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Chapter 1

Week 1

1.1 Tuesday 30 Sept 2014

General potential: Write the Taylor expansion of a general potential: U(x) = U(x0)+ dU
dx

∣∣
x0

(x−x0)+ 1
2
d2U
dx2

∣∣∣
x0

(x−x0)2+. . .

When the net force is zero, the first derivative is zero. Note hence that if d2U
dx2 > 0 then the local equilibrium is stable and

k = d2U
dx2

∣∣∣
x0

.

General solution to oscillatory motion: x(t) = v(t0)
ω sin(ωt) + x(t0) cos(ωt). In exponential form, x(t) = Ceβt, β =

±iω. Alternatively, z(t) = C1e
iωt + C2e

−iωt, x(t) = Re (z(t)). Note that the imaginary part can be used too.

Elastic rod pendulum: Consider the Young’s modulus: Y = F/A
∆x/x0

(stress over strain). Typical Y values: 6× 1010Pa

for aluminium. Yield strength is much lower: 2× 108Pa. Note that the yield strength sets the limit of the maximum value
of the displacement ∆x.

1.2 Thursday 2 Oct 2014

Excitation of normal modes Note that if you only excite one degree of freedom in a system with multiple normal modes,
you actually excite more than one normal mode (perhaps all?).

General linear system a d
2

dt2x(t)+b
d
dtx(t) + cx(t) = F (t). Write as a linear differential operator L(x). Note that if there

are two orthogonal solutions to the homogenous differential equation (i.e. f(t) = 0), then any linear combination of the two
solutions is also a solution. Note also that by linearity, L(ax1 + bx2) = aL(x1) + bL(x2). If L(x) = f1(t) has a solution x1(t)
for the non-homogenous differential equation and L(x2) = f2(t) has another solution x2(t), and we have the non-homogenous
differential equation L(x) = Af1(t) +Bf2(t), then Ax1(t) +Bx2(t) + ax0(t) is a solution (a is arbitrary). Note that x0(t) is
the solution to the homogenous differential equation L(x0) = 0. Now if we have the solution for f(t) = sin(ωt), then we can
solve the differential equation for any f(t) that can be decomposed through Fourier analysis.

Two independent harmonic oscillators Consider x1(t) = A1 cos(ω1t + φ1) = Re
(
A1e

i(ω1t+φ1)
)

= Re(z1(t)) and
x2(t) = A2 cos(ω2t+ φ2) similarly.

Case 1 A1 = A2 = A, ω1 = ω2 = ω. Define φ̄ = φ1+φ2

2 . Then z1 + z2 = Aei(ωt+φ̄)
[
e−i(φ2−φ1)/2 + ei(φ2−φ1)/2

]
=

2A cos
(
φ2−φ1

2

)
ei(ωt+φ̄).

Recall that cosh(iθ) = cos θ and sinh(iθ) = i sin θ

Case 2 Consider A1 = A2 = A and φ1 = φ2 = 0 and ω1 6= ω2. Enter the co-rotating frame with z1. Then the angle be-
tween z1 and z2 is (ω2−ω1)t. Define ω̄ = ω1+ω2

2 and δω = ω2−ω1. Then write z1 +z2 = Aeiωt
[
e−i(ω2−ω1)t/2 + ei(ω2−ω1)t/2

]
=

2A cos
(

(ω2−ω1)t
2

)
eiωt = 2A cos(δωt/2)eiωt. If ω1 ≈ ω2, but not equal, then δω << ω̄. Note that the amplitude modulating

factor cos(δωt/2) has a period of 2π
δω because the beat has a maximum even when the value of the cosine is at the negative

peak. Hence the effective period is half that of 2π
δω/2 , which is 2π

δω .

Coupled oscillators Consider two masses m1,m2 and three springs (all k) on a frictionless surface. Let the posi-
tions x1 and x2 be measured with respect to the individual positions of equilibrium. Then the equations of motion are
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m1ẍ1 = −kx1 + k(x2 − x1) and m2ẍ2 = −kx2 + k(x1 − x2). Write in general, mj ẍj = fj =
∑n
l=1 kjlxl where j = 1, . . . , N

are the masses and the l are couplings. Now the individual forces fj are the derivatives of potentials fj = −∂V
∂xj

if they

are conservative. Hence the potential is a function of all the masses V (x1, x2, . . . , xN ), and is quadratic in all the x.

Then
∂fj
∂xl

= − ∂2V
∂xj∂xl

= − ∂2V
∂xl∂xj

. Hence kjl = klj . Call kjl the K matrix. We look out for normal modes, which is

the coupled motion of the components of the system that are moving with the same angular velocity and phase. We
want oscillation equations, hence look out for solutions of the form x1 = A1 cos(ωt + φ) and x2 = A2 cos(ωt + φ). Hence
ẍ1 = −A1ω

2 cos(ωt + φ) = −ω2x1 and similarly for ẍ2. We substitute these (replace the double dots) into the equations of
motion to obtain −ω2x1 + (k/m1)x1 − (k/m1)(x2 − x1) = 0 and −ω2x2 + (k/m2)x2 + (k/m2)(x2 − x1) = 0. In matrix form,(
−ω2 + 2k/m1 −k/m1

−k/m2 −ω2 + 2k/m2

)(
x1

x2

)
=

(
0
0

)
. Taking m1 = m2 = m and setting the determinant to zero, solving

for ω2 = k/m and 3k/m. Sub these angular frequency values back into the matrix to obtain values for A1 and A2.

Generalized to N oscillators The K matrix is symmetric and has dimensions N × N . Define the mass matrix
M = diag(m1,m2, . . . ,mN ) and the amplitude column vector A = (A1, A2, . . . , AN ). Then we have that Mω2A = −KA or
Mẍ = −Kx or (M−1K − ω2I)A = 0. Hence we seek the eigenvalues of the M−1K matrix to find ω. For systems without
damping, the roots of the characteristic polynomial will be positive and real. The free motion of these N degrees of freedom
can always be written as a linear superposition of these N normal mode solutions.
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Chapter 2

Week 2

2.1 Tuesday 7 Oct 2014

Infinite number of oscillators We let the distance between masses go to zero. We will obtain a solid elastic body with a
mass per unit length of µ.

A two-mass example Consider two beads of mass m/2 each on a massless string with total length L. Then the mass
per unit length µ = m

L . Let the masses oscillate in the transverse direction by an amount y1 and y2 for masses m1 and m2

respectively. Let the string be under tension T . We expect two normal modes. For small oscillations, the restoring force in
the transverse direction is proportional to the displacement y. Writing the equations of motion for the fundamental mode:

m

2
ẍ = −T cos θ + T ≈ 0

m

2
ÿ = −T sin θ + 0 ≈ −T 3y

L

Hence we have that ω1 =
√

6T
mL .

Now write the equations of motion for the other normal mode (with the angle of the middle string being θ′, tan θ′ = 6y
L ).

m

2
ẍ = −T cos θ + T cos θ′ ≈ 0

m

2
ÿ = −T sin θ − T sin θ′ ≈ −T −9y

L

Hence we have that ω2 =
√

18T
mL .

Continuous system Consider a system with total mass M on a string of length L. Then we can think of the system
as having N masses of mass M

N each separated by L
N+1 . Then a chuck of the string has mass µδx and is under the influence

of tension T on both sides, acting with angle θ on the left and θ′ on the right. Write θ′ = θ − δθ. Writing the equations of
motion for that bit of string,

µδxẍ = −T cos θ + T cos(θ′) ≈ 0

µδxÿ = −T sin θ + T sin(θ′) = −T (sin θ − sin(θ − δθ)) ≈ −Tδθ

Rewriting,

ÿ = −T
µ

δθ

δx

But δθ = ∂y
∂x

∣∣∣
x0

− ∂y
∂x

∣∣∣
x0+δx

, so ÿ = T
µ
∂2y
∂x2 . We note that T

µ has units of velocity squared. The speed of sound or travelling

waves in a massive string is
√

T
µ .
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Normal modes in the continuous system The normal modes have the form f(x)ei(ωt+φ). Substituting this into the

wave equation, we have that ∂2f
∂x2 +

(
µ
T ω

2
)
f = 0. The boundary conditions of this is that f(0) = 0 and f(L) = 0. We know

that f(x) will be of the form f(x) = A cos
(√

µ
T ωx+ α

)
. Substituting in the boundary conditions, we obtain α = ±π/2,

so we use the sine instead. We also obtain from f(L) = 0 that
√

µ
T ωL = nπ, n ∈ Z. Hence ωn = nπ

L

√
T
µ . We see that

the angular frequencies are quantised. We can also calculate the wavelength λn = 2L
n . Call kn = 2π

λn
= nπ

L the angular

wavenumber. Hence we obtain the dispersion relation ωn =
√

T
µ kn.

2.2 Thursday, 9 Oct 2014

Normal Modes of continuous system Recall that the normal modes of a string clamped down on both ends look like
y(x, y) = A cos(ωt + φ) sin(

√
µ
T ωx). Also recall that there exists an upper limit to the normal mode frequencies in free

motion. Lower limit to wavelength in discrete systems is 2x size of smallest lumped element.

Fourier’s Theorem Any piecewise continuous function defined between [0, L] in 1-D can be expressed as an infinite sum
of sines and cosines with wavelengths of 2L

n . Also works for an infinite domain with periodicity (wavelength 2L). Just define
the function to by reflected about the point x = L over the domain [L, 2L] and so on. Define y(x, t = 0) = f(x) to be the

position initial condition. Write f(x) = b0
2 +

∑∞
n=1 an sin

(
nπx
L

)
+
∑∞
n=1 bn cos

(
nπx
L

)
. Note that

∫ 2L

0
dx sin nπx

L cos mπxL = 0

and
∫ 2L

0
sin nπx

L sin mπx
L =

∫ 2L

0
cos nπxL cos mπxL = Lδmn =

{
0, m 6= n

L, m = n
. Now we multiply f(x) with the sines and cosines

to obtain:
∫ 2L

0
f(x) sin mπx

L dx = amL and
∫ 2L

0
f(x) cos mπxL dx = bmL. We also integrate f(x) itself over the interval to

obtain
∫ 2L

0
f(x)dx = b0

2 2L = b0L. Hence we have the Fourier coefficients:

f(x) =
b0
2

+

∞∑
n=1

an sin
(nπx
L

)
+

∞∑
n=1

bn cos
(nπx
L

)
an =

1

L

∫ 2L

0

f(x) sin
nπx

L
dx

bn =
1

L

∫ 2L

0

f(x) cos
mπx

L
dx

b0 =
1

L

∫ 2L

0

f(x)dx
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Chapter 3

Week 3

3.1 Tuesday 14 Oct 2014

Longitudinal oscillation Consider a cantilever with one fixed end on the left. Consider a small slice of the rod between
x and x + δx. Then the left side of the slice is pulled with force f1 to the left and the right side is pulled with for f2 to
the right. Let the function ψ(x, t) represent the deviation of the rod from equilibrium at x. Then the equations of motion

are: f2 − f1 = (M δx
L )ψ̈ where M is the mass of the entire rod with length L. Now recall the Young’s modulus Y = F/A

−δψ/δx .

Then the stress is given by −Y ∂ψ
∂x . Hence we have that f2−f1

A = Y ∂ψ
∂x (x + δx) − Y ∂ψ

∂x (x), which we can write to form
f2−f1

A = Y δx∂
2ψ
∂x2 . Comparing this to the equation of motion, we have that M

ALδxψ̈ = Y δx∂
2ψ
∂x2 . Note that the density ρ = M

AL ,

hence the velocity (comparing to the wave equation) is given by v =
√

Y
ρ .

3.2 Thursday 16 Oct 2014

Mechanical Band-pass filter Note that the lumped oscillators have a fixed minimum frequency and a fixed maximum
frequency (the zig-zag mode). Hence it acts as a band-pass filter since it doesn’t transmit energy outside this band.

Driven damped oscillator General equation of motion: mẍ = −kx − mΓẋ + F (t). In real systems, there may be
damping effects proportional to higher powers of ẋ. The constant proportional to the second derivative of x is called the
effective mass. k is the effective spring constant, and Γ is the effective damping term. We want solutions of the form
x(t) = Aeiωt, and substituting this, we obtain (−ω2 + iωΓ + k/m)Aeiωt = F (t)/m. Note that if the equation is non-linear
then we cannot use the complex exponentials. Alternatively, we can perform a Laplace transform on the differential equation
by writing x = x0e

αt, for complex α, hence we obtain ẋ = αx, ẍ = α2x. So we have α2x+ αΓx+ ω2x0e
αt = 0. For non-zero

x0, we have that α2 + αΓ + ω2 = 0, which can be solved using the quadratic equation to obtain α = −Γ
2 ±

√
Γ2

4 − ω
2
0 . Case

1 (underdamped), the thing inside the square root sign is negative, so ω2 > Γ
4 , then α = −Γ

2 ± iω1, ω1 =
√
ω2

0 − Γ2

4 . Then

x(t) = x0e
αt = x0e

−Γ/2
(
aeiω1t + be−iω1t

)
where a and b are determined by the initial conditions. Case 2 (over damped), we

have that Γ2

4 > ω2
0 then α is purely real. Call β =

√
Γ2

4 − ω
2
0 , α = −Γ

2 ±β so the solutions are x(t) = Ae−(Γ/2+β)t+Be−(Γ/2−β)t.

Note that the over damped motion may cross the zero axis at most once (overshoot). Case 3 (critical damping) when Γ2

4 = ω2
0 .

Then we have that α = −Γ
2 and x(t) = Ae−Γt/2 +Bte−Γt/2. Critical damping goes to zero faster than overdamping.

General driving force We write f(t) =
∑
n[A cos(ωnt) + B sin(ωnt)] if f(t) is periodic with period T = 2π

ωn
. However,

if the period is infinite, then we replace the sum with an integral
∑
n →

∫
dω.

Single sinusoidal driving force Let f(t) = f0 cos(ωt). We note that solutions will be oscillating only at ω in equilibrium.

Then we write z = z0e
iωt and obtain (−ω2 + iωΓ + ω2

0)z0e
iωt = f0

m e
iωt. Hence we have that z0 = f0/m

ω2
0−ω2−iωΓ

.
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Chapter 4

Week 4

4.1 Tuesday 21 Oct 2014

Single sinusoidal driving force We resume from the previous week where we obtained that the solution z = z0e
iωt to the

damped driven harmonic oscillator has z0
f0/m

ω2
0−ω2−iωΓ

, which can be written as f0

m

(
ω2

0−ω
2

(ω2
0−ω2)2+ω2Γ2

)
− i f0

m
ωΓ

(ω2
0−ω2)2+ω2Γ2 . Call

the real part the elastic amplitude and the imaginary part the absorptive amplitude. Hence we have:

Aelastic =
f0

m

ω2
0 − ω2

(ω2
0 − ω2)2 + ω2Γ2

Aabs =
f0

m

ωΓ

(ω2
0 − ω2)2 + ω2Γ2

Plotting these amplitudes on the same graph, we obtain:

We can also write z0 = |A|e−iδ where tan δ = ωΓ
ω2

0−ω2 .
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At ω = ω0 we have that the absorptive amplitude is large and the elastic amplitude goes to zero. Note that the absorptive
amplitude DOES NOT peak at ω = ω0. This peak is shifted based on the damping Γ.

We also note that the power delivered by the driving force to the system is P (t) = ~F (t) · ~v. The average power over one

cycle peaks at ω = ω0 and is equal to
f2
0

2mΓ there. We can write < P > (ω) =
f2
0

2mω
ω2Γ2

(ω2
0−ω2)2+ω2Γ2 . The half-peak power points

occur at ω1/2 =
√
ω2

0 + (Γ/2)2±(Γ/2). Hence the full width at half maximum (FWHM) is ∆ω = Γ. Note that if f is suddenly

removed, the amplitude decays as e−Γt so the characteristic lifetime is ∆t = τ = 1
Γ = 1

FWHM . We hence note that ∆ω∆t = 1.

Approximations If ω ≈ ω0 then we can write < P >= P0
1

1+(
ω0−ω
Γ/2

)2
, which we can write as P0

d
dx (tan−1 x) at x = ω0−ω

Γ/2 .

Quality Factor The quality factor Q is defined to be ω0/Γ, the ratio of the peak frequency to the FWHM. This is also
equal to the number of oscillations at ω0 over a time ∆t = 1

Γ .

4.2 Thursday 23 Oct 2014

General excitatory force Write f(t) =
∫
dωf̃(ω) cos(ωt), where f̃(ω) is the Fourier transform of f(t).

Travelling waves in 1D Recall the classical wave equation: ∂2y
∂t2 = T

µ
∂2y
∂x2 . In the normal mode for fixed-end boundaries,

we write yn = An sin(knx) cos(ωnt+φ), kn = nπ
L , ωn =

√
T
µ kn. We can write this using 2 sinα cosβ = sin(α+β)+sin(α−β).

Hence we have yn(x, y) = An
2 [sin(knx− ωnt) + sin(knx+ ωnt)]. Notice that each of the terms is a travelling wave, one

travelling in the x direction (knx− ωnt) and one in the -x direction (knx+ ωnt). Write knx± ωt = kn(x± vpt), vp = ωn/kn,
the phase velocity.

Travelling waves in 3D Write ψ(~r, t) = A sin(~k · ~r − ωt) = =[Aei(
~k·~r−ωt)]. Write ~k = kxx̂ + ky ŷ + kz ẑ. Note that the

wave will propagate in the +k̂ direction with velocity given by ω

|~k|
k̂.

Circular Waves Note that since the energy in a wave is proportional to the amplitude square, for the energy of a
spreading wave to be conserved, the amplitude of the circular wave will have to decrease as it spreads outward. We hence
have |A|22πrdr =constant so the amplitude falls off as 1√

r
. In 3D, we have |A|24πr2dr =constant so the amplitude falls off as 1

r .

Dispersion relations

• Continuous string: ω = vk, v =
√

T
µ

• Beaded string, transverse: Assume separation a, individual bead mass m, ω = 4T
ma sin ka

2 .

• Beaded string, transverse, long wavelength approximation: Let ka be small. Then ω = 4T
ma

ka
2 =

√
T
µ k. Higher order

Taylor approximations will have corrections proportional to higher powers of k.

• Real piano wire: ω2 = T
µ k

2 + αk4. Note at short wavelengths, and if α > 0, then the effective tension appears to be

larger than usual (piano wire becomes stiffer when it is bent over short distances).

• Mass on spring, longitudinal oscillation: ω =
√

4K
m sin ka

2 . In the long wavelength limit, we have ω =
√

4K
m

ka
2 =

√
Ka
m/ak

where K is the spring constant and k is the wavenumber. Note that m/a plays the role of mass per unit length. Hence
Ka plays the role of the tension.

• LC transmission line: ω =
√

4
LC sin ka

2 . In the long wavelength limit, we have ω =
√

a2

LC k = 1√
(L/a)(C/a)

k where we

have the inductance per unit length L/a and capacitance per unit length C/a.

• Coupled pendulum: ω2 = g
l + 4K

m sin2 ka
2 .

• Ionized plasma: Consider an ionised, overall electrically neutral plasma in a capacitor experiencing an electric field

E(t). Then we have ω2 = ω2
p + c2k2, where ωp =

√
4πNee2

me
is the plasma frequency, c is the speed of light.

• Continuous medium, longitudinal oscillations: ω =
√

Y
ρ k. For air, Y = Kad, where Kad = γP is the adiabatic

compressibility, γ is the adiabatic constant, and P is the pressure.
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Electromagnetic Waves - Maxwell’s Equations Recall that we have (in CGS units)

∇ · ~E = 4πρ

∇ · ~B = 0

∇× ~E =
−1

c
~̇B

∇× ~E =
1

c
~̇E +

4π

c
~J

In a vacuum, we have ρ = 0 and ~J = 0, so:

∇ · ~E = 0

∇ · ~B = 0

∇× ~E =
−1

c
~̇B

∇× ~E =
1

c
~̇E

Taking the curl of the curls, we have:

∇× (∇× ~E) =
−1

c

∂

∂t
(∇× ~B) =

−1

c2
∂2

∂t2
~E

∇× (∇× ~B) =
−1

c2
∂2

∂t2
~B

But the curl of the curl is given by ∇ × (∇ × ~v) = ∇(∇ · ~v) − ∇2~v. Hence we have a 3D wave equation for the electric
and magnetic fields:

∇2 ~E =
1

c2
∂2

∂t2
~E

∇2 ~B =
1

c2
∂2

∂t2
~B

Hence we have the velocity of propagation is c. We can write ~E(~r, t) = ~E0e
i(~k·~r−ωt), where we note that the amplitude is

a 3-vector.

9



Chapter 5

Week 5

5.1 Tuesday 28 Oct 2014

Travelling wave solutions of E and B fields ~E(~r, t) = ~E0e
i~k·~r−ωt with |k| = 2π

λ , k̂ is the direction of propagation of the
wave.

Relation between E and B fields Recall that ∇× ~E = −1
c
∂ ~B
∂t but ∇× ~E = i~k × ~E0e

i~k·~r−ωt so −1
c
∂ ~B
∂t = iω

c
~B0e

i~k·~r−ωt.

But since |~k| = ω/c, we have that | ~E0| = | ~B0| in a vacuum (CGS UNITS). Observe that k̂, Ê, B̂ form a right-handed coordi-

nate system because ~B is perpendicular to both ~k and ~E: Ê × B̂ = k̂. Energy propagation is given by the Poynting vector
~S = c

4π
~E × ~B, which has units of energy per unit area per unit time (intensity).

Plane Waves Consider k̂ = ẑ. Then we have ~E(~r, t) = ~E0e
i(kz−ωt) such that they fill all of space.

EM waves in Matter Matter contains charged particles. Electrons, having a much higher charge/mass ratio, respond
a lot to passing EM waves. We ignore large nuclei and ions for now. We also ignore tightly-bound electrons. Hence we are
only interested in free electrons and weakly-bound electrons. Possible scenarios:

• Electrons vibrate with velocities in phase with the electric field, the field does work and energy will be absorbed.
Example: conductors.

• If the electrons vibrate with positions in phase with the electric field, the velocities are π/2 out of phase with the field
and no work is done on the electron so the wave propagates. Example: dielectrics.

Dielectric constant Consider a neutral dielectric. Then we have ∇ · ~E = 0,∇ · ~B = 0,∇× ~E = −1
c
∂ ~B
∂t ,∇× ~B = ε

c
∂E
∂t

(note 4th equation different from vacuum). Let ε = 1 for vacuum. Now when we write the wave equation, we have the
dispersion relation:

v = ω/k = c/
√
ε = c/n

where n =
√
ε is the index of refraction. Hence the power |~S| =

√
ε c4π | ~E|

2.

Boundary conditions Note that ω is continuous across boundaries. However, k = 2π
λ changes discontinuously across

the boundary. Note that λ = 1
nλvac so |~k| = n|~kvac|.

Polarization of atoms We note that as an electric field propagates through a medium, the loosely bound electrons are
displaced by ~d and hence the atom is polarised with polarisation ~P , dipole moment q~d per unit volume. Then the total electric
field is given by ~Etot = ~Eextreme(t) − 4π ~P (t). We can write ~P (t) =number of electrons per unit volume times charge per

electron times ~X(t), the displacement along the ~E(t) direction. We model the atomic response for x(t) as a simple harmonic
oscillator with restoring force and dissipation (damping):

meẍ = −mω2
0x−meΓẋ− eE(t) (5.1)

since the charge of the electron is −e. We note that the external electric field has angular frequency ω. The solutions are:

x(t) = Ael cos(ωt) +Aab sin(ωt) (5.2)
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we note that the position elastic part is in-phase with the electric field and the absorptive part is out of phase with the

electric field (so that the velocity is in phase with the electric field, allowing absorption). Recall that Ael = F0

m
ω2

0−ω
2

(ω2
0−ω2)2+Γ2ω2 ,

and Aab = F0

m
ωΓ

(ω2
0−ω2)2+Γ2ω2 . Note that near the resonant frequency, the elastic part goes to zero, the absorptive part peaks,

so the electric field is absorbed and not transmitted. This happens in conductors. On the other hand, if ω is far from the
resonant frequencies, the converse happens and the wave propagates.

Far from resonance Take Aab ≈ 0 and |ω2
0 − ω2| >> ω0Γ, the width of the resonance, then Ael ≈ eE0

me
1

ω2
0−ω2 . Then the

dielectric constant ε = Eext
Etot

= 1 + 4πP
Etot

≈ 1 + 4πN ·e·x(t)
E0

≈ 1 + 4πNe2

me
1

ω2
0−ω2 . For a large number of electrons, and for ω far

away from all resonances, we write
∑Nr
i=1

1
ω2

0,i−ω2 ≈ Nr
ω2

0−ω2
. Hence we write ε = 1 + 4πNe2

me
Nr
ω2

0

(1 + ω2

ω2
0

+ . . .). Hence we see

that the index of refraction n =
√
ε increases with frequency for ω <<

√
ω2

0 .

Plasma Oscillations Consider free electrons now (e.g. plasma or metal). Now there are no restoring forces, so the

resonant frequencies are zero. Hence we let ω2
0 = 0, Nr = 1, and we have ε = 1 − 4πNe2

me
1
ω2 , note the minus sign. We write

ωp =
√

4πNe2

me
. We note that if ω > ω2

0 then ε < 0 so the index of refraction becomes imaginary. Then instead of writing

k = nkvac, we write k = i|n||kvac| so ei(i|n||kvac|z−ωt) = e−|n||kvac|ze−iωt, and we have an exponentially decreasing wave with
position, an evanescent wave. Note that there will be no phase velocity, and hence no propagation.

Alternatively, consider a volume of free charged particles displaced by x(t), find the induced electric field, and take it to
be the restoring force.

Plasma Dispersion Relation Consider from the previous paragraph ω2ε = ω2n2 = ω2 − ω2
p. The dispersion relation

for such a medium is ω = ck/n, so we substitute to obtain ω2(ck/n)2 = ω2 − ω2
p so we obtain ω2 = c2k2 + ω2

p, the dispersion
relation for a plasma. Note that ωp acts like a minimum frequency. When the driving ω is less than ωp, then k becomes
imaginary and we obtain an evanescent wave.

Dielectric Dispersion Relation Recall that ω2
0 is the restoring force per unit distance per unit mass. ω2

0 = e2

a /
a
me

=
e2me
a2 .

5.2 29 Oct 2014 Recitation

Traveling waves Recall the wave equation ∂2ψ
∂t2 = v2 ∂

2ψ
∂x2 . Consider the variables X+ = x+vt and X− = x−vt. After much

chain rule, we get ∂ψ
∂t = ∂ψ

∂X+
∂X+

∂t + ∂ψ
∂X−

∂X−

∂t = v
(

∂ψ
∂X+ + ∂ψ

∂X−

)
, and a second derivative. Finally, we get:

∂2ψ

∂X+∂X−
= 0

Hence all solutions look like:

ψ = f(X−) + g(X+)

= f(x− vt) + g(x+ vt)

Hence the general solution to the wave equation is a linear superposition of right moving and left moving waves.

Recall that ψ = A sin(kz) cos(ωt) = A
2 [sin(kz + ωt) + sin(kz − ωt)], hence we can write the standing wave as a superpo-

sition of oppositely-oriented travelling waves.

Driving the wave Impose boundary conditions by driving the wave from the left with amplitude A cosωt. Then the
string has to satisfy: ψ(0, t) = A cosωt = f(−vt), where the g parts vanishes since there are no left-moving waves. We
observe that the solution can be written as ψ(x, t) = A cos

[
ω
v (x− vt)

]
= A cos(kx− ωt).

Phase velocity Write ω = vφk.

Waves in matter Index of refraction n =
√
εrµr so that vφ = c

n .
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Snell’s Law Let an incoming wave be written as ~EI = ~E0,I cos(~kI · ~r− ωt) and strike the surface at an angle θ from the

normal. Let the reflected wave be ~ER = ~E0,R cos(~kR · ~r − ωt) and the transmitted wave be ~ET = ~E0,T cos(~kT · ~r − ωt). Let
~kR and ~kT be θR, θT from the normal. After plugging in boundary conditions, we have that:

~kI · ~r = ~kR · ~r = ~kT · ~r

Hence we have that kI sin θI = kR sin θR = kT sin θT . But we have that ω = c
nI
kI = c

nR
kR = c

nT
kT is the same for all the

waves. Since nI = nR, since they are in the same medium, we have that sin θI = sin θR or θI = θR. Similarly, we have that
nT sin θT = nI sin θI , which is Snell’s law.

Impedance Measures the ”inertia” of the system. Consider the angle of the string at the driving point ~Fvertical =
T sin θ ≈ T tan θ = T ∂ψ

∂z z=0
. We want Z that satisfies |Fvertical| = Z|ψ̇|. Noting that power is given by P = Fv, blah blah

blah

5.3 Thursday 30 Oct 2014

Dispersion relations for all frequencies Recall that:

ω2 =


ω2

0 − 4ω2
1 sinh2(ka/2), ω < ω0

ω2
0 + 4ω2

1 sin2(ka/2), ω0 < ω <
√
ω2

0 + 4ω2
1

ω2
0 + 4ω2

1 cosh2(ka/2), ω >
√
ω2

0 + 4ω2
1

Frequency dependence of dielectric constant for plasma ε(ω) = 1− ω2
p

ω2 , where ω2
p = 4πNe2

me
. The plasma frequency

for a metal is in the UV light range. Hence visible light is reflected by the metal while ultraviolet light penetrates the metal.

Note that when we consider the coupling of the electrons, then ε(ω) = 1 + 4πNe2

m(ω2
0−ω2)

. Around the resonant frequency, the

dielectric constant goes to infinity, then becomes negative as the frequency is increased further. The dielectric constant then
increases and returns to unity for large frequencies. But since n =

√
ε, when the dielectric constant is negative, we have that

n is also imaginary. Since ω = c
nk, then k is also imaginary and we get evanescent waves.

Refraction Snell’s law: n1 sin θ1 = n2 sin θ2.

Critical angle When sin θ2 = n1

n2
sin θ1 > 1, no transmission occurs and when sin θ2 = 1, we have that θ1 = sin−1 n2

n1
is

the critical angle.

Impedance Consider a motor driving a string with tension T. The force of the string on the motor is T sin θ ≈ T tan θ =

T ∂ψ
∂z

∣∣∣
z=0

. Hence the force of the motor on the string is −T ∂ψ
∂z

∣∣∣
z=0

. Hence the power that the motor introduces into the

string is P = Fv = −T ∂ψ
∂z

∣∣∣
z=0

∂ψ
∂t

∣∣∣
z=0

. But we know that the first derivatives are related because ψ = f(kz − ωt). Hence

we have that ψ′ = −1
v ψ̇. Substituting this into the power equation, we obtain P = −T (−1

v ψ̇(0))ψ̇(0) = T
v ψ̇(0)2 = vT (ψ′)2.

Note that T
v ψ̇(0)2 can be related to the kinetic energy (per unit time) and vT (ψ′)2 is like a potential energy (per unit time).

Since v =
√

T
µ , we have that T

v =
√
µT . We define the quantity Z, the impedance, to be the ratio between the power P and

ψ̇(0)2. Then we have that Z =
√
µT .

Analogues In the LC transmission line, T → (C/a)−1, µ = (L/a), vφ = a√
LC
, Z =

√
L/a
C/a . Note that the impedance is

not the same as the electrical impedance!

12



Chapter 6

Week 6

6.1 Tuesday 4 Nov 2014

Driving Force on String Recall that Pdriver(t) = −T ∂ψ
∂z

∣∣∣
z=0

∂ψ
∂t . Since we have that ψ′ = −1

vφ
ψ̇, we can write P (t) =

vT
(
∂ψ
∂z

)2

= Z
(
∂ψ
∂z

)2

, where Z = T
vφ

=
√
µT .

Transmission Line Analogue Recall that T → (C/a)−1, µ→ (L/a). Then Z =
√

L/a
C/a .

Propagation of Power We can think of the Power as being an Energy Density multiplied by the Phase Velocity.
For instance, for a string, energy per unit wavelength = U

λ = KE+PE
λ . Write ψ = Aei(kz−ωt). Then we have that U

λ =
1
4µω

2A2+ 1
4Tk

2A2. Note that the 1/4 comes from the 1/2 coefficient of the KE and PE as well as averaging over the cos2 ωt in 1

period. For a transmission line, we have U
λ = 1

2 (C/a)V oltage2 + 1
2 (L/a)I2, in the lumped case. For electromagnetic waves, we

have that u
V olume = 1

8π ε < E2 > + 1
8πµ < B2 >. For sound, we have u

cross−sectionalarea = 1
4ρVsoundω

2|A|2 + 1
2Kvsoundk

2|A|2,
where K is the adiabatic compressibility.

Energy Absorption Consider a mass placed at the end of a string with a travelling wave. Then the force acting on the

mass is given by F = T
(
∂ψ
∂z

)
z=L

, which we can write as −Tvφ
∂ψ
∂t . Note that the force is a damping force since it is proportional

to the velocity. Hence the power carried by the string is most efficiently absorbed (maximised) if the load has exactly the
right damping constant Zload = Zstring. Write that the restoring force of the load is given by F = −Z ∂ψ

∂t . This is called
impedance matching.

Sound: Energy Absorption Recall that for sound, K = γP0, where K is the adiabatic compressibility: K = −∂V
V ∂p .

The impedance of air, which is Z =
√
γP0ρ = 420Pa · s/m = 42dynes · s/cm.

Sound Intensity Define as the energy per unit time per unit area (power flux) to be Z
(
∂ψ
∂t

)2

= 1
Z

[
−γP0

∂ψ
∂z

]2
. Ob-

serve that −γP0
∂ψ
∂z is the force per unit area along the longitudinal direction of the compressed gas acting on the region

surrounding it. Call this the gauge pressure. The loudness of a sound refers to the energy deposited onto the eardrum,
which is proportional to the gauge pressure squared. Then, the intensity is proportional to the amplitude squared (square
law detector). The ear is also insensitive to phase!

Decibels Define 1dB = 10 log10
I
I0

, where I0 is a reference intensity, which is the intensity for sound to be barely audible

(10−12Wm−2). Alternatively, we can put this in amplitudes (gauge pressure) to obtain that 1dB = 20 log10
Pg
Pg,0

. Then

Pg,0 = 20µPa = 2× 10−10atm.

Reflection Consider two strings with different mass per unit lengths µ1 and µ2. Let the tension in each string
be equal to T . Then we assume that an incoming wave approaches from infinity ψ(x, t) = Aei(ωt−kx). Consider the
waves ψi, ψr, ψt, the incident wave, reflected wave and transmitted wave respectively. In the first region (µ1), we have
ψ1 = ψi + ψr = Ae(ωt−k1x) + Are

(ωt+k1x). In the second region, we have ψt = Ate
i(ωt−k2x). Now we know that

k1 = ω
v1
, v1 =

√
T
µ1

, and k2 = ω
v2

, v1 =
√

T
µ2

. Imposing boundary conditions: the string has to be continuous and its

first derivative in time must be continuous as well. Hence we have that ω1 = ω2. We also require that the force be continuous
across the interface. The force is due to the slope of each end multiplied by the tension. The interface should have zero net

force because it is massless. Hence we have that T ∂ψ1

∂x

∣∣∣
x=0

= T ∂ψ2

∂x

∣∣∣
x=0

. Hence we have A+Ar = At and k1(A−Ar) = k2At.
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Let Z1 =
√
Tµ1, Z2 =

√
Tµ2. Then we have R = Ar

A = Z1−Z2

Z1+Z2
, T = At

A = 2Z1

Z1+Z2
. Note that 1 +R = T . Note also that since

Z1 and Z2 are real, there are no phases induced.

6.2 06 Nov 2014 Thursday

Driving a Coaxial Cable At an unterminated end, the impedance is infinity, hence the current will be reflected with
negative sign. Recall that the capacitance per unit length (cgs units) is C

a = ε
2

1
ln(r2/r1) and the inductance per unit

length is L
a = 2µ

c2 ln(r2/r1). The phase velocity is vφ = c√
εµ ≈

c√
ε

since µ ≈ 1 for most materials. The impedance is

Z = 2
cn ln(r2/r1) = 60Ω

n ln(r2/r1) where the latter is usually the case for coaxial cables. Consider a function generator with
an output impedance of 50Ω and ZLC = 50Ω.

Boundary conditions for coaxial cables For an open circuit (infinity impedance), the current interferes destructively
at the end so that the reflected current has negative sign. For a short circuit, the current propagates back with the same
sign. However, the voltage does not follow the sign of the current and reflects back with the same sign for the open circuit
and with the negative sign for the short circuit. Hence at the end of an open circuit, the voltage is 2V .

Types of reflection We have amplitude reflection, force reflection and energy reflection. Recall that R = Z1−Z2

Z1+Z2
.

Note that since Z ∝ vφ, we can write it as R = v1−v2

v1+v2
. Then T = 2v1

v1+v2
. Note that the force on the string is

given by f = T0
∂ψ
∂z , where T0 is the tension in the string. Let ψ = Aei(ωt−kz) Then in the initial medium, we have

f = fincident + fref = −ik1AT0e
i(ωt−k1z) + ik1RAT0e

−(ωt+k1z). Hence the reflection coefficient for the force is given by
fref/fincident = −R. This is because the sign of k1 is different for the reflected wave and the incident wave, hence when
taking derivatives, we obtain a different reflection coefficient for the force. Note that the transmitted coefficient for the force
is still T , because the wave still moves in the positive direction.

Parallels

System Displacement Transverse velocity Force Impedance

String ψ ψ̇ T ∂ψ
∂z

√
Tµ

Transmission Line Q I V
√

L/a
C/a

EM waves ~A, vector potential ~B | ~E| = Z| ~B| Z =
√

µ
ε ≈

1
n usually,CGS

Reflection of EM waves Note that since n ∝ 1
v , we have that R = n2−n1

n1+n2
and T = 2n2

n1+n2
.

Impedance of free space From plane-wave solution to Maxwell’s equations. By definition, Z0 = E
H = µ0c0 =

√
µ0

ε0
=

1
ε0c0
≈ 377Ω.

Energies of oscillation Note that the energy can be written as E = KE+PE. For a string, write ψ = A cos(ωt−kx) and
we have KE =

∫
1
2 (µdx)|ψ̇|2 =

∫
1
2µdx[−Aω sin(ωt − kx)]2 = 1

2µA
2ω2

∫
λ

sin2(ωt − kx)dx = 1
4µA

2ω2λ. Also, PE = 1
2kx

2 =

T0

∫ √
dx2 + dy2 − dx = T0

∫
dx

[√
1 +

(
dy
dx

)2

− 1

]
≈ T0

∫
dx 1

2

(
dy
dx

)2

= 1
2T0

∫
λ

(
∂ψ
∂x

)2

dx = 1
2T
∫
λ

[kA sin(ωt− kx)]
2
dx =

1
4k

2A2Tλ. Recall also that for a string, v2
φ = T/µ = (ω/k)2 and λ = 2π

k . Rewriting both equations, we have that

KE = 1
2A

2Tkπ = PE averaged over time and space. This is related to the Virial theorem. Hence we have a total energy
that is πA2Tk.

Reflected energy We have that E ∝ TA2k. Hence Re = T1k1B
2

T1k1A2 =
(
z1−z2
z1+z2

)2

and Te = T2k2C
2

T1k1A2 =
(

2z1
(z1+z2)

)2
z2
z1

=
4z1z2

(z1+z2)2 . Observe that Re + Te = 1, which makes sense in conservation of energy.

Relations between R and T Note that for amplitudes and velocities (referring to the local oscillation velocity ∂ψ
∂t ),

we have 1 +Ra = Ta. For forces, we have 1 = Rf + Tf . For energy, we have Re + Te = 1. Note that there is a difference in
formula between forces and energy, since Re, Te are non-negative (they are the squares of some function), while Rf and Tf
can go negative.

Energy in parallel systems Recall that the energy per unit wavelength is E
λ = 1

4µω
2A2 + 1

4Tk
2A2. The energy per unit

length in the LC lines is E
a = 1

2 (C/a)2V 2 + 1
2 (L/a)I2. For EM waves, we have energy per unit volume E

V = 1
8π ε| ~E|

2 + 1
8πµ | ~B|

2.
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For sound, we have E
Area = 1

4ρvω
2A2 + 1

4Kvk
2A2. In SI units, E

V = 1
2ε0|E|

2 + 1
2µ0
|B|2.

Multiple boundaries: Antireflection Coating example Consider light incident on glass of n = 1.5 from air. Then

the intensity of reflection goes as
(

1−n
1+n

)2

≈ 0.04. We can reduce this by putting a thin-film coating on the glass. Let the

coating have thickness l and index of refraction n1. Let the index of refraction of glass be n2. We want the reflected wave from
n2 to interfere destructively with the reflected wave from n1. Note that we can write this as Ir

Ii
= |R1 +T10e

iklR2e
iklT01|2 ≈ 0.

The first term refers to the single reflection. The second term refers to the transmission at the first interface, propagation
through the coating, reflection at the second interface, propagation to the coating, transmission at the first interface at the
opposite direction. Note that T01 refers to the amplitude transmission coefficient from medium 0 to 1 (air to coating). T10

refers to the amplitude transmission coefficient from medium 1 to 0. R1 and R2 are the amplitude reflection coefficients from
medium 0 to 1 and 1 to 2 respectively. Note that if n1 < n2, then R1 and R2 will be negative. Hence we need e2ikl to be
negative to achieve the destructive interference. Hence we obtain that 2kl = π or l = λ

4 , we want the thickness of the coating
to be a quarter wavelength thick. Make the approximation T01 ≈ T10 ≈ 1. Then we want R1 = R2 to achieve zero intensity
of reflection. Then we have that n1 =

√
n2, the coating has index of refraction that is about the square root of the glass index.

Antireflection Coating: Now with more bounces We note that T01 = 2n1

1+n1
and T10 = 2·1

1+n1
. Then Ir/Ii ≈ 10−6,

which is a vast improvement over the 0.04 earlier. Now we consider multiple reflections. For the double reflection case, we
have Ir/Ii = |R01 − T10R12T01 + T10R12R21R12T01|2 ≈ 10−10, where we omit the eikl because we have chosen the quarter
wavelength so e2ikl = −1.

Fabry-Perot Cavities / Optical Resonant Cavities Recall the Zeeman splitting experiment. We have an incident
wave that experiences multiple reflections and transmissions in between two partially transmitting plates. Note that the
intensity of the ray that experiences n reflections is given by T 2R2n. Hence we can write It/Ii = |T 2eikl + T 2R2e3ikl + . . .+

T 2R2ne(2n+1)ikl + . . . | = T 4 1
|1−R2e2ikl|2 after summing the geometric series. We can write this as It/Ii = T 4

1+R4+2R2 cos(2kl) .

Now we note that Re+Te = (Ra)2+(Ta)2 = 1, we can write It/Ir = 1+R4−2R2

1+R4−2R2 cos 2kl , which becomes 1 when 2kl = 2πn, n ∈ Z.

Hence if we choose l = λ
2n, the transmission coefficient becomes unity and all incident light passes through. But if the distance

is slightly displaced from the optimal length, then the transmittance drops very rapidly. Hence if we plot the transmittance
against separation for a single incident wavelength, we have very narrow resonance curves centred at l = λ

2n.

Types of Polarization s-polarization: perpendicular to the plane of incidence. p-polarization: parallel to the plane of
incidence (i.e. in the plane of incidence)

Fresnel’s Equations (power reflection coefficient)

Rs =

∣∣∣∣n1 cos θi − n2 cos θt
n1 cos θ1 + n2 cos θt

∣∣∣∣2
Rp =

∣∣∣∣n1 cos θt − n2 cos θi
n1 cos θt + n2 cos θi

∣∣∣∣2
obtain the transmission coefficient by noting that R + T = 1 for power coefficients. Note that Rp vanishes at Brewster’s

angle θB = tan−1 n2

n1
.
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Chapter 7

Week 7

7.1 Tuesday 11 Nov 2014

Information encoding AM: A(t), FM: ω0 + δω, φM: φ = φ0 + δφ(t), last one is phase modulation.

Phase modulation Modulated signal is A sin(ωct+m(t) + φc). ωc is the carrier amplitude.

Localized wave superposition Write a general travelling wave as f(z, t) =
∑
nAn cos(ωnt − knz). Let u = z − vφt.

Then we can write f(z, t) =
∑
nAn cos(knu).

Example: Beats Recall that ψ(t) = A cos(ω1t) + A cos(ω2t) = 2A cos(ωmod) cos(ωavt), where ωmod = ω1−ω2

2 , ωav =
ω1+ω2

2 . Then the period of modulation can be written as Tmod = 1
2

2π
ωmod

. To make a pulse, we just make Tmod small (i.e.

ω1 ≈ ω2) and make Tperiodic → ∞. In this case, we have Tmod = Tperiodic for pure beats. To achieve a pulse, we need to
superpose a large number of frequencies. Under this condition, we have:

ωperiodicity =
2π

δω

1

2

ωmod =
2π

∆ω

1

2

where δω is the spacing between frequencies and ∆ω is the spacing between the highest and lowest frequencies. Note that
we can make δω arbitrarily small by taking a very large number of frequencies. Call ∆ω the bandwidth.

Uncertainty relations Note that for a large number of frequencies forming a pulse, we have:

∆ω∆t

∆k∆u, u = z − vφt
∆k∆z

all of order unity. These are all unitless!

Pulses on a string Consider the case where we have a string of length L along the axis z. Recall that we wrote an
arbitrary pulse by assuming that it continued periodically for all positions across infinity. To make a non-periodic pulse, we
need to make L→∞.

Continuous Fourier Transform In the limit where L→∞, we take k = nπ
L to be a continuous parameter, and we can

let small changes in k be δk = π
Ldn. We hence replace the sum across n with an integral over dn, or equivalently, an integral

over L
π dk. Hence we write:

f(z) =

∫ ∞
0

dk
L

π
bn cos(kz) +

∫ ∞
0

dk
L

π
an sin(kz)

Call Lbn
π = b(k) and Lan

π = a(k). Hence we have:
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f(z) =

∫ ∞
0

dkb(k) cos(kz) +

∫ ∞
0

dka(k) sin(kz)

If f(z) is defined for negative z as well, we may also integrate from negative infinity, but we will need to correct the
integrals by multiplying by half. Hence we can write the transform generally as:

f(z) =
1

2

∫ ∞
−∞

dkb(k) cos(kz) +
1

2

∫ ∞
−∞

dka(k) sin(kz)

Recalling the definition of bn and an:

b(k) =
1

π

∫ ∞
−∞

f(z) cos(kz)dz

a(k) =
1

π

∫ ∞
−∞

f(z) sin(kz)dz

Making qualitative observations We note that if f(z) is even, then we expect b(k) to be nonzero and a(k) to be zero.
Similarly, if f(z) is odd, we expect b(k) = 0 and a(k) 6= 0.

Time-dependence Consider a pulse f(z) at t = 0. Then we perform the Fourier transform and know b(k) and a(k).
Then we have the time-dependent function: ψ(z, t) =

∫∞
−∞(b(k) cos ku+ a(k) sin ku)dk, where u = z − vt.

Inverse Laplace Transforms Observe that:

b(k) =
1

π

∫ ∞
−∞

ψ(u) cos(ku)du

a(k) =
1

π

∫ ∞
−∞

ψ(u) cos(ku)du

This is because:

∫ ∞
−∞

cos(ku) cos(k′u)du =
1

2
2πδ(k − k′)∫ ∞

−∞
sin(ku) sin(k′u)du =

1

2
2πδ(k − k′)

Dirac Delta Functions Characteristics:
∫∞
−∞ δ(k − k′)dk = 1,

∫∞
−∞ δ(k − k′)f(k)dk = f(k′).

Fourier Transforms

δ(x) =

∫ ∞
−∞

e−2πikxdk∫ ∞
−∞

e−2πikxδ(x)dx = 1

7.2 Wednesday 12 Nov 2014 Recitation

Dashpot Consider a dashpot attached to the end of a string. The dashpot introduces a drag force FR = −ZRv(t).

Reflection coefficients in terms of wave numbers R = k1−k2

k1+k2
, T = 2k1

k1+k2
. We also have that ω = vk, v =

√
T/ρ, Z =√

Tρ. Hence we can just replace ks with Zs. Note that T is continuous across a boundary but ρ, the mass density, is not.

Rearranging, we obtain k = ω
v = ω

√
ρ
T = ω

√
Z2/T
T = ωZ

T =⇒ k ∝ Z.

17



7.3 Thursday 13 Nov 2014

Review Recall that we can write solutions to the wave equation as f(u), u = x − vt. We consider the cosine-like compo-
nents of this function as the infinite set {fk(u)} = {cos ku}, where k is a continuous real variable. Then the condition for
orthonormality is fulfilled because

∫∞
−∞ cos k′u cos kudu = πδ(k − k′). Hence we can write the general function of u using

these orthonormal functions: ψ(u) =
∫∞
−∞ dk[b(k) cos(ku) + a(k) sin(ku)] for continuous functions b(k), a(k).

Waves on a ring Consider a ring with one parameter θ. This is a Dirichlet boundary condition because we require that
f(θ) = f(θ + 2π).

Complex Fourier Transform Define ψ(u) =
∫∞
−∞ c(k)eikudk. Note that orthonormality becomes

∫∞
−∞ ei(k−k

′)udu =
2πδ(k − k′). This comes from the definition of the delta function from the Fourier transform (making the substitution
u = 2πk:

δ(x) =

∫ ∞
−∞

e−2πikxdk =

∫ ∞
−∞

e−iuxd(u/2π) =
1

2π

∫ ∞
−∞

e−iuxdu =
1

2π

∫ ∞
−∞

eiuxdu

We now perform this orthonormality condition on the original function:

∫ ∞
−∞

due−ik
′uψ(u) =

∫ ∞
−∞

due−ik
′u

∫ ∞
−∞

c(k)eikudk

=

∫ ∞
−∞

c(k)dk

∫ ∞
−∞

duei(k−k
′)udu

=

∫ ∞
−∞

dkc(k)2πδ(k′ − k)

= 2πc(k′)

Comments on the complex Fourier Transform If the function is even ψ(u) = ψ(−u), then we know that it is
going to be cosine-like, and we can just evaluate the cosine-like Fourier transform. We can also perform the complex fourier
transform to obtain that C∗(−k) = C(k). Conversely, if ψ(u) = −ψ(−u), then we will have that C∗(−k) = −C(k).

Inverse Fourier Transform We note that:

ψ(u) =

∫ ∞
−∞

dkC(k)eiku ⇐⇒ C(k) =
1

2π

∫ ∞
−∞

ψ(u)e−ikudu

Call C(k) the Fourier transform of ψ(u) and ψ(u) the inverse Fourier transform of C(k). Alternatively, we can “split”
the 2π factor to rewrite the functions as:

ψ(u) =
1√
2π

∫ ∞
−∞

dkC(k)eiku ⇐⇒ C(k) =
1√
2π

∫ ∞
−∞

ψ(u)e−ikudu

Examples Consider a pulse that is very well localised in frequency. Let b(k) = δ(k − k0), centred at k0. This is a pure
sinusoid, and hence extends to infinity. Computing its Fourier transform, we note that the delta function is even about
k = k0. Hence we examine the cosine-like solutions:

ψ(u) =

∫ ∞
−∞

δ(k − k0) cos kudk

=

∫ ∞
−∞

δ(k) cos((k + k0)u)dk

= cos(k0u)

= cos(k0x− ωt)

hence we note that the Fourier transform of a delta function in k-space is a plane wave.
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Box function Note that the delta function can be thought of as the limiting case of a box-function with the width going to

zero and the height going to infinity. Then we write b(k) = α [θ(k − (k0 −∆k))− θ(k − (k0 + ∆k))] =


0, k < k0 −∆k

α, k0 −∆k < k < k0 + ∆k

0, k > k0 + ∆k

where θ represents the Heaviside function (step function). Then we have the Fourier transform:

ψ(u) =

∫ k0+∆k

k0−∆k

α cos(ku)dk

=
α

u
[sin[(k0 + ∆k)u]− sin[(k0 −∆k)u]]

= 2α∆k
sin(∆ku)

∆ku
cos(k0u)

= 2α∆k sinc(∆ku) cos(k0u)

Note that for sinc = sin x
x , we have that lima→0

sinc(x/a)
aπ = δ(x), a delta function. Hence the limiting case to the box

function where ∆k → 0 will be a delta function.

Sinc function Note that we can characterise the sinc function by considering the full-width at half maximum. For the
function sinc(∆ku) as a function of u, we have that the FWHM is 2∆u = π

∆k . So we have that ∆u∆k = π
2 .

Gaussian function The Fourier Transform of a Gaussian is a Gaussian. The Gaussian is a minimal uncertainty function
because it gives a minimal ∆t∆ω = 1

2 . In comparison, the box function gives an uncertainty relation of ∆t∆ω = π
2 . The

normalised Gaussian looks like:

ψ(x) =
1

σ
√

2π
e−(x−x0)2/2σ2

Moments Define the nth moment of the distribution ψ(x) about the point x = 0 to be
∫
xnψ(x)dx. The zero-th moment

is just the integral, which can be computed to be
∫
ψ(x)dx = 1. The RMS about the mean of a Gaussian is the standard

deviation of the Gaussian.

FT of a Gaussian Given b(k) = 1√
2πσ2

k

e−(k−k0)2/2σ2
k , we have that:

ψ(u) =
1√
2π

∫ ∞
−∞

b(k)eikudk =
1√

2π/σ2
k

e−u
2σ2
k/2eik0u

Note that 1√
2π/σ2

k

e−u
2σ2
k/2 is the slowly-varying Gaussian amplitude envelope andeik0u refers to the rapidly oscillating

terms within the envelope. We can define σu = 1
σk

such that σuσk = 1. Then we can write the Gaussian envelope as
1√

2πσ2
u

e−u
2/2σ2

u . We note that we can obtain the usual uncertainty relation by examining the intensity, which goes as the

square of ψ(u). Hence we note that the [b(k)]2 goes as e−(k−k0)2/σ2
k and [ψ(u)]2 goes as e−u

2σ2
k and hence we obtain ∆k = σk√

2

and ∆u = 1
σk
√

2
so that ∆k∆u = 1

2 as expected.

Gaussian Tricks

1. Computing normalisation using polar coordinates.

2. Computing moments: Recall that the Gaussian is even about the mean, hence the odd moments vanish. Also define
I(a) =

∫
xne−x

2adx. Then note that we can calculate the even moments by taking the derivative of I(a) with respect
to a.

3. Evaluating e−x
2a−xb−c by completing the square.
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Chapter 8

Week 8

8.1 18 Nov 2014 Tuesday

Review The Fourier transform of a delta function is a pure sine wave of single frequency. Also, the inverse Fourier transform
of a delta function is also a pure sine wave. Hence a delta function in time is a sine wave in frequency.

Ringdown A ring down has time-domain representation ψ(t) = cos(ω0t)e
−Γt/2, for t > 0. We introduce the factor of 2 in

the exponent so that the intensity goes as e−Γt. We write this as ψ(t)
∫∞
−∞ C(ω)eiωtdω so we have C(ω) = 1

2π

∫∞
0
dtψ(t)eiωt.

Transforming this to the complex domain, we write ψ(t) = Aeiω0te−Γt/2 so:

C(ω) =
A

2π

∫ ∞
0

dte−[i(ω−ω0)+Γ/2]t =
A

2π

1

Γ/2 + i(ω − ω0)

=⇒ |C(ω)|2 =
1

(ω − ω0)2 + Γ2/4

this shape is a Lorentzian with a FWHM of Γ for |C(ω)|2. Hence the impulse response of a harmonic oscillator is a
ring-down in the time domain and a Lorentzian in the frequency domain.

Propagation of pulses Write:

ψ(x, t) =

∫
b(k)ei(kx−ωt)dk, b(k) = ψ̃(x, 0)

where we use the tilde to represent the Fourier transform. Assume b(k) is peaked at k0 with a characteristic width
∆k << k0.

Note that ψ(x, 0) =
∫
b(k)eikxdk so we obtain b(k) by taking the Fourier transform of ψ(x, 0).

Assume that b(k) is about constant on k0 −∆k to k0 + ∆k and is equal to around α. Then we need to represent ω(k)
around k0. Take the Taylor expansion: ω(k) = ω(k0) + dω

dk |k=k0
(k − k0) + . . .. Then we have:

ψ(x, t) = α

∫ k0+∆k

k0−∆k

ei(kx−ω0t− dωdk (k−k0)t)dk

= αe−iω0te
dω
dk k0t

∫ k0+∆k

k0−∆k

eik(x− dωdk )tdk

Define u = x − dω
dk |k=k0

t. We also know that the integral of the exponential is going to give a sinc function, hence we
have:
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ψ(x, t) = αe−iω0tei
dω
dk k0t

eiku

iu

∣∣∣∣k0+∆k

k0−∆k

= 2αe−iω0teik0x∆k
sin(∆ku)

∆ku

= 2α∆k
sin(∆k(x− dω

dk t))

∆k(x− dω
dk t)

ei(k0x−ω0t)

Observe that this wave translates at velocity dω
dk

∣∣
k=k0

= vg. Note that if the pulse is not narrow, then the higher order

terms in the Taylor expansion of ω(k) will be relevant, and the wave will disperse in time.

Method of Stationary Phase Given ψ(u) =
∫
c(u)eikudk, where u = x − vφt and c(k) slowly varying with a peak at

k0. Note that for ψ(u) to be non-zero (constructive interference), then it means that the phase ku must be approximately
constant, so that the integral over all k does not cancel the overall value. This occurs when ∂

∂k (ku) ≈ 0 =⇒ ∂
∂k (kx− ωt) ≈

0 =⇒ x− dω
dk

∣∣
k=k0

t = 0.

Dispersion in a Plasma Recall that vφ = c√
ε

= ω
k . Also, we have the dispersion relation ω2 = ω2

p + c2k2. Hence we

have ω2 = c2k2

ε = c2k2

1−
ω2
p

ω2

. Hence we have vφ = ω
k = c

√
1 +

ω2
p

c2k2 > c. However, the group velocity is c√
1+

ω2
p

c2k2

< c.

Review of Multivariable Calculus

• Note that �2 = Ox+Oy +Oz +Ot, where Oj represents an operator on the jth coordinate. Then solutions to �2φ = 0
can be written by separation of variables as ψ(x, y, z, t) = φx(x)φy(y)φz(z)φt(t). In general, if we can write the operator
as a sum of operators on orthogonal co-ordinates, then the solution can be written in separation of variables.

• However, if the operator is not just a simple sum of the operators in different coordinates, then we need to write
ψ(~r, t) =

∑
ijkl φxi(x)φyj(y)φzk(z)φtl(t).

•

3D waves For a single plane-wave in 3D, we write ψ(~r, t) = eikxxeikyyeikzze−iωt = ei(
~k·~r−ωt),~k = kxx̂ + ky ŷ + kz ẑ and

ω2 = v2(k2
x + k2

y + k2
z) = v2|~k|2 = v2

(
2π
λ

)2
.

Standing Wave in 3D We write ψ(~r, t) = sin(kxx + δx) sin(kyy + δy) sin(kzz + δz) cos(ωt + φ) for a general standing
wave. Note that we can engineer a traveling wave in one direction like ψ(~r, t) = sin(kxx) sin(kyy) cos(kzz − ωt+ φ).

Evanescent waves If k2
j < 0, then write κj =

√
−k2

j and then in that co-ordinate we have e−κjj , an exponentially

decaying wave.

8.2 Recitation 19 Nov 2014

Group velocity ω
k = vφ =⇒ dω

dk = vg = vφ + k
dvφ
dk .

Surface Water Waves (Crawford 6.19) Dispersion relation for ocean waves: ω2 = gk+ T
ρ k

3. T is the surface tension

and ρ is the mass density of the water. Group velocity and phase velocity are equal when g = T
ρ k

2.

8.3 20 Nov 2014

Isotropic medium Frequency does not depend on the direction of the wave vector, but only on the magnitude ω = ω(|~k|).

EM wave waveguide Consider a rectangular cross section extended in the z direction, dimensions Lx, Ly and infinite
in the z direction. We want standing waves in x and y and propagating waves in z. Assume isotropic and linear dispersion
relation: ω = c

n |~k|.

Modes:

• Transverse Electric TEnm, n = number of standing waves (mode) in the x direction, m is the number of standing waves
(mode) in the y direction.
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• TM

• TEM

Transverse Electric Boundary conditions: Let ~E point in the x direction.Ex(y = 0) = Ex(y = Ly) = 0 =⇒
Ex(~r, t) = E0 sin(kyy) cos(kzz−ωt+φ), ky = nπ

Ly
. This can be rewritten as Ex = E0

2 (sin(ky + kzz − ωt)− sin(−kyy + kzz − ωt)).
Note that the wave can be written as the superposition of two travelling waves with wave vectors ~k1 = ky ŷ + kz ẑ and
~k2 = −ky ŷ+ kz ẑ. Each time the wave hits the boundary, it undergoes specular reflection. Then the dispersion relation looks

like c
n

√(
nyπ
Ly

)2

+ k2
z . Note that the kz term inside the square root has to be real for propagation along z. Observe that we

can write the dispersion relation as ω =
√
ω2
p + (ck)2, where ωmin = c

n
π
Ly

.

Velocities Define the distance between bounces ct. the wave propagates a distance ct cos θ in the ẑ direction in between
bounces. Also note that the wavefront propagates a distance ct

cos θ along the z direction in between bounces. Note that the

angle can be written as cos θ = kz√
k2
y+k2

z

. Hence the phase velocity, the velocity of the wavefront, appears to exceed the speed

of light. But the group velocity, the actual velocity of the transfer of energy, travels slower than light.

Spherical waves Write the wave in spherical coordinates: ψ(~r, t) = ei(
~k·~r−ωt). Far away from the source, the curvature

is not noticeable and the wave behaves like a plane wave. Consider a pulse of width ∆r propagating at the group velocity.
Consider a detector of width dl perpendicular to the direction of propagation. Then the detector captures dl

2πr of the energy
in 2D. Then the energy |ψ|2 is proportional to 1

r so the magnitude of the wave falls of like 1√
r

in 2D. in 3D, the amplitude

falls of like 1
r .

Solid angle Define the elemental area d ~A = r2dΩr̂, where dΩ is the solid angle subtended by the detector. In spherical
coordinates dΩ = sin θdθdφ. Total solid angle of a sphere is

∫∫
sin θdθdφ = 4π.

Operators in Polar Coordinates

∇2 =
1

r

∂

∂r
(r
∂

∂r
) +

1

r2

∂2

∂θ2

Operators in Spherical Coordinates (Radial only)

∇2 =
1

r2

∂

∂r
(r2 ∂

∂r
) + . . .

the wave equation has solutions ψ = ei(kr−ωt)

r .

EM waves Note that in vacuum | ~E| = | ~B|, cgs units. Also, the energy density of an EM wave is given by 1
8π (| ~E|2+| ~B|2) =

1
4π | ~E|

2. The energy flux (energy per area per unit time) is given by the Poynting vector ~S = c
4π
~E × ~B, cgs units.

Radiation from an accelerated point charge Let an electron be accelerated with acceleration a for a time ∆t so
that it achieves a final velocity a∆t << c. Consider r >> 1

2a∆t2. Acceleration of the charge produces traverse waves that
carry energy and information away from the source. Note also that no energy is radiated along the axis of acceleration. For
an oscillating dipole, the maximum energy transmission occurs perpendicular to the axis of oscillation. Far from the source,
only the transverse components survive, and will become a plane wave.
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Chapter 9

Week 9

9.1 Tuesday 25 Nov 2014

Radiation from an accelerated point charge Let an electron be accelerated for a short time to achieve velocity v = a∆t,
cruise at v for a time t, then get decelerated back to rest in time ∆. Let the total displacement of the electron be vt. Let
the angle between the vertical axis and the observer be θ. Let the electron move in the vertical direction. Then the length
of the kink perpendicular to the radial line (i.e. θ̂ direction) is vt sin θ. We note that the length of the kink parallel to the
radial line is c∆, the thickness of a spherical wheel carrying a perpendicular E⊥.

The initial electric field far away from the electron (no information about acceleration) is q
r2 in CGS units.

Now zoom in on the kink. Draw a Gaussian pillbox perpendicular to the radial direction with one face in the kink and
the other outside the spherical shell (electric field there= q

r2 ). Now the pillbox encloses no charge, and hence the net electric
flux is zero through the pillbox. Let the pillbox be small enough such that on the sides of the box, the electric flux cancels.
Comparing the electric flux into the face of the pillbox, we obtain that E‖ = Eoutside. We also know that E⊥

E‖
= vt sin θ

c∆t . But

we know that E‖ = Eoutside = q
r2 . Hence we have that E⊥ = vt sin θ

c∆t
q
r2 .

Now we note that the observed acceleration of the electron at the position r is the acceleration of the electron at the
retarded time t′ = t − r

c . Let t = 0 represent the start of the acceleration. Then t′ = − rc and the observed velocity is −arc .
Note that the component of the electric field due to the acceleration is opposite in direction to a. Then we have the radiation
field formula:

E⊥ =
−qa(t′) sin θ

rc2

where q is the charge of the particle, a(t′) is the acceleration of the charge at the retarded time, θ is the angle between
the acceleration and the line of sight, r is the separation between the charge and the observer. Note that the radiation field
falls off as 1

r . Note that along the acceleration axis, no electric field is observed.

Power radiated from an accelerating charge Recall that the Poynting vector is ~S = c
4π
~E× ~B in CGS units. We know

that in vacuum, | ~E| = | ~B| and the direction of the Poynting vector will be in the direction of radiation. Hence ~S = c
4π | ~E|

2r̂.
Explicitly,

S =
q2a2(t′) sin2 θ

4πr2c3

Recall that 4πr2 is the surface area of a sphere. To calculate the total power radiated, we need to integrate over all the
angles:

P =

∫∫
q2a2(t′) sin2 θ

4πr2c3
dA

P =

∫ 2π

0

∫ π

0

q2a2(t′) sin2 θ

4πr2c3
r2 sin θdrdθdφ =

2q2a2(t′)

3c3

Generalisation Consider acceleration at different times with width ∆t. Then we have:
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dP =
q2

c3
[a(t′)]2 sin θ

dΩ

4π

Rayleigh scattering Consider an electron accelerated by an incident sinusoidal electric field. Then it will oscillate with
x(t) = x0 cosωt with some driving frequency ω. The acceleration then goes as a(t′) = −ω2x0 cos(ωt′). Then the power
radiated becomes:

dP =
q2

c3
ω4 < x2(t′) > sin2 θ

dΩ

4π

where the angular brackets represent the average over a period. Note that the integral of sin2 θ dΩ
4π integrates to 2

3 over a
sphere.

Bound electron If the electron is loosely bound to its ion:

mẍe = qEinc(T )−mω2
0x(t) = −mω2x(t)

where ω is the angular frequency of the driving force. Then we know the amplitude of the response depending on the
driving frequency:

x(t) =
qEinc(t)

m(ω2 − ω2)

now the restoring force for Coulombic forces in a typical molecule is very high meω
2
0 ≈ e2

a2
0

where a0 ≈ 10−10m. Hence we

have λ0 = 2πc
ω0
≈ 1200A, which is in the UV. The incident sunlight has a longer wavelength of around 4000− 7000A. Hence

we can approximate ω2
0 − ω2 ≈ ω2

0 . Then we have the approximate equation of motion:

x(t) =
qEinc(t)

mω2
0

Now since ω2x is the driving acceleration, the power radiated is 2
3
q2

c3 ω
4 q

2<E2
inc>

m2ω4
0

. Note that higher frequency light is

scattered much more (more power for the same incident power) than lower frequency light.

Rayleigh scattering is valid for λinc >> λrestoring.

Reflection Coefficients in 2D and 3D Note that in 1D, the reflection coefficient was unitless. In 2D, the reflection
coefficient has dimensions of length, and in 3D, the reflection coefficient has dimensions of area (the cross-section).

Scattering cross section Consider an incident plane wave with ~k. Consider a target with cross section σ. Then the
power scattered is equal to the incident flux (i.e. power per unit area) multiplied by a cross section σ. In the case of light

with frequency ω, we have that < ~S >= c
4π <

~E × ~B >. Then the cross section is defined by:

σ =
Pscattered

< ~Sincident >
=

2

3

q4

c3
ω4 < E2

inc >

m(ω2
0 − ω2)2

1

(c/4π) < E2
inc >

=
8π

3

(
q2

mc2

)2
ω4

(ω2
0 − ω2)2

since energy goes as q2

r in CGS units, we define re = q2

mc2 , which has units of length. Call this the classical electron radius.
Then we can write:

σ =
8π

3
r2
e

ω4

(ω2
0 − ω2)2

Differential cross section Define:

dσ(ω)

dΩ
=

dP/dΩ

< Sinc >
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9.2 26 Nov 2014, Recitation

Higher dimension wave equation ∂2ψ
∂t2 = v2∇2ψ.

9.3 Useful Trigo Formulae

• sin a sin b = 1
2 (cos(a− b)− cos(a+ b))

• cos a cos b = 1
2 (cos(a− b) + cos(a+ b))

• sin a+ sin b = 2 sin a+b
2 cos a−b2

• cos a+ cos b = 2 cos a−b2 cos a+b
2

• sin(x+ π/2) = cosx

• sin(x− π/2) = − cosx

• sin(x± π) = − sinx

• cos(x+ π/2) = − sinx

• cos(x− π/2) = sinx

• cos(x± π) = − cosx

• tan(x+ π) = tanx

• tan(x± π/2) = − cotx

• cos 3x = 4 cos3 x− 3 cosx

• sin 3x = 3 sinx− 4 sin3 x
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Chapter 10

Week 10

10.1 Tuesday 2 Dec 2014

Radiation Power Recall that for an accelerating charge, the power is given by P (r, θ, t) = q2

c3 [a(t − r
c )]2 sin2 θ dA

4πr2 . The

integral over all angles is given by P (r, t) = 2q2

3c3 [a(t− r
c )]2. Note that r2P (r,θ,t)

dA is the power per unit area, or power per unit
solid angle because the solid angle obeys dA = r2dΩ.

Driving force from electric field Let an electric field ~E accelerate the charge (bound with natural frequency ω0) with
frequency ω. Far away from resonances, we can write:

x(t) =
qE(t)

m(ω2
0 − ω2)

Taking the second partial derivative with respect to time (to get the acceleration to plug into the accelerated charge power
formula), we obtain that:

< P (r, t) >=
2q2

3c3
ω4 q2

m2(ω2
0 − ω2)2

< E(t)2 >

If ω0 >> ω, then we have that P ∼ ω4 ∼ 1
λ4 , which is the Rayleigh blue sky law.

Flux using Poynting vector Recall that:

< ~S >=
c

4π
< E(t)2 >=

c

4π

|E|2

2

Scattering cross section Take the ratio between the scattered power and the incident power (i.e. Poynting vector
average magnitude). We get:

σ =
Pscat

< ~S >
=

8π

3

(
q2

mc2

)2
ω4

(ω2
0 − ω2)2

Recall that we can write the classical electron radius as re = e2

mc2 so that the scattering cross section of the electron is

σ = 8π
3 r

2
e

ω4

(ω2
0−ω2)2 .

Multiple scatterers Consider a macroscopic target of scatterers, each with cross section σ. Consider, for instance, a
solid structure. Then the number of targets per volume is N = NA

ρ
A , where A is the number of nucleons per atom. Consider

a very thin slice of the material. Then the fraction of the cross section that is filled by scatterers is given by number of
scatters per volume times area per scatterer (i.e. cross section) times the thickness. This can be written as :

f = Nσ∆z

The probability of scattering for a thick block is given by the difference equations:
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P (transmit, z + ∆z) = P (transmit, z)(1− f(z))

P (z) +
dP

dz
∆z = P (z)− P (z)f(z)

dP

dz
= −P (z)f(z)

1

∆z

=⇒ P (z) = P0e
−Nσz

Multiple scattering Consider the differential cross section dσ
dΩ . We write:

dNscattered,γ
dΩ

= Fluxγdt×
NA
A
ρ∆z

dσ

dΩ

in which the scattering is dependent on the angle from the incident γ ray. Note that NA
A ρδz refers to the number of

scattering centers in a slab of thickness δz small.

Two Slit Experiment Consider two slits separated by d, illuminating a wall a distance L >> d away from the slits. Let
both slits be illuminated by a single light source placed far away in the negative horizontal direction. Consider the position
x1 on the wall making an angle θ with the horizontal passing through the centre of the slits. Choose L such that r1− r2, the
difference in distances of x1 to each of the two slits, is on the order of λ. Consider the sum of the electric field at x1:

E(x1) = E cos(ωt− kr1 − φ1) + E cos(ωt− kr2 − φ2) = 2E cos

(
ωt− k r1 + r2

2
− φ1 + φ2

2

)
cos

(
k
r2 − r1

2
+
φ2 − φ1

2

)
=⇒ E(x1) ≈ 2E cos

(
ωt− kr̄ − φ̄

)
cos

(
k∆r

2
+

∆φ

2

)
We note that we can approximate r2 − r1 = d sin θ = ∆r. Then we can write:

E(x1) = 2E cos(ωt− kr̄ − φ̄) cos

(
kd sin θ + ∆φ

2

)
Now note that the cosine term with the time dependence averages to 1

2 over one cycle. Also take φ1 = φ2. Also note that
the intensity goes as the average of the electric field squared over one cycle. Hence we can write:

I(x1) = I0 cos2

(
kd sin θ

2

)
But note that x1 = L tan θ =⇒ x1 ≈ Lθ. Hence we can write:

I(θ) = I0 cos2

(
kd sin θ

2

)
Intensity away from the axis Note that we can write r2 = L2 + x2 = L2 + L2 tan2 θ =⇒ I(θ) ∼ 1

r2 ∼ 1
L2(1+tan2 θ) =

cos2 θ
L2 . Hence the intensity falls away slowly as theta increases in either direction.

Separation between maxima Note that for maxima, require that kd sin θ
2 = nπ =⇒ d sin θ = nλ, n ∈ Z.

Coherence Note that a physical source will have a finite frequency width. To achieve a measurement of interference, we
require that ∆ω∆tmeasurement << π so that the time of measurement is short enough so that the measurement can be made
within the coherence time of the source.

Hanbury, Brown, Tuiss experiment Measured light from Sirius by modelling Sirius as two sources separated spatially.
Used very short measurement times (10−8s) and measured the coincidence rate of photons in two detectors separated by
several meters. Used the coincidence data to estimate the angular diameter of Sirius.
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10.2 Wednesday 3 Nov Recitation

Transverse condition No longitudinal polarization n̂ · ẑ = 0. Polarization is always orthogonal to propagation direction.

Circular Polarization Righthanded:

ψ(z, t) = Aei(kz−ωt)x̂−Ae−i(kz−ωt)iŷ
ψ(z, t) = Aei(kz−ωt)x̂+Ae−i(kz−ωt)iŷ

10.3 4 Dec 2014

Spherical waves from a narrow slit E(r) = A
r e

ikre−iωt.

Intensity from two narrow slits I(x = L tan θ) = c (2A)2

4π
1
2 cos2(kd sin θ

2 + ∆φ). Note that the peaks are separated by

∆x such that kd sin θ
2 = nπ or d sin θ = nλ. Hence the angular separation between maxima is λ

d .

Wide Slit Consider a wide slit of width D, and split it into a large number N of narrow slits with width d (i.e.
D = (N − 1)d), each producing spherical waves. The electric field due to the narrow slits can be written as:

E = A0e
−iωteikr[1 + eiδ + e2iδ + . . .+ eNiδ]

where δ = kd sin θ, the phase difference between two consecutive slits. Note that this is a geometric series, and hence we
can write:

E = A0e
−iωteikr

1− e(N+1)iδ

1− eiδ
= A0e

−iωteikre
(N+1)iδ

2 e−iδ/2
e−

(N+1)iδ
2 − e

(N+1)iδ
2

e−iδ/2 − eiδ/2
= A0e

−iωteikreNiδ/2
sin(N + 1)δ/2

sin δ/2

We let N →∞ and replace A0N = A, which is finite. Then the intensity is I = |A|2[sinc(t)]2 where t = kD sin θ
2 .

Frauenhofer diffraction pattern Minima occur at kD sin θ
2 = nπ,D sin θ = nλ. Hence the width of the peak is of order

λ
D . Maxima occur at D sin θ = (n+ 1

2 )λ.

Two wide slits Envelope is a “primary peak” that goes as sinc2(kD sin θ
2 ) and the fast oscillation is a “secondary peak”

cosine-like cos2(kd sin θ
2 ). The minima of the fast oscillation occurs as Nkd sin θ

2 = nπ. The maxima of the slow envelope occurs

as kd sin θ
2 = nπ.

Maximum number of peaks Observe that sin θ ≤ 1. Hence the maximum number of principal peaks is D
λ .

General Fourier Transform of Slit Note that it can be shown that the diffraction pattern in the far field (in terms of
θ) can be written as the Fourier transform of the slit position (in terms of x). Write B(kx) =

∫
f(x) cos(kxx)dx, where f(x)

represents the wave function at the slit.

Resolving power of diffraction grating Note that the separation between secondary maxima is of order λ
Nd and hence

the resolving power goes as 1
N . Hence differences in wavelength can be resolved to 1 part in N.
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