Laplace Transforms

Reduction of order y'' + p(x)y' + q(x)y = 0 with y_1 known. Then $y_2 = v(x)y_1$ and solve for v in $v'(2y'_1 + py_1) + v''y_1 = 0$.

$$v(x) = c \int_{-\infty}^{\infty} \frac{1}{y_1^2(t)} \exp\left[-\int_{-\infty}^{t} p(s)ds\right] dt$$
$$y_{qen} = c_1 y_1 + c_2 v(x) y_1$$

Variation of Parameters Let $y_p = u_1y_1 + u_2y_2$. Then set $u'_1y_1 + u'_2y_2 = 0$. Then:

$$y_p = c_1 y_1 + c_2 y_2 - y_1 \int_0^x \frac{y_2(t)r(t)}{W(t)} + y_2 \int_0^x \frac{y_1(t)r(t)}{W(t)}$$

Systems of Equations $\frac{d\mathbf{x}}{dz} = \mathbf{A}(z)\mathbf{x} + \mathbf{F}(z)$.

Reduction of order for systems Assume we know \mathbf{x}_1 is a solution to $\mathbf{x}' = \mathbf{A}\mathbf{x}$. Define Γ to be the matrix with the last column of \mathbf{x}_1 and the last element of \mathbf{x}_1 must be nonzero. Then solve:

$$\mathbf{x} \equiv \Gamma \mathbf{y}$$

$$\mathbf{y}' = \Gamma^{-1} (A\Gamma - \Gamma') \mathbf{y} = B \mathbf{y}$$

$$y_i' = \sum_{j=1}^{n-1} b_{ij} y_j, i = 1, 2, \dots, n-1$$

$$y_n' = \sum_{j=1}^{n-1} b_{nj} y_j$$

Adjoint System Given $\mathbf{x}' = \mathbf{A}\mathbf{x} + \mathbf{f}$, the adjoint system is $\mathbf{y}' = -\mathbf{A}^T\mathbf{y}$. Put the solutions to y in rows in Φ , which satisfies $\Phi' = -\Phi \mathbf{A}$. Then:

$$\mathbf{x} = \Phi^{-1}(z)\Phi(z_0)\mathbf{x}_0 + \Phi^{-1}(z)\int_{z_0}^z \Phi(t)\mathbf{f}(t)dt$$

Fundamental matrix solution Suppose you have the fundamental matrix Ψ . Then for the inhomogeneous system,

$$\mathbf{x} = \Psi(z)\Psi(z_0)^{-1}\mathbf{x}_0 + \Psi(z)\int_{z_0}^z \Psi^{-1}(t)\mathbf{f}(t)dt$$

Series solution Write a_n in terms of $a_0!!!$ and check for series convergence

Cauchy Product

$$\sum_{n=0}^{\infty} a_n \sum_{n=0}^{\infty} b_n = \sum_{n=0}^{\infty} \sum_{j=0}^{n} a_j b_{n-j}$$

Point at infinity Let $x = \frac{1}{4}$. Then:

$$\frac{d}{dx} = -t^2 \frac{d}{dt}$$

$$\frac{d^2}{dx^2} = t^4 \frac{d^2}{dt^2} + 2t^3 \frac{d}{dt}$$

Laplace Transform of Derivative

$$\mathcal{L}[f^{n}(t)] = s^{n} \mathcal{L}[f(t)] - s^{n-1} f(0) \dots s f^{(n-2)}(0) - f^{(n-1)}(0)$$

Inverse Laplace Transform

$$f(t) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} F(s)e^{st}ds$$

where c is chosen so that all the poles are to the left. Close in the direction that e^{st} does not blow up.

Convolution for Laplace Transform

$$f * g = \int_0^t f(t - \tau)g(\tau)d\tau$$

Sturm-Liouville ODE

$$\frac{d}{dx}\left(p(x)\frac{dy}{dx}\right) - q(x)y(x) + \lambda r(x)y(x) = 0$$

$$c_1y(a) + c_2y'(a) = 0$$

$$d_1y(b) + d_2y'(b) = 0$$

$$p(x) > 0, r(x) > 0$$

$$p, q, r \in C$$

Legendre Equation

$$(1 - x^2)y'' - 2xy' + v(v+1)y = 0$$
$$[(1 - x^2)y']' + v(v+1)y = 0, -1 \le x \le 1$$

Lagrange Identity Define:

$$L[y(x)] = -\frac{d}{dx} \left(p(x) \frac{dy(x)}{dx} \right) + q(x)y(x)$$

Then with separated homogeneous boundary conditions,

$$\int_{a}^{b} L[u(x)]v(x)dx = \int_{a}^{b} u(x)L[v(x)]dx$$
$$\int_{a}^{b} \bar{u}(x)L[v(x)]dx = \int_{a}^{b} v(x)L[\bar{u}(x)]dx$$

Fourier Series

$$f(x) = \sum_{n=1}^{\infty} A_n \sin(n\pi x) \iff A_n = 2 \int_0^1 f(x) \sin(n\pi x) dx$$

$$f(x) = \sum_{n=0}^{\infty} B_n \sin(n\pi x) \iff B_n = 2 \int_0^1 f(x) \cos(n\pi x) dx$$

$$f(x) = \sum_{n=1}^{\infty} A_n \sin(2n\pi x) + \sum_{n=0}^{\infty} B_n \cos(2n\pi x)$$

$$\iff A_n = 2 \int_0^1 f(x) \sin(2n\pi x) dx$$

$$\& B_n = 2 \int_0^1 f(x) \cos(2n\pi x) dx$$

Full Fourier Series

$$f(x) = \sum_{n=1}^{\infty} A_n \sin(n\pi x/L) + \sum_{n=0}^{\infty} B_n \cos(n\pi x/L), -L < x < L$$

$$\iff A_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin(n\pi x/L) dx$$

$$B_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos(n\pi x/L) dx$$

$$B_0 = \frac{1}{2L} \int_{-L}^{L} f(x) dx$$

$$f(x) = \sum_{n=-\infty}^{\infty} C_n e^{in\pi x/L}$$

$$C_n = \begin{cases} \frac{B_n - iA_n}{2}, n > 0 \\ \frac{B_n + iA_n}{2}, n < 0 \\ B_0, n = 0 \end{cases}$$

Parseval's Theorem

$$\int_{-L}^{L} f(x)^{2} dx = L \left[2B_{0}^{2} + \sum_{n=1}^{\infty} (A_{n}^{2} + B_{n}^{2}) \right]$$

Uniform Convergence of Fourier Series The Fourier series of f(x) converges uniformly to f(x) where f(x) is differentiable. If f(x) has a discontinuity at x = a, then the series converges to:

$$F(a) = \frac{f(a^+) + f(a^-)}{2}$$

and the convergence is not uniform.

Rate of convergence of Fourier Series If you have k-1 continuous derivatives including the zeroth derivative, the coefficients decay at least as fast as $\frac{1}{n^k}$.

Riemann-Lebesgue Lemma If g(x) is any L_1 integrable function, then $\int_0^{2\pi} g(x)e^{ikx}dx \to 0$ as $k \to \infty$.

Inhomogeneous S-L Form

$$\frac{d}{dx}\left(p(x)\frac{dy}{dx}\right) - q(x)y(x) + \lambda r(x)y(x) = r(x)f(x)$$
$$y(x) = \sum_{n=0}^{\infty} \frac{f_n}{\lambda - \lambda_n} \phi_n(x)$$

Fredholm Alternative If $\lambda = \lambda_m$ and f_m vanishes,

$$y(x) = \sum_{n=0, n \neq m}^{\infty} \frac{f_n}{\lambda - \lambda_n} \phi_n(x) + C\phi_m(x)$$

without uniqueness.

Inhomogeneous boundary conditions Let y(0) $y_0, y(L) = y_1$. Then define:

$$u(x) = y(x) - \frac{1}{L} [y_1 x + y_0 (L - x)]$$

Green's functions

$$G(x, x'; \lambda) = \sum_{n=0}^{\infty} \frac{\phi_n(x)\phi_n(x')}{\lambda - \lambda_n}$$

$$y(x) = \int_a^b f(x')r(x')G(x, x'; \lambda)dx'$$

$$\frac{d}{dx}\left(p(x)\frac{dG}{dx}\right) - q(x)G + \lambda r(x)G = \delta(x - x'), a < x < b$$

and it satisfies the homogeneous boundary conditions (clearly).

Fourier Transform

$$F(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-ikx}dx$$
$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(k)e^{ikx}dk$$

Fourier Transform of Derivative Requires the function and its derivative to vanish at infinity.

$$\mathcal{F}[y^{(n)}] = (ik)^n Y(k)$$

Convolution for Fourier Transform

$$f * g = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(\zeta)g(x - \zeta)d\zeta$$

Parseval's Theorem (Transform)

$$\int_{-\infty}^{\infty} |F(k)|^2 dk = \int_{-\infty}^{\infty} |f(x)|^2 dx$$

Sine and Cosine Transforms

$$F_c(k) = \sqrt{\frac{2}{\pi}} \int_0^\infty f(x) \cos kx dx$$

$$f(x) = \sqrt{\frac{2}{\pi}} \int_0^\infty F_c(k) \cos kx dk$$

$$\sqrt{\frac{2}{\pi}} \int_0^\infty y''(x) \cos kx dx = -k^2 Y_c(k) - \sqrt{\frac{2}{\pi}} y'(0)$$

$$\sqrt{\frac{2}{\pi}} \int_0^\infty y''(x) \sin kx dx = -k^2 Y_s(k) + \sqrt{\frac{2}{\pi}} y(0)$$

FOURIER TRANSFORMS

f(x)	$F(k) = \frac{1}{\sqrt{2\pi}} f(x) e^{-ikx} dx$
f(x-a)	$e^{\overset{\bullet}{-}i\overset{\bullet}{k}a}F(k)$
$e^{iax}f(x)$	F(k-a)
f(ax)	$\frac{1}{ a }F\left(\frac{k}{a}\right)$
$f^{(n)}(x)$	$(ik)^n F(k)$
$x^n f(x)$	$i^n \frac{d^n F(k)}{dk^n}$
Purely real, even	Purely real transform
Purely real odd	Purely imaginary transform
$\overline{f(x)}$	$\overline{F(-k)}$
1	$\sqrt{2\pi}\delta(k)$
$\delta(x)$	$\frac{1}{\sqrt{2\pi}}$
e^{iax}	$\sqrt{2\pi}\delta(k-a)$
$\cos(ax)$	$\sqrt{\frac{\pi}{2}}(\delta(k-a)+\delta(k-a))$
$\sin(ax)$	$\sqrt{\frac{\pi}{2}}\frac{1}{i}(\delta(k-a)-\delta(k+a))$
x^n	$i^n\sqrt{2\pi}\delta^{(n)}(k)$
$\frac{1}{x}$	$-i\sqrt{\frac{\pi}{2}}sgn(k)$
sgn(x)	$\sqrt{\frac{2}{\pi}}\frac{1}{ik}$
u(x)	$\sqrt{\frac{\pi}{2}} \left(\frac{1}{i\pi^k} + \delta(k) \right)$
· · · ·	¥ 2 (UNIU) //

For finding Sturm-Liouville form

Recall that the Sturm-Liouville equation was of the form:

$$\frac{d}{dx}\left(p(x)\frac{dy}{dx}\right) - q(x)y(x) + \lambda r(x)y(x) = 0$$

Expanding,

$$p(x)\frac{d^2y}{dx^2} + p'(x)\frac{dy}{dx} - q(x)y(x) + \lambda r(x)y(x) = 0$$

and hence comparing,

$$p(x) = p'(x) = q(x) = r(x) = r(x)$$

We hence have the differential equation for p(x) which we can separate variables and solve to obtain:

$$\int \frac{p'(x)}{p(x)} dx = \int dx \frac{a(x)}{b(x)}$$