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Chapter 1

Week 1

1.1 Monday, 29 Sept 2014

Features of ODE problems: Deterministic, finite dimensional, differentiable.

Differentiable manifold: Manifold that is locally similar to a plane (the tangent plane).

General form: Unknown is a vector dependent on time: ~x(t). Write dk~x(t)
dtk

= f
(
t, ~x(t), d~x(t)

dt , · · · , d
k−1~x(t)
dtk−1

)
for some

function f : Rkn+1 → Rn in a vector space with dimension n.

More generally, since the highest derivative may not be able to be expressed explicitly, we write the implicit form:

F
(
t, ~x(t), · · · , d

k~x(t)
dtk

)
= 0 for the function F : R(k+1)n+1 → Rn.

Order: Call an equation of order k if the highest derivative in the general equation is the kth.

1.2 Wednesday, 1 Oct 2014

Simplest possible DE Consider dx(t)
dt = f(t). We have some requirements for the assigned function f(t): f : [a, b]→ R and

is continuous for a ≤ t ≤ b. Solve using usual integration plus constant.

Another case: Consider dx(t)
dt = f(x(t)). Assume f : [a, b] → R and is continuous on the interval. Also assume

f(x) 6= 0∀x ∈ [a, b]. Rewrite equation as 1
f(x)

dx
dt = 1. Integrate both sides in the variable t.

General situation for separation for variables: dx
dt = f(x)g(t), and assume that f and g are continuous, and that

f(x) 6= 0 on that interval.

Integrating Factors: Recall from calculus that the derivative of the product of two functions d
dt (f(t)g(t)) = df(t)

dt g(t) +
dg(t)
dt f(t).

1.3 Thursday, 2 Oct 2014, Recitation

TA Andrei Frimu, afrimu@caltech.edu. Office Hours: Sunday 6pm, 155 Sloan.

Possible alternative: 1pm 115 Beckmann, 1pm 102 Steele

1.4 Friday, 3 Oct 2014

Existence and uniqueness Consider x′ + p(t)x = q(t). Assumptions: p(t) and q(t) are continuous on an open interval
t ∈ (a, b) that contains t0. Also suppose that the initial conditions x(t0) = x0 is specified. Then there is a unique solution
x(t) such that x(t0) = x0. This is true in the case of first order linear equations by explicit construction using integrating
factors.
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Chapter 2

Week 2

2.1 Monday 6 Oct 2014

Existence and Uniqueness Theorem Consider y′ = f(t, y(t)) and initial conditions t0 and y(t0) = y0. We require
that f(t, y) is continuous and ∂f

∂y is continuous, and both continuity conditions hold for all t in an interval t ∈ (α, β) and

y ∈ (γ, δ) such that (t0, y0) ∈ (α, β)× (γ, δ). We now want to find some function y(t) = φ(t) such that

{
φ′(t) = f(t, φ(t))

φ(t0) = y0

.

Re-think this problem as a ”fixed point problem”, where we want to find a transformation T acting on the functions of t:
ψ(t) 7→ T (ψ(t)) for which ∃φ(t) such that T (φ(t)) = φ(t). Motivation: for fixed point problems, there are existence and
uniqueness results that are already available. We note that a differential equation can be written equivalently as an integral

equation:

{
y′ = f(t, y)

y(t0) = y0

⇐⇒ y(t) = y0 +
∫ t
t0
f(s, y(s))ds. Now the integral equation is exactly the fixed point problem for

the transformation T (ψ(t)) = y0 +
∫ t
t0
f(s, ψ(s))ds.

Existence and Uniqueness of Fixed Point Problems If we have a transformation T : X 7→ X, and (1) T is continu-
ous, and (2) X is a complete metric space, (metric space=distance between all members in a set is defined, complete=every
Cauchy sequence of points in the set converges to a point in the set) and (3) T contracts distances, then there is a unique
point x ∈ X such that T (x) = x. So T has a unique fixed point in X. It also follows that we can approximate the solution
to T (x) = x by starting from any point x0 ∈ X by repeatedly applying T (since T contracts distances) to obtain a sequence
of points {T (n)(x0)} to converge at the fixed point.

Applying the Fixed Point Theorem to the DE We note that the property of ∂f∂y being continuous on R implies that

|f(t, y1)− f(t, y2)| ≤ K|y1− y2| (Lipschitz continuity of f(x, y) in y). This comes from the mean value theorem, which states

that there is some yt such that y1 ≤ yt ≤ y2 such that ∂f(t,yt)
∂y = f(t,y2)−f(t,y1)

y2−y1 . Hence we need to show that
∣∣∣∂f(t,yt)

∂y

∣∣∣ is

bounded. We know that ∂f
∂y is continuous on (α, β)×(γ, β), hence on any closed subinterval [α+ε, β−ε]×[γ+ε, δ−ε] inside the

open rectangle it achieves both a minimum and a maximum. Hence
∣∣∣∂f(t,yt)

∂y

∣∣∣ is bounded by K. |f(t, y1)−f(t, y2)| ≤ K|y1−y2|
will be used to show that T contracts distances.

Measurement of distances between functions If we have ψ1(t) and ψ2(t) being two functions, the distance between
the two functions is distance(ψ1(t), ψ2(t)) = supα+ε≤t≤β−ε |ψ1(t)− ψ2(t)|.

2.2 Wednesday 8 Oct 2014

Distance function Consider d : X × X → R+ that satisfies (1) d(x, y) = d(y, x),∀x, y ∈ X, (2) d(x, y) = 0 ⇐⇒ x = y
and (3) satisfies the triangle inequality d(x, y) ≤ d(x, z) + d(z, y). For instance, the distance function on the real line
d(x, y) = |x− y| is one such function. The Euclidean norm is a distance function on Rn.

Completeness If we have a sequence of points {xn} in X such that the distances between the points gets smaller as n
gets larger (Cauchy sequence) ∀ε > 0,∃N = N(ε) such that ∀m,n ≥ N(ε) then d(xm, xn) < ε. A complete metric space has
that every Cauchy sequence in X converges (distance goes to zero) to another point in X. Example of a metric space that
is not complete: xn → x ∈ R\Q is Cauchy in Q but not convergent in Q (a sequence that converges to an irrational number
by successive approximations using rational numbers does not have a limit in Q).
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Contracts distances T : X → X where X is a metric space with distance function d(x, y) contracts distances if
d(T (x), T (y)) ≤ d(x, y). Note that this allows for the distance to remain the same under the transformation T .

Proof of Fixed Point Theorem We prove this by explicit construction of the fixed point. Start with any point x0 ∈ X.
Consider the sequence {xn} = Tn(x0). Let the transformation be strongly contracting: d(T (x), T (y)) ≤ Kd(x, y) where K <
1. Then the distance between xn+1 and xn, d(xn+1, xn) ≤ Kd(xn, xn−1). We can keep going until d(xn+1, xn) ≤ Knd(x1, x0).

But K < 1, so Kn → 0 when n → ∞. WLOG take m ≥ n. Hence d(xm, xn) ≤
∑m−1
j=n d(xj+1, xj) using the triangle in-

equality. Also:
∑m−1
j=n d(xj+1, xj) ≤ (Kn + Kn+1 + · · · + Km−1)d(x1, x0) and the RHS goes to zero when n → ∞. Hence

the sequence is Cauchy. Since the metric space is complete, xn → x ∈ X when n → ∞. This limit is the fixed point, since
xn+1 = T (xn) = xn if T is continuous. Since this is the limit of the same sequence, the fixed point is the limit of the sequence.

Applying the Fixed Point Theorem We now consider the transformation T (φ(t)) = y0 +
∫ t
t0
f(s, φ(s))ds. Define J to

be a small interval around t0 and define I to be a small interval around y0. Then consider the set of functions that map from J
to I: X(J) = {φ : J → I}. Recall the distance between functions d(φ1(t), φ2(t)) = supt∈J |φ1(t)− φ2(t)|. We claim that X(J)
with this distance metric is complete (non-trivial and not proven here). Now we need to show that T is a contraction. We use
the hypothesis that ∂f

∂y is continuous. This implies that |f(t, y1) − f(t, y2)| ≤ C|y1 − y2| by the mean value theorem, where

C is the supremum of ∂f
∂y on the interval. We now examine the sup

∣∣∣∫ tt0 f(s, φ1(s))ds−
∫ t
t0
f(s, φ2(s))ds

∣∣∣ = d(T (φ1), T (φ2)).

By the previous mean value theorem result, we have that this is less or equal to
∫ t
t0

supt |f(s, φ1(s))− f(s, φ2(s))| ds ≤
C supt |φ1(t)− φ2(t)|

∫ t
t0
ds. But

∫ t
t0
ds = length(J). Hence we have d(T (φ1), T (φ2)) ≤ C × length(J)d(φ1, φ2).

2.3 Thursday 9 Oct 2014 Recitation

Tips to find integrating factors If
My−Nx

N = f(x), then use integrating factor e
∫
f(x)dx. If

My−Nx
M = f(y) then use

integrating factor e
∫
f(y)dy. If

My−Nx
M−N = f(x+ y) then use integrating factor e

∫
f(x+y)dy?.

2.4 Friday 10 Oct 2014

Sufficiency of condition on exactness Define M(x, y) + N(x, y)y′ = 0. Then we have that a necessary condition for
exactness is My = Nx. But to determine if this condition is sufficient or not depends on the domain of definition of M and
N . Suppose My = Nx is satisfied. We want to construct a function ψ(x, y) with ψx = M and ψy = N . Start from some
x0. Take Q(x, y) =

∫ x
x0
M(s, y)ds and move along the x direction. Taking the derivative of Q with respect to x, we just get

∂Q(x,y)
∂x = M(x, y). Note that we can also add some arbitrary function of y to Q(x, y) and it will also satisfy Qx = M(x, y).

Hence we need to eliminate the ambiguity in y. Take the derivative of Q(x, y) with respect to y: ∂(Q(x,y)+h(y))
∂y = ∂Q

∂y +h′(y).

We want this to equal to N(x, y). Hence we have that h′(y) = N(x, y) − ∂Q
∂y (x, y). This means that the RHS does not

depend on x. Hence we can write Nx − ∂2Q(x,y)
∂x∂y = Nx − ∂

∂yQx after exchanging the order of second derivatives. But we

have that Nx = My, so this equals zero. Hence we can write h(y) =
∫ y
y0

(
N(x, s)− ∂Q

∂s (x, s)
)
ds. Now this construction has

to be independent of the path, so this means that we should be able to deform the path continuously and not change the
construction of ψ. However, if there are holes in the domain of either M or N , then this path independence does not hold.
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Chapter 3

Week 3

3.1 Monday 13 Oct 2014

Sufficient condition for exactness If Domain(M) = Domain(N) = R2, then the necessary condition My = Nx is also
sufficient.

What happens when you have holes in the domain? Write the first order differential as the 1-form w = M(x, y)dx+

N(x, y)dy. Consider the curve γ in the plane parametrised by t: γ(t) = (x(t), y(t)). Then
∫
γ
ω =

∫ t
t0
M(x(t), y(t))dx(t)

dt +

N(x(t), y(t))dy(t)
dt . We consider (Case I) the differential equation with M(x, y) = x

x2+y2 and N(x, y) = y
x2+y2 such that

M(x, y) + N(x, y) dydx = 0. We note that the domain of M and N is R2\{(0, 0)}. Also consider (Case II) M(x, y) =
−y

x2+y2 , N(x, y) = x
x2+y2 . Note that these two cases are fine except around the origin. We look at curves that go around the

origin. For the first case, we pick the curve γ = (R cos t, R sin t). Then, integrating
∫
γ
ω =

∫ 2π

0
x(t)

x(t)2+y(t)2
dx(t)
dt + y(t)

x(t)2+y(t)2
dy(t)
dt .

Since dx(t)
dt = −R sin t, dy(t)

dt = R cos t, we can obtain
∫
γ
ω =

∫ 2π

0
− cos t sin tdt + sin t cos tdt = 0. Hence the integral for any

curve that circles around the origin for the first DE case is zero. For the second case, we choose the same curve and obtain:∫
γ
ω =

∫ 2π

0
(sin2 t+ cos2 t)dt = 2π. Hence the contribution of the winding is nonzero for the second case. Every time you go

around the origin, you pick up a contribution of 2π, which means that the integral of ωγ is not path independent. For the
first case, the function ψ(x, y) = 1

2 log(x2 + y2) is a well-defined function away from the origin. It also satisfies ψx = M(x, y)
and ψy = N(x, y). However, although the second case satisfies the necessary condition My = Nx, this condition is no longer
sufficient. However, when we try to construct a function that generates M and N , such that ψ(x, y) = arctan(y/x) we
realise that although ψx = M and ψy = N some problems arise. The arctangent is defined for t ∈ R and takes values in
(−π/2, π/2), and if t < 0, arctan t + arctan(1/t) = −π

2 , if t > 0, arctan t + arctan(1/t) = π
2 . Now consider the function

arctan(y/x) + c, which is a guess for a possible solution of the second DE case. This solution is not defined when x = 0,
since there is a y/x. Hence we have two cases: x > 0 and x < 0. For the former case, x > 0 so we consider what happens
when x → 0 from x > 0 and y → y0 > 0. Then ψ(x, y) → π/2 + c. If we let x → 0 from x > 0 with y → y0 < 0, then
ψ(x, y) → −π/2 + c. However, if we approach x → 0 from x < 0 and y positive, ψ(x, y) → −π/2 + k for some constant k
and if we approach with y negative, ψ(x, y) → π/2 + k. We note that we cannot choose a c and k such that the solution
is continuous along the y and x axes. We must have that ψ is discontinuous on a line emanating from the origin towards
infinity. To understand this, we look at the polar coordinates in the plane (x, y)→ (r, θ). For r 6= 0, θ is well-defined and we

can write θ =


arctan(y/x), x > 0

π/2− arctan(x/y), y > 0

−π/2− arctan(x/y), y < 0

undefined, x = y = 0

. Note further that dθ = ∂θ
∂xdx+ ∂θ

∂ydy.

3.2 Wednesday 15 Oct 2014

Autonomous Differential Equation Consider y′ = f(y) without explicit dependence on time. General strategy: (1)
Look for equilibrium solutions. (i.e. f(y) = 0). (2) Look at the sign of f(y). (3) Examine the convexity of the function
by examining the signs of f ′(y) and f(y) since y′′(t) = f ′(y)y′ = f ′(y)f(y) hence the convexity depends on the sign of the
product of f ′(y) and f(y).
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3.3 Friday 17 Oct 2014

Second Order Equations Write d2y
dt2 = f(t, y, dydt ). If f is linear, we can write d2y

dt2 = a(t)dydt + b(t)y + c(t).

Initial conditions We require y(t0) = y0 and y′(t0) = y′0.

Superposition For a linear and homogenous second order equation, we have the superposition principle: Linear com-
binations of solutions are also solutions. Note that this doesn’t work if we have solutions to the non-homogenous equation.
If y(t) = αy1(t) + βy2(t) is a solution, then we can impose the initial conditions to require that αy1(t0) + βy2(t0) = y0 and

αy′1(t0) + βy′2(t0) = y′0. This is a linear system that we can solve for α and β. Write

(
y1(t0) y2(t0)
y′1(t0) y′2(t0)

)(
α
β

)
=

(
y0

y′0

)
which has a solution provided the determinant of the matrix is non-zero. Hence we require that y1(t0)y′2(t0) 6= y′1(t0)y2(t0).

Wronskian This is the two-dimensional case of the Wronskian. Write W (y1, y2)(t), a function of t, defined as the deter-

minant of the matrix

(
y1(t) y2(t)
y′1(t) y′2(t)

)
. The condition to solve for α and β is that W (y1, y2)(t0) 6= 0. More generally, the

Wronskian of n functions is an nxn square matrix with the functions in the first row, and the (n−1)st derivatives in the rows
subsequent to it. Note that a matrix determinant is non-zero iff the column vectors are linearly independent. Define the two
vectors x1(t) = (x1(t), v1(t))T , x2(t) = (x2(t), v2(t))T . Then W (x1(t), x2(t)) = x1(t)v2(t)− x2(t)v1(t). If the two vectors are
linearly dependent, then there are two numbers a, b ∈ R such that ax1(t) + bx2(t) = 0. Note that a and b do not change with
t hence the Wronskian vanishes for all t. In other words, vanishing Wronskian for all t is a necessary condition for the linear
dependence of the two vectors. It is not a sufficient condition! Counterexample: take x1(t) = (t2, 2t)T and x2(t) = (t|t|, 2|t|).
Then the Wronskian is identically zero. But these two vectors are not linearly dependent because when t > 0, we can choose
a = −b such that ax1(t) + bx2(t) = 0. But when t < 0 then we require a = b instead. But the only way that this is satisfied
for all t is for a = b = 0. However the contrapositive is true: If the Wronskian is non-zero for at least one t then x1(t) and
x2(t) are linearly independent.

Constant coefficient homogenous second order equations Write ay′′ + by′ + cy = 0. We can try an exponential
function y = ert. We plug this into the equation to get ar2ert + brert + cert = 0. We hence have an equation for r
which is ar2 + br + c = 0. Three possibilities: (1) the roots of this equation are both real and different, (2) the roots of
this equation are real and equal, and (3) the roots are complex but complex conjugates of each other. For case (1), write
y(t) = αer+t + βer−t. We calculate the Wronskian of the solutions y1(t) = er+t and y2(t) = er−t to be (r− − r+)e(r++r−)t.
We just require the Wronskian to be non-zero at one point to know that the solutions are linearly independent. We just
evaluate the Wronskian at t = 0, and obtain that it is non-zero. Substituting the initial conditions, we have that α+ β = y0

and αr+ + βr− = y′0. This determines α and β to obtain the unique solution that satisfies the initial condition. For case (2),
the solutions are real and equal when the discriminant is equal to zero b2 − 4ac = 0. Call r1 = r2 = r. Hence we have one
solution y(t) = ert. But we need a second solution to have a two-parameter family to solve the initial conditions. We try to
guess the second solution by letting the coefficient of ert vary with t. Call this ”varying coefficients”. So we guess f(t)ert

for some function f(t). Now for this to be a solution of the equation, we plug it into the differential equation to obtain:
a(f ′′(t)ert+2f ′(t)rert+f(t)r2ert)+b(f ′(t)ert+f(t)rert)+cf(t)ert = 0. Simplifying, a(f ′′+2f ′r+fr2)+b(f ′+rf)+cf = 0.
Rearranging, a′′ + 2af ′r + bf ′ + (ar2 + br + c)f = 0. But we know that r is a root of ar2 + br + c = 0. Hence we have
that af ′′ + (2ar + b)f ′ = 0. But we have that −b/2a = r from the quadratic equation, so 2ar + b = 0. Hence we just
have f ′′ = 0, or f ′ = c constant. Hence we have f(t) = c1t + c2 for two constants. Hence we have that the solution we
guessed will be a solution of the form (c1t+ c2)ert. Hence the superposition of two solutions will be y(t) = αtert + βert. We
hence have to check that the Wronskian of the two solutions: W (ert, rert) 6= 0 hence the solutions are linearly independent.
For case (3), we let r1 and r2 be complex conjugates of each other, which happens when the discriminant is negative. Let
r1 = λ+ iµ, r2 = λ− iµ. Hence when we write ert we can write it as eλt(cosµt± sinµt). Combining the two terms, we can
write y1(t) = eλt cos(µt) and y2(t) = eλt sin(µt) such that their linear superposition is a general solution of the equation. We
note that both y1 and y2 are linearly independent because their Wronskian is e2λtµ which is non-zero because µ 6= 0 and the
exponential is never zero. Hence the general equation is αeλt cos(µt) + βeλt sin(µt).
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Chapter 4

Week 4

4.1 Monday 20 Oct 2014

Existence and Uniqueness for Second Order Differential Equations Also applies for higher order DEs. For a second
order equation y′′ = f(t, y, y′) with some initial conditions y(t0) = y0, y

′(t0) = y′0. We transform this into a first order
problem. We introduce a new variable v(t) = y′(t). Hence we have a system of equations y′(t) = v(t), v′(t) = f(t, y, v)

which is a first order system in two variables. We hence seek the unknown function vector Y(t) =

(
y(t)
v(t)

)
. The derivative

of this vector is some function Y′ = F(t,Y) where F(t,Y) =

(
v(t)

f(t, y(t), v(t))

)
. We also have the initial conditions

Y0 =

(
v(t0)

f(t0, y(t0), y′(t0))

)
. For n-derivatives, we have y(n) = f(t, y, y′, y′′, · · · , y(n−1)). So we can transform this into the

vector-valued function Y′(t) = F(t,Y) with Y(t0) = Y0 when we let Y(t) =


y(t)
v′(t)

...
vn−1(t)

 with y′ = v1, y
′′ = v2, . . . , y

(n−1) =

vn−1, y
(n) = f(t, y, v1, v2, · · · , vn−1). The first-order uniqueness and existence equations proved earlier in the course can be

fully generalised by replacing the absolute value by the norm of the n-vector. Hence we have the existence and uniqueness
of all the highest order equations without having to prove everything again. Note that for linear homogenous equations of
order n, then we can just look for n solutions y1(t), . . . , yn(t) and take linear combinations of these n equations to obtain
the general solution. To verify that these n equations are linearly independent, we just check their Wronskian (now need to
evaluate (n−1)st derivatives), and ensure that it is non-zero at at least one point. We note that if the solutions have the form
eαit where all the αi are not equal, then the determinant can be calculated to be eα1+...+αn multiplied by the Vandermode
determinant

∏
1≤i<j≤n(αi−αj). Hence whenever αi are not all equal, the determinant does not vanish and we have linearly

independent equations.

4.2 Wednesday 22 Oct 2014

Inhomogeneous second order linear equations Consider y′′ + p(t)y′ + q(t)y = g(t). Observe that if there are two solu-
tions Y1 and Y2 of the non-homogenous equation, then the difference of the two solutions is a solution to the homogeneous
equation. Hence if you know the solution to the homogeneous equation, such as c1y1(t) + c2y2(t), then you can find the
general solution to the inhomogeneous equation by adding on a particular solution φ(t) = Y (t) + c1y1(t) + c2y2(t).

Finding the particular solution We write u1(t)y1(t) + u2(t)y2(t) using the ”variation of parameters” to write the
constants as unknown functions. We note that y′(t) = u1y

′
1 +u′1y1 +u′2y2 +u2y

′
2 and to simplify, we want to look for solutions

that have u′1y1 + u′2y2 = 0. Hence after this simplification, we have y′ = u1y
′
1 + u2y

′
2, y
′′ = u′1y

′
1 + u1y

′′
1 + u′2y

′
2 + u2y

′′
2 .

Plugging this into the non-homogeneous equation, we obtain u′1y
′
1 +u1y

′′
1 +u′2y

′
2 +u2y

′′
2 +p(t)[u1y

′
1 +u2y

′
2]+q(t)[u1y1 +u2y2].

Rearranging, we obtain: u1(y′′1 + p(t)y′1 + q(t)y1) + u2(y′′2 + p(t)y′2 + q(t)y2) + u′1y
′
1 + u′2y

′
2 which has the first two terms equal

to zero because y1 and y2 are solutions to the homogeneous equation. Hence we just want u′1y
′
1 + u′2y

′
2 = g(t). We hence

have a system of equations for u1 and u2: u′1y1 + u′2y2 = 0 and u′1y
′
1 + u′2y

′
2 = g(t). Note that this is a linear system:

(
y1 y2

y′1 y′2

)(
u′1
u′2

)
=

(
0
g(t)

)
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We note that the 2x2 matrix can be inverted because the determinant is just the Wronskian, which is non-zero. Hence
we have:

u′1 =
−y2g

W (y1, y2)

u′2 =
y1g

W (y1, y2)

We can integrate these equations to obtain u1 and u2.

φ(t) = −y1

∫ t

t0

y2(s)g(s)

W (y1, y2)(s)
ds+ y2

∫ t

t0

y1(s)g(s)

W (y1, y2)(s)
ds+ c1y1(t) + c2y2(t)

n-dimensional system Recall that we can write the matrix differential equation as X′(t) = A(t)X(t) where X(t) =
(x1(t), x2(t), . . . , xn(t))T . and A(t) is the coefficient matrix {aij(t)}i,j=1,2,...,n. Consider the simplest case of constant coef-
ficients, where the matrix A does not depend on t. Observations in the simplest case: the zero vector is always a solution.
Also, if you have two solutions Y1(t),Y2(t) then a linear combination of them is also a solution.

Solutions of the matrix differential equation Assume A is diagonalisable and has real eigenvalues. Then there
exists another matrix such that U−1AU is diagonal. Hence we can make a change of variables Y = U−1X. Then the
system X’=AX becomes (UY’)′ = AUY. But U has constant coefficients if A has constant coefficients. Hence we have
Y′ = (U−1AU)Y which can be solved because U−1AU is diagonal and hence we have completely uncoupled equations.
Write this as ẏj(t) = λjyj(t), j = 1, 2, . . . , n, where λj is the jth eigenvalue. Hence Y = diag(c1e

λ1t, c2e
λ2t, . . . , cne

λnt).
Then the solution of the original system will be X = U−1Y.

Alternative method of describing the procedure Let λj , vj = (vj,1, vj,2, . . . , vj,n)T be an eigenvalue and corre-
sponding eigenvector of A. Then we have that Avj = λjvj , and Yj = eλjtvj is a solution to the matrix differential equation
because AYj = eλjtAvj = eλjtλjvj = ( ddte

λjt)vj = d
dtYj . Hence we can take linear combinations of these solutions to obtain

that Y = c1e
λ1tv1 + . . . + cne

λntvn is a general solution to the matrix differential equation. Hence the general procedure is
(1) find the eigenvalues of A, (2) find the corresponding eigenvectors of A (3) build the general solution by taking linear
combinations of eλjvj .
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Chapter 5

Week 5

5.1 Monday 27 Oct 2014

Matrix differential equation with complex eigenvalues Note that if the coefficient matrix A contains only real val-

ues, then the complex eigenvalues will occur in complex conjugates. Consider the case where A =

(
0 1
−1 0

)
. Then

we have that λ = ±i and the two respective eigenvectors are (1, i)T , (1,−i)T . Then the solutions can be written as

~z(t) = ~z1(t) + ~z2(t) = c1

(
1
i

)
eit + c2

(
1
−i

)
e−it. But we have that ~z′(t) = A~z(t) so by the equality of complex

numbers, we have <(~z′(t)) = <(A~z(t)) and =(~z′(t)) = =(A~z(t)). Hence both the real and imaginary parts of z will satisfy
the differential equation. Hence it will suffice to pick the real and imaginary parts of just one complex solution to give two
real solutions. Take ~x1(t) = <(~z1(t)) and ~x2(t) = =(~z1(t)). Note: verify that the Wronskian for the two solutions does not
vanish at at least one point. Then the final solution ~x(t) = c1~x1(t) + c2~x2(t). If we use the other complex solution, we will
get the same general form anyway, maybe with a sign change on the arbitrary coefficient.

Matrix exponential Define eM =
∑∞
k=0

1
k!M

k. Define M0 = I to be the identity matrix. Then for the matrix differen-
tial equation with A = diag(λ1, λ2, . . . , λn) being diagonal, we can write eAt = diag(eλ1t, eλ2t, . . . , eλnt). Observe that if we
take the derivative with respect to t, we just obtain d

dte
At = diag(λ1e

λ1t, λ2e
λ2t, . . . , λne

λnt) = AeAt. Hence each column of
the matrix eAt is a solution to X′ = AX. Let Φ(t) = eAt be the matrix whose columns are the fundamental set of solutions
for X′ = AX. Then we have Φ′ = AΦ.

General solution with matrix exponential We know that if a matrix A is diagonalisable, then we have some

matrix U such that U−1AU is diagonal with eigenvalues along the diagonal. We also realise that eAt =
∑
k
tk

k! A
k

so U−1eAtU = eU
−1AUt = eDt where D is diagonal. We can bring the matrices into the exponent because we note

that (U−1AU)2 = U−1AUU−1AU = U−1A2U and for higher powers (U−1AU)n = U−1AnU and we can express eAt =

I + A + A2

2! + . . .. Hence U−1eAtU =
∑

U−1 An

n! U =
∑

1
n! (U

−1AU)n = eU
−1AUt.

Non-diagonalizable matrix Consider the matrix

(
1 1
0 1

)
. We note that the eigenvalues are repeated with λ = 1

and there is only one eigenvector (1, 0)T . We note that taking higher powers of A, An =

(
1 n
0 1

)
, which can be proven

using induction. Then eAt =

(
et

∑∞
n=0

ntn

n!
0 et

)
. But we can write

∑∞
n=0

ntn

n! = t
∑∞
n=1

tn−1

(n−1)! = t
∑∞
n=0

tn

n! = tet. Hence

we have eAt =

(
et tet

0 et

)
. We note that the two columns are two independent functions. Hence we have the solution to

the differential equation X ′ = AX is ~x(t) = c1

(
et

0

)
+ c2

(
tet

et

)
.

Importance of the matrix exponential eAt has columns which are the solutions to the differential equation.
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5.2 29 Oct 2014

Non-diagonalizable matrix as a sum of commuting matrices Consider

(
1 1
0 1

)
, which has repeated real eigenval-

ues. We note that we can write A as a sum of matrices:

(
1 0
0 1

)
+

(
0 1
0 0

)
= A1 + A2. These matrices commute

with each other (clearly, since one is the identity): [A1,A2] = A1A2 − A2A1 = 0. Hence when we take the exponen-
tial of the matrices, we have eA1+A2 = eA1eA2 , which only holds when the two matrices commute. Hence we have

eA1t = eIt =
∑∞
k=0 I t

k

k! =

(
et 0
0 et

)
. Also, note that when we take A2

2 =

(
0 0
0 0

)
hence the series only has the

k = 0 and k = 1 term since all higher orders vanish: eA2t = I +

(
0 1
0 0

)
t. Hence we have eAt = eA1teA2t =

(
et tet

0 et

)
.

Upper diagonal matrix with diagonal entries zero Consider A =

 0 1 α
0 0 1
0 0 0

. Then we have A2 =

 0 0 1
0 0 0
0 0 0


and A3 = 0. Hence we can just calculate eAt = I + At + 1

2A2. In general, for such matrices, higher orders will vanish for

some power, as the non-zero elements get pushed to the top right corner. Such matrices are called nilpotent if Ak = 0 for
some positive integer k.

Equilibrium states Consider the matrix equation Ẋ = AX. The equilibrium states are the vectors in the kernel (null
space) of A. If the matrix A is invertible, the kernel is just the zero element. But nilpotent matrices are not invertible, hence
we will have some equilibrium states. Note: show that nilpotent matrices are not invertible by taking the determinant of
Ak = 0, and noting that the determinant of matrix products is just the product of the determinants so det A = 0.

General Strategy Consider the homogenous linear first order system with constant coefficients Ẋ = AX. Note that
even if A is not diagonalisable, there is still a Jordan canonical form for A: there exists a matrix P such that P−1AP = B,
where B is a matrix with blocks along the diagonal.

5.3 30 Oct 2014 Recitation (Midterm Review)

Useful rules for finding integrating factors for inexact equations If:

• My−Nx
N is a function of x, use µ = exp(

∫
dx

My−Nx
N ) as a function of x.

• Nx−My

M is a function of y, use µ = exp(
∫
dy

Nx−My

M ) as a function of y.

• My−Nx
N−M is a function of x+ y, then use µ = exp(

∫
d(x+ y)

My−Nx
N−M ) as a function of x+ y

• My−Nx
xM−yN is a function of xy, then use µ = exp(

∫
d(xy)

My−Nx
xM−yN ) as a function of xy

5.4 Friday 31 Oct 2014

Matrix exponential with non-constant matrix Set X′(t) = A(t)X(t). Then we define ψ = exp(
∫ t
t0

A(s)ds). If A(t) has

constant coefficients, then we have that eA(t−t0) = e−At0eAt. ψ is a matrix of columns that solve the differential equation.
To calculate the integral, we integrate the matrix coordinate-wise.

Inhomogeneous linear systems We write X′(t) = A(t)X(t) + B(t). Recall that in the 1D case we had dx
dt = ax + b,

which had an equilibrium solution with x = −b
a . We then had the solution x = −b

a + keat, where k is an arbitrary constant.

If b was a function of t but a remained a constant, then we had the solution as x(t) = eat
∫ t
t0
e−asb(s)ds using the variation

of parameters by letting k vary with k in the constant solution. Hence by analogy, if A is diagonal with eigenvalues λn along

the diagonal, we have that X =


eλ1t

∫ t
t0
e−λ1sb1(s)ds+ c1e

λ1t

...

eλnt
∫ t
t0
e−λnsbn(s)ds+ cne

λnt

, where bn(t) is the nth element of the column vector B.

We see that the first term of each element of X is the solution of the non homogenous equation while the second term is the
solution to the homogenous equation.

Identifying particular solutions to inhomogeneous linear systems Suppose we have X′(t) = A(t)X(t) + ertB,
where B is a fixed vector not depending on t. The exponential suggest that we should look for a solution that contains an
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exponential function. We hence make the guess X(t) = ertV, where V is a vector constant that we need to solve for. We
plug this guess into the equation to obtain rertV = ertAV + ertB, which implies that we need to match (rI−A)V = B. To
find V, we need rI−A to be invertible, and hence its determinant should be non-zero. This condition requires that r is not
an eigenvalue of A. If r is not an eigenvalue of A, then we can pick V = (rI−A)−1B and X(t) = Vert is a solution to the
non-homogeneous equation.

Higher Order Equations Consider x(n) + a1x
(n−1) + · · ·+ an−1x

′+ anx = b(t). We can hence let Y = (y1, y2, . . . , yn)T

be a column vector with y1 = x, y2 = dx
dt , . . . , yn = dn−1x

dtn−1 , and hence we have the equations:

dy1

dt
= y2

...

dyn
dt

= −any1 − an−1y2 − · · · − a1yn

Hence we have the system given by Y′ = AY where the matrix A is given by the matrix A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−an −an−1 · · · −a2 −a1

.

Examining the eigenvalue equation for A, det(λI−A) = λn + a1λ
n−1 + · · ·+ an−1λ+ an We hence see that the eigenvalues

of the matrix A can be determined by examining the coefficients of the original differential equation. For second order

equations, this matrix A has the form

(
0 1
−a2 −a1

)
. and hence det(λI−A) = λ2 +a1λ+a2 = 0. Then the eigenvalues λj

with multiplicities of mj ≥ 1, we get solutions eλjt, teλjt, t
2

2 e
λjt, . . . , tmj−1

(mj−1)!e
λjt. Refer to the book/notes for details about

complex eigenvalues.

5.5 1 Nov 2014 Midterm Review

Observations Observe that d
dyy

k = kyk

y . Hence I ′ = k
y I =⇒ I = yk.

(Includes non-linear p(y, t)). Given y′ + p(y, t)y = q(t), solve the homogeneous equation y′ + p(y, t)y = 0 first to obtain
yc(t). Then use variation of parameters to write y(t) = u(t)yc(t) and substitute into the original equation to find conditions
on u(t). Solve for u(t), then construct the final solution u(t)yc(t).

11



Chapter 6

Week 6

6.1 Monday 3 Nov 2014

Power series solution to differential equations Recall the series
∑∞
n=0 an(x−x0)n is a power series centred at x0. This

series converges at some point x if limN→∞
∑N
n=0 an(x − x0)n exists. A stronger property is absolute convergence: that∑∞

n=0 |an(x− x0)n| =
∑∞
n=0 |an||x− x0|n exists. An absolutely convergent series converges, but the converse is not true.

Tests for convergence Ratio test: if an 6= 0 and limn→∞
|an+1(x−x0)n+1|
|an(x−x0)n| = |x− x0| limn→∞

|an+1|
|an| = |x− x0| · L exists,

then the power series
∑∞
n=0 an(x − x0)n converges absolutely whenever |x − x0|L < 1 and diverges when |x − x0|L > 1. In

particular, if a power series converges at x− x1, then for all x such that |x− x0| < |x1 − x0|, the series converges absolutely.
If the series diverges at x1, then it diverges for all x such that |x− x0| > |x1 − x0|.

Radius of convergence There exists a radius of convergence ρ ≥ 0 such that a power series
∑∞
n=0 an(x−x0)n converges

absolutely when |x − x0| < ρ and diverges when |x − x0| > ρ. Note that we do not know what happens at the boundary
unless you know the exact values of an.

Example of power series E.g. Taylor series:
∑∞
n=0

f(n)(x0)
n! (x − x0)n for an infinitely differentiable function f . The

function f(x) is analytic if its Taylor series converges and the function is its Taylor series. This is a stronger condition than
being infinitely differentiable.

Example of solution by power series Consider y′′ + y = 0. We write y(t) =
∑∞
n=0 ant

n, expanding around t0 = 0.
Taking derivatives and plugging it into the DE, we obtain:

∞∑
n=2

n(n− 1)ant
n−2 +

∞∑
n=0

ant
n = 0

=⇒
∞∑
n=0

(n+ 2)(n+ 1)an+2t
n + ant

n = 0

Fact about power series: if a power series
∑∞
n=0 anx

n is identically zero, then all its coefficients have to be zero. Hence
we have the recursion relation: (n+ 2)(n+ 1)an+2 + an = 0 or an+2 = −an

(n+1)(n+2) . We know a0 = y(t0), a1 = y′(t0).

Example: Airy’s Equation Consider y′′− ty = 0. Then the solution looks like y(t) =
∑∞
n=0 ant

n, with a2 = a5 = a8 =
. . . = 0, a3n = a0

2·3·5·6...(3n−1)·3n ,where we skip 4, 7, 10 . . ., and a3n+1 = a1
3·4·6·7...·(3n)·(3n+1) , where we skip 5, 8, . . .. Note that

the two free parameters are a0 and a1.

Linear homogeneous 2nd order DE Consider P (t)y′′+Q(t)y′+R(t)y = 0. Assume that P,Q and R are polynomials

in t. We look for solutions that are in power series form. Assuming the P (t) is non-vanishing, we can write p(t) = Q(t)
P (t) , q(t) =

R(t)
P (t) as rational polynomials. We know by initial conditions that y′′(t0) = −p(t0)y′(t0) − q(t0)y(t0). Hence we have that

2a2 = −p(t0)a1 − q(t0)a0. Further differentiation gives 3!a3 = −2a2p(t0) − (p′(t0) + q(t0))a1 − q′(t0)a0. Repeating this
multiple times gives us a sequence of coefficients an depending on a0 and a1 and p(k)(t0), q(k)(t0). We now need to verify that
the radius of convergence of this power series is positive, such that it converges at some point. Now p and q are infinitely
differentiable at t0 since they are rational polynomials. We can also write p(t) =

∑∞
n=0 pn(t − t0)n, q(t)

∑∞
n=0 qn(t − t0)n

since they are also analytic. We say that t = t0 is an ordinary/regular point for the equation if the analytic conditions hold
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(p and q are their Taylor series in some neighbourhood of t0). Otherwise say that t = t0 is a singular point. If t0 is a regular
point, then there is a non-trivial radius of convergence for the solution power series, which is the minimum of the radii of
convergence for the Taylor series of p and q.

6.2 5 Nov 2014 Wednesday

Singular points of differential equations There are two kinds of singular points - regular singular equations (mild sin-
gularities) and irregular singular equations.

Regular Singular Equations Consider the general form: P (t)y′′ +Q(t)y′ +R(t)y = 0. Define p(t) = Q(t)
P (t) , q(t) = R(t)

P (t) .

A point t0 is regular-singular if limt→t0(t − t0)p(t) is finite and limt→t0(t − t0)2q(t) is finite. For t0 = 0, write tp(t) =∑∞
n=0 pn(t − t0)n, t2q(t) =

∑∞
n=0 qn(t − t0)n, where we assume that tp(t) and t2q(t) are analytic (that is, p(t) has a pole of

order 1 at t0 and q(t) has a pole of order 2 at t0). Assume that this holds for some positive radius of convergence ρ > 0.
This is the case when P,Q,R are polynomials. The simplest case is when pn = 0 for n ≥ 1, and qn = 0 for n ≥ 1. Hence
we only have p(t) = p0 and q(t) = q0. Then we are looking for solutions to the differential equation t2y′′ + p0ty

′ + q0y = 0,
which are Euler equations.

Euler Equations Consider t2y′′ + p0ty
′ + q0t = 0. Then we make the guess y = er log t since taking derivatives will give

us factors of 1/t that will help to remove the leading t coefficients of the derivatives. Substituting this into the equation, we
obtain that r must satisfy t2(r(r − 1) + p0r + q0) = 0, which has three cases: distinct real roots, coincident real roots and
complex conjugate roots based on the values of p0 and q0. For real roots, the solutions are tr1 and tr2 . For repeated roots, the
solutions are tr and (log t)tr. For complex conjugate roots, the solutions are tλ cos(µ log t) and tλ sin(µ log t), where r = λ±µi.

Regular Singular Equations Revisited Write t2y′′ + p(t)ty′ + q(t)y = 0. We want to look for solutions of the form
y(t) = tr

∑∞
n=0 ant

n. Since p and q are analytic for this equation to be singular, we can write them using their corresponding
power series p(t) =

∑∞
n=0 pnt

n, q(t) =
∑∞
n=0 qnt

n. Substituting this into the original equation we obtain the product of two
power series (which has to be evaluated using the discrete convolution).

Recall the discrete convolution:
∑∞
n=0 cnx

n
∑∞
n=0 dnx

n =
∑∞
n=0

∑n
k=0 ckdn−kx

n.

Consolidating coefficients of xn, we have:

F (r) ≡ r(r − 1) + p0r + q0

a0F (r)tr +

∞∑
n=1

[
F (r + n)an +

n−1∑
k=0

ak(r + k)pn−k + qn−k

]
tr+n = 0

Now each of the coefficients have to vanish, hence we have:

a0F (r) = 0[
F (r + n)an +

n−1∑
k=0

ak(r + k)pn−k + qn−k

]
= 0

Note that this gives a recursion relation for an in terms of the coefficients before that. But this recursion only works
if F (r + n) 6= 0 for all n, otherwise we have no information regarding that particular value of an. Hence if F (r) =
r(r − 1) + p0r + q0 = 0 has two distinct solutions, and if we pick the larger root, then F (r + n) will not vanish whenever
n ≥ 1.

Relation between independent solutions of Euler Equation Note that for repeated roots of the Euler equation,
we have that log ter log t = ∂

∂r e
r log t, hence one solution is the derivative of the other. Hence by analogy, we hypothesise that

if we have y1, we can just differentiate it to obtain the other solution.

6.3 Thursday 6 Nov 2014

Exponentiating by diagonalizing Write D = P−1AP, for a known matrix A, and the diagonalizing matrix P made from
the eigenvectors of P. Then A = PDP−1 and we can write eA = ePDP−1

= P(
∑∞
n=0

Dn

n! )P−1 = PeDP−1.
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6.4 Friday 7 Nov 2014

Regular Singular Equations Consider x2y′′ + x(xp(x)) + (x2q(x))y = 0, where we assume that xp(x) =
∑∞
n=0 pnx

n and
x2q(x) =

∑∞
n=0 qnx

n are analytic. Then we have the associated Euler equation x2y′′ + xp0y
′ + q0y = 0. We want to look for

solutions of the form y(x) = xr
∑∞
n=0 anx

n. Substituting this back into the Euler equation, we obtain that r must satisfy
the recursion relation with F (r) = r(r − 1) + p0r + q0,

a0F (r) = 0

an =
1

F (r + n)

[
n−1∑
k=0

ak(r + k)pn−k + qn−k

]
= 0

We want to choose r such that F (r) 6= 0. Note that we can write the roots of F (r) = 0 as r1 and r2. If both of these
roots are real and distinct WLOG say r1 > r2, then picking r = max(r1, r2) will ensure that F (r + n) 6= 0, n ≥ 1. If r1 = r2,
then picking r = r1 = r2 will also ensure that F (r + n) 6= 0. Hence we have one solution to the differential equation with
free parameter a0, which is y1(x) = xr1

∑∞
n=0 anx

n. We need to find another linearly independent solution with another free
parameter.

We now have several cases. If r − 1− r2 is not an integer, then r2 + n will not be a zero of F , since the other zero is r1.
Hence we can pick the other solution to have r = r2 and obtain another linearly independent solution y2(x) = xr2

∑∞
n=0 anx

n

with another free parameter a0 (not the same a0 as the other solution!).

If r1 and r2 are complex conjugates, then we can just take the real and imaginary parts of y(x) = xr
∑∞
n=0 anx

n to obtain
two linearly independent solutions.

Now consider the case when r1 = r2, roots are real and coincident. Then we pick y1(x) = xr
∑∞
n=0 anx

n as one of the so-
lutions with free parameter a0. To obtain the second solution, we recall that the Euler equation had solutions xr and xr log x,
which hints that the second solution can be obtained from the first by differentiating the first with respect to r, and evaluated
at r = r1 = r2. We apply this reasoning to obtain that the second solution should be y2(x) =

∑∞
n=0 an(n+r)xn+r−1. It works.

If r1 6= r2 are real solutions of F (r) with r1 − r2 is an integer, then with one solution y1(x) = xr1
∑∞
n=0 anx

n, we
can construct the other solution = ay1(x) log x + xr2(1 +

∑∞
n=0 cn(r2)xn), where a = limr→r2(r − r2)an(r) and cn(r2) =

∂
∂r [(r − r2)an(r)]r=r2 .

Example Consider 2x2y′′ − xy′ + (1 + x)y = 0. Note that x = 0 is the regular singular point. Then we write xp(x) =
− 1

2 = p0 and x2q(x) = 1+x
2 and q0 = 1

2 , q1 = 1
2 . The associated Euler equation is 2x2y′′ − xy′ + y = 0. We want to look for

solutions in the form y(x) = xr
∑∞
n=0 anx

n. Plugging this guess into the original equation (not associated Euler equation),
we obtain

∑∞
n=0 2an(r+ n)(r+ n− 1)xr+n −

∑∞
n=0 an(r+ n)xr+n +

∑∞
n=0 anx

r+n +
∑∞
n=0 anx

r+n+1. Combining terms, we
obtain:

a0(2r(r − 1)− (r + 1))xr +

∞∑
n=1

[(2(r + n)(r + n+ 1)− (r + n) + 1)an + an−1]xr+n = 0

The zero-th order term gives the two exponents for the Euler equation: (2r(r− 1)− (r+ 1)) = (r− 1)(2r− 1) =⇒ r1 =
1, r2 = 1

2 . In the recursion equation,

(2(r + n)(r + n+ 1)− (r + n) + 1)an + an−1 = 0

=⇒ an =
−an−1

((r + n)− 1)(2(r + n)− 1)
, n ≥ 1

Hence if we pick r = r1 = 1, the denominator does not vanish.

Consider the first solution, with r = r1 = 1. Then we have that an = −an−1

(2n+1)n . This will become an = (−1)na02n

(2n+1)! . The

general solution can be written as y1(x) = a0x
(

1 +
∑∞
n=1

(−1)n2n

(2n+1)! x
n
)

, which has a radius of convergence infinity. The radius

of convergence can be calculated using the ratio gets limn→∞

∣∣∣an+1x
n+1

anxn

∣∣∣ = limn→∞
2|x|

(2n+2)(2n+3) = 0. For the second solution,

we let r = 1
2 . Hence we have that an = (−1)n2na0

(2n)! and general solution y2(x) = a0x
1/2
(

1 +
∑∞
n=1

(−1)n2n

(2n)! xn
)

.

14



Chapter 7

Week 7

7.1 Monday 10 Nov 2014

Integral transforms Consider the map f(t) 7→ F (f)(s) =
∫ β
α
K(s, t)f(t)dt, where K(s, t) is called the integral kernel of F .

Note that α and β can be any two complex numbers (including ±∞).

Laplace Transform Define L(f)(s) =
∫∞

0
e−stf(t)dt. We want the integral to be convergent. Hence we want to find

f(t) such that |f(t)| ≤ Keat for some K ≥ 0, a > 0 and t ≥ T sufficiently large. This just says that we want f(t) to grow
slower (or as fast as) an exponential. In such a case, (f)(s) will be defined for at least s > a. This is because we can write

the integral as
∫∞

0
e−stf(t)dt =

∫ T
0
e−stf(t)dt+

∫∞
T
e−stf(t)dt, where T is finite. Note that the second term is less or equal

to
∫∞
T
e−stKeatdt =

∫∞
T
Ke(a−s)tdt, which is convergence when s > a.

Example 1 Consider the function f(t) = 1. Then its LT is just L(1)(s) = 1
s , which is defined for s > 0.

Example 2 Consider the exponential f(t) = eat, t ≥ 0. Then we have L(eat)(s) = 1
s−a , defined for s > a.

Example 3 Consider f(t) sin(at), t ≥ 0. Then the Laplace transform is L(sin(at))(s) =
∫∞

0
e−st sin(at)dt = a

s2+a2 after
integrating by parts twice.

Example 4 Note that the Laplace transform of t is L(t) = 1
s2 .

Properties of Laplace Transforms

• Linearity: L(αf(t) + βg(t))(s) = αL(f(t))(s) + βL(g(t))(s).

• Laplace Transform of a Derivative: Consider a continuous and differentiable function f , with a first derivative that
is piecewise continuous. Suppose further that it is bounded by |f(t)| ≤ Keat and |f ′(t)| ≤ K1e

a1t as well. Then we
have that L(f ′(t))(s) = sL(f(t))(s)− f(0). Hence the Laplace transform of a derivative just becomes a multiplication
by s (and subtracting a constant). Proof : Let t1, . . . , tn be n discontinuities of f ′. Then we can split the integral∫ α

0
e−stf ′(t)dt, where α > max(ti), into

∑n
k=1

∫ tk
tk−1

e−stf ′(t)dt, where k0 = 0. Perform integration by parts on each

term separately (then combining terms etc) to obtain that the sum is equal to e−sαf(α) − e0f(0) + s
∫ α

0
e−stf(t)dt.

Taking the limit as α→∞, we obtain that
∫∞

0
e−stf ′(t)dt = s

∫∞
0
e−stf(t)dt− f(0) as required.

• Laplace Transform of Higher Derivatives: Note that L(f ′′(t)) = s2L(f)− sf(0)− f ′(0). In general,

L(f (n)) = snL(f)− sn−1f(0)− . . .− sf (n−2)(0)− f (n−1)(0) = snL(f)−
n∑
k=1

sk−1f (n−k)(0)

• Laplace transform of differential equations We can take the Laplace transform of an entire differential equation
since the Laplace transform is linear. We hence obtain an algebraic equation for the Laplace transform of y in terms of
s and the initial conditions. Solve for L(y) and take its inverse Laplace transform to find y.

Step Functions (Heaviside Function) Write uc(t) =

{
0, t < c

1, t ≥ c
. The Laplace transform of this function is clearly∫∞

0
uc(t)e

−stdt =
∫∞
c
e−stdt = 1

se
−sc, defined for s > 0.
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Step function multiplied by another function Consider g(t) = f(t)u(t − c). Then the Laplace transform of g(t) is
L(g) =

∫∞
0
f(t)u(t− c)e−stdt =

∫∞
c
f(t)e−stdt =

∫∞
0
e−(ζ+c)sf(ζ)dζ = e−csL(f), where we have made the change of variable

ζ = t− c.

7.2 12 Nov 2014

Useful Laplace Transforms L(tr) = Γ(r+1)
sr+1 = r!

sr+1 .

Gamma Function Γ(r + 1) =
∫∞

0
e−uurdu. There is a recursion relation Γ(r + 1) = rΓ(r), Γ(1) = 1, so Γ(n+ 1) = n!.

Multiplication by exponential Consider eatf(t). Then the Laplace transform is L(f)(s− a), s > a.

Dirac Delta Functions Defined to be zero for all t 6= 0 and infinity at t = 0 such that
∫∞
−∞ δτ (t)dt = 1. Note that the

Dirac delta function is not a function but it is a distribution. A distribution Λ is a continuous linear transformation that
takes C∞(R) smooth functions that are zero outside some compact set (i.e. has compact support) as its input and maps
them to the reals.

Example of a distribution Consider a function h : R → R that is piecewise continuous. Then define the distribution
Λ(h) =

∫∞
−∞ h(t)f(t)dt.

Delta function as a distribution Define a distribution acting on functions as Λδτ (f) =
∫∞
−∞ δτ (t)f(t)dt =

1
2τ

∫ τ
−τ f(t)dt. Hence we define the functional δ : C∞(R)→ R, δ(f) = limτ→0 Λδτ = f(0).

Laplace Transform of a Distribution Define L(Λ(f)) = Λ(L(f)). The Laplace transform of a distribution acting on
a function is the distribution acting on the Laplace transform of the function.

Derivative of a distribution Λ′(f) = −Λ(f ′), where the minus sign is related to the minus sign in integration by parts.

7.3 13 Nov 2014 Thursday

Useful Identities

• L(tnf(t)) = (−1)n dn

dsn (L(f(t))).

• L(tf(t)) = − d
dsL(f(t))

Exponential Order A function f(t) is of exponential order α if there exists T,M such that |f(t)| ≤ Meαt,∀t ≥ T .

Alternatively, say that limt→∞
f(t)
eαt is finite.

7.4 14 Nov 2014 Friday

Review Recall that the delta function can be thought of as a limiting distribution limτ→0 Λd,τ , where Λd,τ refers to the
distribution acting on smooth functions with compact support (i.e. C∞c (R) functions) Λd,τ (f) = 1

2τ

∫ τ
−τ f(t)dt. Then

δ(t) = limτ→0 Λd,τ (f) = f(t).

Laplace Transform of a Distribution Consider Λh(f) =
∫
h(t)f(t)dt. Then Λh(L(f)) =

∫
h(s)L(f)(s)ds. Writing

this out explicitly, we have that this is equal to
∫
h(s)

[∫∞
0
e−stf(t)dt

]
ds. Since all these integrals are assumed to converge,

we can exchange the order of integration to obtain:
∫∞

0
f(t)

[∫∞
0
e−sth(s)ds

]
dt. But the integral inside can be viewed as the

Laplace transform of h in terms of t Hence we have that it is equal to
∫
L(h)(t)f(t)dt = ΛL(h)(f).

Laplace Transform of the Delta Function Consider L(δt0)(f) = δt0(L(f)) as per the proof immediately above. The
RHS is equal to L(f)(t0) =

∫∞
0
e−t0sf(s)ds as per the definition of the delta function distribution. Hence (somehow) we can

think of L(δt0) = e−t0s.

Derivative of a distribution Consider we a differentiable function h. We can interpret the function as a distribution
by defining Λh(f) =

∫
R h(t)f(t)dt. We want the derivative of the distribution to equal the distribution associated with the

derivative of the function Λh′(f) =
∫
R h
′(t)f(t)dt = [h(t)f(t)]∞−∞ −

∫
R h(t)f ′(t)dt by integration by parts. Now the first term

vanishes because f(t) has compact support and hence vanishes outside the supported region. Note that the second term
hence becomes −Λh(f ′). Hence if h is differentiable, we define the derivative of the distribution to be Λh′(f) = −Λh(f ′).
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Hence the derivative of any distribution Λ′(f) = −Λ(f ′).

Derivative of the Delta Function Distribution We use the definition of the derivative for distributions to state that
δ′t0(f) = −δt0(f ′) = −f ′(t0).

Heaviside theta distribution Consider the step function uc with jump at t = c. The distribution associated with this
function is Λuc(f) =

∫
R uc(t)f(t)dt =

∫∞
c
f(t)dt. The distributional derivative of this is Λ′(uc) = −Λ(u′c) = −

∫∞
c
f ′(t)dt =

−[f(t)]∞c = −f(c) = δc(f) because t =∞ is outside the compact support. Hence Λ′uc = δc.

Example with delta function Consider 2y′′ + y′ + 2y = δt0=5 with initial condition y(0) = 0, y′(0) = 0. Now the
RHS is a distribution, so we need the LHS to be a distribution as well. We take the Laplace transform of the LHS to get

(2s2 + s+ 2)Y (s). On the RHS we have e−5s. Hence we have that Y (s) = e−5s

2s2+s+2
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Chapter 8

Week 8

8.1 Monday 17 Nov 2014

Laplace Transform of Convolution is product of Laplace transforms Define the convolution f(t) = f1(t) ∗ f2(t) =∫ t
0
f1(t− τ)f2(τ)dτ . Then the Laplace transform of f satisfies:

L(f) = L(f1)L(f2)

is just the product of the individual Laplace transform.

Proof Consider L(f) =
∫∞

0
e−st

∫ t
0
f1(t − τ)f2(τ)dτdt and compare it with

(∫∞
0
e−stf1(t)dt

) (∫∞
0
e−st

′
f2(t′)dt′

)
. Then

we have that the product is
∫∞

0

∫∞
0
e−s(t+t

′)f1(t)f2(t′)dtdt′. Note that 0 ≤ t ≤ T so 0 ≤ t + t′ ≤ T + t′. Make
a change of variable t + t′ = u =⇒ t = u − t′. Rewriting the integral in terms of the new variable, we have:∫∞

0

∫ u
0
e−suf1(u− t′)f2(t′)dudt′ =

∫∞
0
e−su

∫ u
0
f1(u− t′)f2(t′)dt′du = L(f).

Properties of Convolution

• Commutative f ∗ g = g ∗ f

• Distributive over sums f ∗ (g1 + g2) = f ∗ g1 + f ∗ g2

• Associative f ∗ (g ∗ h) = (f ∗ g) ∗ h

General Case of Non-Homogeneous Linear Constant Coefficient Second Order DE Consider ay′′+ by′+ cy =
g(t) with initial conditions y(0) = y0, y

′(0) = y′0. Take the Laplace Transform of the LHS to obtain:

(as2 + bs+ c)Y (x)− (as+ b)y0 − ay′0 = G(s)

where L(y) = Y (s) and L(g) = G(s). Introduce the function Φ(s) =
(as+b)y0+ay′0
as2+bs+c which contains all the information

about the initial conditions. Also introduce Ψ(s) = G(s)
as2+bs+c which has information about the non-homogeneous term. Then:

Y (s) = Φ(s) + Ψ(s)

Hence we want to find y(t) such that L(y) = Y (s). Since the Laplace transform is linear, we can write y as the sum
of two terms y = φ(t) + ψ(t) such that L(φ) = Φ(s) and L(ψ) = Ψ(s). Hence we want to find the Inverse Laplace Trans-
forms of the two pieces of Y (s), then add them together to obtain the two pieces of y(t). Observe that if g(t) = 0, then
Ψ(s) = 0 =⇒ Y (s) = Φ(s), so φ(t) is the solution of the homogeneous equation given the same initial conditions. Observe
further that if y0 = y′0 = 0, then Φ(s) = 0 and Y (s) = Ψ(s) so ψ(t) is the solution to the non-homogeneous differential
equation with zeros as the initial conditions.

Hence we find the solution by doing three things:

1. Solve the homogeneous case with the same initial conditions,

2. Solve the inhomogeneous case with initial conditions being zero.
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3. Add the two contributions together to obtain the final solution.

Define the function H(s) = 1
as2+bs+c so that Ψ(s) = H(s)G(s). H(s) contains information about the original differential

operator in ay′′ + by′ + cy. H(s) is known as the transfer function or propagator. Note that H(s) contains no information
about the initial conditions of the system or the inhomogeneous part. Note further that H(s) is the solution to the Laplace
transform of the equation:

ay′′ + by′ + cy = δ(t)

with initial conditions y(0) = 0, y′(0) = 0. Note that δ(t) is the delta function centred at zero. In light of this, H(s) is
also called the Fundamental Solution or Green Function.

Now to find ψ(t) we want to invert Ψ(s), so:

ψ(t) = L−1(H(s)G(s))

=

∫ t

0

h(t− τ)g(τ)dτ

in view that the Laplace transform of a convolution is the product of the individual Laplace Transforms. Hence we want
to find h(t), the inverse Laplace transform of H(s).

Putting it all together, we can write:

y(t) = φ(t) +

∫ t

0

h(t− τ)g(τ)dτ

where we have the following components: φ(t) the solution to the homogeneous equation, h(t) the inverse Laplace trans-
form of the Fundamental solution and g(t) the non-homogeneous term.

Solving Difference Equations with Discretized Time Recall that we have always treated y(t) as a function of a
continuous time variable. In this case, we want to replace time with a set of discrete values tn so that yn = y(tn). Then the
equations we wish to solve are of the form:

yn+1 = F (n, yn)

y0 = y(t0), the initial condition

The equivalent of autonomous equations in this case is that the function F is just a function of yn and not on n.

yn+1 = F (yn), autonomous case

Note that in general for difference equations y : N→ R and F : N× R→ R. Given y0 = α, define yk = F k(α) to be the
orbit of α under iterations of the function F .

Example Consider yn+1 = ρyn, y0 = α, so if 0 < |ρ| < 1, then yn = ρnα → 0 as n → ∞. If ρ = 1, then yn = α,∀n, If
ρ > 1, then yn diverges. If ρ = −1, then yn does not have a limit because it keeps oscillating between α and −α.

Example Consider yn+1 = ρyn + bn, y0 = α. Then y1 = ρα + b0, etc. In general yn = ρnα +
∑n−1
j=0 ρ

n−1−jbj . If

bn = b,∀n, ρ 6= 1 then yn = ρn(α− b
1−ρ ) + b

1−ρ .

8.2 Own Notes on Distributions (Distributions, Complex Variables, and
Fourier Transforms by Bremermann)

Functional Let {fn} be a sequence of functions such that the integrals
∫∞
−∞ fn(t)φ(t)dt exist for all n and for all φ from a

given class of function. Then define < fn, φ >=
∫∞
−∞ fn(t)φ(t)dt and < f, φ >= limn→∞ < fn, φ > be called a functional. φ

is called a test function.
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Schwartz Distribution A Schwartz distribution has a class of test functions φ that are smooth with compact support.

Delta function as a distribution < δ, φ >= φ(0) for all complex valued functions φ defined on the real axis.

Support The support of a function is the closure of the set of all points for which the function is non-zero.

8.3 Wednesday 19 Nov 2014

Example Consider dy
dt = ry(1− y

T ), which has the continuous form. If we discretize this, we replace dy
dt with a finite increment

yn+1−yn
h , where h is the length of time between consecutive yj . Then we have:

yn+1 − yn
h

= ryn(1− yn
T

)

=⇒ yn+1 − yn = hryn − hr
y2
n

T

=⇒ yn+1 = (hr + 1)yn − hr
y2
n

T

=⇒ yn+1 = ρyn(1− yn
K

), ρ = (1 + hr),K =
T

hr
(1 + hr)

Make the substitution un = yn
K so we have the difference equation:

un+1 = ρun(1− un)

Examine the equilibrium solutions: un = 0,∀n, un = ρ−1
ρ ,∀n. We now examine the behaviour of the other solutions.

Define f(x) = ρx(1 − x). Then the fixed point occurs when x = 0, x = ρ−1
ρ . Also, the roots of the function are at x = 0,

x = 1. Consider the case when ρ − 1 < 0. If we pick the initial condition 0 < x0 < 1, then we observe that the orbit
fk(x0) = xk converges to the fixed point x = 0 when k →∞. x = 0 is a stable fixed point in this case.

Now consider the case when ρ > 1. Then the fixed points are at the origin and at the positive position x = ρ−1
ρ < 1.

Then if we pick 0 < x0 < 1, then the orbit fk(x0) = xk will converge to the fixed point x = ρ−1
ρ . Observe that x = 0 is now

an unstable fixed point, while x = ρ−1
ρ is a stable fixed point.

Note that when ρ is sufficiently large, then there is the possibility that we can have a periodic orbit that does not go
closer to the fixed point.

Review: Systems of linear equations Recall that in x′(t) = Ax(t) is solved by examining the eigenvalues and eigen-
vectors of A.

Notes on sketching phase diagrams

• Sketch in the lines representing the eigenvectors into the phase plane.

• If the eigenvalue corresponding to an eigenvector is negative, the direction of motion along that eigenvector will be
towards the origin.

• Examine the relative magnitude of the eigenvalues. If the solution varies more rapidly along one eigenvector direction
(i.e. eigenvalue is more negative) then the curve will “stick” to the slower axis.

Complex Eigenvalues Take the real and imaginary part of ~ve(µ+λi)t, which are (eµt cosλt,−eµt sinλt) and (eµt sinλt, eµt cosλt).
This will trace out a circle in the phase space, but since there is an exponential factor, it will become a spiral that goes to
the origin if the real part of the eigenvalue is negative and to infinity of the real part is positive.

Repeated eigenvalues (i.e. non-diagonalizable) With repeated eigenvalues, there will not be a second linearly
independent eigenvector.
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8.4 Friday 21 Nov 2014

Repeated eigenvalues (non-diagonalizable) We will be able to obtain one repeated eigenvalue λ and one associated

eigenvector ~ζ. We know that one solution will be of the form ~x1 = ~ζeλt. We want to find a second solution of the form
~x2 = ~ζteλt + ~ηeλt for some vector ~η. Substituting this guess into the original differential equation gives (A − λI)~η = ~ζ.

Now we note that ~ζ is in the kernel of (A − λI) because it is an eigenvector of A. Hence we can find the solution with

~η = (A− λI)−1~ζ. Take the linear combination of ~x1 and ~x2 to find the general solution.

General solution to a linear matrix DE with constant coefficients Write ~x′(t) = A~x(t). There are several different
possibilities based on the eigenvalues of A :

• Eigenvalues are real, distinct, and positive. The origin is an unstable node.

• Eigenvalues are real, distinct, and negative. The origin is a stable node.

• Eigenvalues are real, distinct, and have different signs. The origin is a saddle/non-stable node.

• Eigenvalues are complex conjugates. Trajectories are spirals. Origin is stable if the real part is negative, unstable if
the real part is positive. If the real part is zero, then we get circles or ellipses (called centres).

• Eigenvalues are real and repeated. Origin is stable or unstable depending on the sign of the eigenvalue. Trajectories
follow two regimes of flow: for small t the eλt term dominates, and for large t the teλt term dominates.

Alternative way to describe behaviour Write the characteristic polynomial as det(A) + tr(A)λ+ λ2. The behaviour
depends on the discriminant of the polynomial tr(A)2 − 4 det(A). For positive discriminant, we have real and distinct eigen-
values, for negative discriminants, we get complex eigenvalues and for zero discriminant, we have real repeated eigenvalues.
Also, we can determine the signs of the eigenvalues by looking at the determinant of the matrix, which is the product of the
eigenvalues. If the determinant has negative sign, the eigenvalues have opposite sign, and if the determinant is positive the
eigenvalues have the same sign. To see the exact sign of the eigenvalues in the latter case, look at the trace, which is the sum
of the eigenvalues.

Graphical depiction Put det(A) on the y-axis and tr(A) on the x-axis. Plot the parabola det(A) = 1
4 tr(A)2. Along

the vertical axis, the trace is zero, which corresponds to pure imaginary eigenvalues and hence centers. Above the parabola,
we have that the discriminant is negative and hence we have complex conjugate eigenvalues. Left of the vertical axis, we
have negative trace and hence the spirals have negative real part eigenvalues and hence are stable. Right of the vertical axis,
we have positive trace and hence positive eigenvalue real parts and hence unstable spirals. Below the parabola, there are 4
different cases depending on the sign of tr(A) and det(A). Above the horizontal axis, the determinant is positive and hence
we have either stable or unusable nodes. Below the horizontal axis, we have saddles because the determinant is negative and
hence the eigenvalues have opposite signs.

Behaviour of non-linear systems Examine the behaviour in a small neighbourhood of a point by taking first order
linear approximations.

Example: Competing species dynamics Construct the non-linear system:

dx

dt
= x(ε1 − σ1x− α1y)

dy

dt
= y(ε2 − σ2y − α2x)

Note that without the third term, the differential equations are logistic in nature. We first look for equilibrium points
dx
dt = 0, dydt = 0. We hence want to solve:

x(ε1 − σ1x− α1y) = 0

y(ε2 − σ2y − α2x) = 0

Observe that x = 0 solves the first equation. If x = 0, then y = 0 or y = ε2
σ2

solves the second equation. Alternatively, if
y = 0, then the first equation will be solved if x = 0 or x = ε1

σ1
. We now want to check if there are solutions where neither x

nor y are zero. This is equivalent to solving the linear system:
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σ1x+ α1y = ε1

σ2y + α2x = ε2

=⇒
(
x
y

)
=

(
σ1 α1

α2 σ2

)−1(
ε1
ε2

)
Hence we have the four equilibrium points: (0, 0), (0, ε2σ2

), ( ε1σ1
, 0) and the one from the linear system solution above. We

can examine the behaviour of the system around each of the equilibrium points.

Consider the point (0, 0). We linearize the system by dropping all the non-linear terms (in first approximation, since
y2, xy, x2 are small near the origin):

dx

dt
= ε1x

dy

dt
= ε2y

This clearly has solutions:

(x, y) = (1, 0)eε1t + (0, 1)eε2t

hence we observe that (0, 0) is an unstable equilibrium point. The system behaves as if the two species are independently
growing without considering interactions between the two populations.
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Chapter 9

Week 9

9.1 24 Nov 2014 Monday

Continuation of non-linear growth models Recall the model:

dx

dt
= x(ε1 − σ1x− α1y)

dy

dt
= y(ε2 − σ2y − α2x)

which has 4 equilibrium points.

Linearization at equilibrium points Assume we have an equilibrium point at (xe, ye). Define the new variables
u = x− xe, v = y − ye, and then drop all non-linear terms in u and v that are small near the equilibrium point.

The next equilibrium point Now consider (xe, ye) = (0, ε2σ2
) so we define the new variables u = x, v = y − ε2

σ2
. Then

we write:

du

dt
= ε1u−

ε2
σ2
u

dv

dt
=
ε2
σ2

(−vσ2 − α2u)

Hence examine the coefficient matrix A and determine its behaviour based on the values of the determinant and trace.

General description of method

• Identify equilibrium points

• Linearize coupled equations at each equilibrium point

• Identify the determinant and trace of each coefficient matrix at each equilibrium point to identify type of trajectory
near the point.

• Calculate eigenvectors and eigenvalues at each point to sketch in the phase portrait near each point.

• Attempt to connect the phase portraits over the whole plane by connecting arrows

Prey-Predator model (Lotka/Volterra) Consider:

dx

dt
= ax− αxy

dy

dt
= −cy + γxy

with a, c, α, γ > 0. Note that in the absence of the other species, the x population will grow exponentially while the y
population will die off exponentially. Hence x is the prey while y is the predator. Then the cross-terms represent the effect
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of encounters between prey and predator, which is bad for the prey but good for the predator.

We want to find the equilibrium solutions and linearize it near each point.

One trivial point is the origin, which is clearly a saddle point since the coefficients of x and y have opposite sign.

Now consider the other equilibrium points. We solve the simultaneous equations to obtain that the other equilibrium
point is x = c

γ , y = a
α . Then around this equilibrium point, we have:

u ≡ x− c

γ

v ≡ y − a

α
du

dt
=
−cα
γ

v

dv

dt
=
aγ

α
u

Observe that the coefficient matrix has zero trace and positive determinant, hence the equilibrium point will be a centre.
Hence the trajectories circle around the equilibrium point in stable fashion, and neither population goes extinct around this
equilibrium point.

Example: Damped pendulum Consider the equations of motion:

dx

dt
= y

dy

dt
= −ω2 sinx− γy

Note that the equilibrium solutions are y = 0 and sinx = 0, hence we write x = ±nπ, n ∈ N. Perform a linearisation near
(2nπ, 0), n ∈ Z. Then we have:

du

dt
= v

dv

dt
= −ω2u− γv

where we have replaced sinu ≈ u for small u. The trace of the coefficient matrix is −γ and the determinant is ω2. If
γ = 0, then we have no damping and we will have centers at this equilibrium point. If γ > 0, then we will have stable spirals
instead.

9.2 Wednesday 26 Nov 2014

Damped pendulum Recall the equations of motion of the damped pendulum:

dx

dt
= y

dy

dt
= −ω2 sinx− γy

which has equilibrium solutions when y = 0, sinx = 0 =⇒ x = mπ,m ∈ Z. We can consider the cases when x = 2nπ
and when x = (2n+ 1)π, the even and odd multiples of π. Linearizing around (2nπ, 0), we have the matrix equation:

d

dt

(
u
v

)
=

(
0 1
−ω2 −γ

)(
u
v

)
Hence we have the following cases:

• If γ = 0, then we have the trace is zero and the determinant is positive, and hence we get centers.

24



• If γ > 0 then we get that the trace is negative and the determinant is positive and hence we get stable spirals.

Now consider the linearisation around ((2n + 1)π, 0). Then we make the approximation sin((2n + 1)π + u) ≈ − sinu.
Then we get the matrix equation:

d

dt

(
u
v

)
=

(
0 1
ω2 −γ

)(
u
v

)
Then we have that the determinant is negative. Hence all the solutions around the equilibrium point are saddles. The

phase diagrams are as such (for frictionless and with friction):

Energy Note that we can write the energy of the undamped pendulum as:

V = (1− cosx) +
1

2ω2
y2

Examining the time derivative:

dV

dt
=
∂V

∂x

dx

dt
+
∂V

∂y

dy

dt

= y sinx+
y

ω2
(−ω2 sinx) = 0

hence the energy stays the same along the solution, and the solutions only move along level sets of V .

Energy of the damped pendulum We write the energy now with γ > 0:
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dV

dt
= y sinx+

y

ω2
(−ω2 sinx− γy) =

−γ
ω2

y2

Now note that V is not constant along trajectories, but instead will be decreasing for all positions with y 6= 0. Hence the
trajectories will be cutting through lower and lower level sets of V .

Periodic orbits Consider the non-linear system:

dx

dt
= x+ y − x(x2 + y2)

dy

dt
= −x+ y − y(x2 + y2)

First look for equilibrium solutions. Substituting x2 + y2 from one equation to another, we require that x2 + y2 = 0,
which only occurs when x = y = 0. The linearization at (0, 0) is just:

dx

dt
= x+ y

dy

dt
= −x+ y

and we compute the trace to be 2 and the determinant to be 2, and hence it is an unstable spiral.

However, further away from the origin, the linearisation will not be valid. The presence of x2 + y2 indicates that we
should look at the equation in polar coordinates. Define r2 = x2 + y2 =⇒ r drdt = xdxdt + y dydt , x = r cos θ, y = r sin θ.

Observe that:

x
dx

dt
+ y

dy

dt
= x(x+ y) + x2(x2 + y2) + y(−x+ y)− y2(x2 + y2) = x2 + y2 − (x2 + y2)2 = r2 − r4

Hence we have the polar coordinate equation:

r
dr

dt
= r2 − r4 = r2(1− r2)

Now consider the angular equation. Now take the difference between the original equations to obtain:

y
dx

dt
− xdy

dt
= y(x+ y)− xy(x2 + y2)− x(−x+ y) + xy(x2 + y2) = x2 + y2 = r2

This expression is useful since:

y
dx

dt
− xdy

dt
= −r2 dθ

dt

Hence we have the theta dependence:

dθ

dt
= −1

or that the angular velocity is constant on the solution.

The radial equation has two critical points at r = 0 and r = 1. The second critical point was missed in the Cartesian
coordinates. This is because traversing a circle of radius 1 at constant speed corresponds to a critical point in polar coordi-
nates but is not stationary in Cartesian coordinates.

Note that the presence of the unit circle as a solution means that there are two regimes of solutions: inside the unit circle
and outside the unit circle, and the solutions do not cross the unit circle due to uniqueness.
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We can solve the radial equation by separation of variables:

dr

dt
= r(1− r2) =⇒ dr

r(1− r2)
= dt

=⇒ dr

(
1

r
+

r

1− r2

)
= dt

=⇒ log(r|1− r2|−1/2) = t− t0

=⇒ r2

1− r2
= ±e2(t−t0)

=⇒ r2 =
1

Ce−2t + 1
, C = e2t0

observe that for all trajectories, the presence of the decaying exponential indicates that all the trajectories are limiting
to a circle r = 1.
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Chapter 10

Week 10

10.1 Monday 1 Dec 2014

Closed orbits in Non-linear systems: Criterion 1 Given:

dx

dt
= F (x, y)

dy

dt
= G(x, y)

where F and G have continuous partial derivatives in x and y in some region of the plane. If there is a limiting cycle in
this region D, then it must enclose a critical point. Then it means that if we have a region without a critical point, then it
cannot have limiting cycles there.

Proof Let C be a closed trajectory in D. Let Ω ⊂ D with C = δΩ. Then we want to show that Ω has to contain a
critical point. Suppose that there are not critical points on Ω. Then we know that F 2 + G2 everywhere in Ω because they
cannot be zero simultaneously, since that would be a critical point. Now we measure the angle that the tangent vector along
C makes with a fixed direction as we move along C. Now since this is a closed curve, the angle must satisfy

∮
C
dθ = 2π. We

know that the tangent of the angle is tan θ = y′

x′ = G
F . Then we can write dθ = FdG−GdF

F 2+G2 =⇒ dθ
dt =

F dG
dt −G

dF
dt

F 2+G2 . We use
Green’s theorem to calculate this:

∮
C

dθ =

∮
C

FdG−GdF
F 2 +G2

=

∫∫
Ω

∂

∂F

(
F

F 2 +G2

)
+

∂

∂F

(
G

F 2 +G2

)
dFdG

note that the function inside the integral is exact (and hence can be written as the derivative of some generating function),
which would imply that the integral

∮
C
dθ = 0 because the value of the generating function at the end points will be exactly

the same (since the curve is closed). But we required that
∮
C
dθ = 2π. Contradiction.

The reason why the contradiction works is that F 2 +G2 must vanish at some point so the potential function is not defined
over the whole region and hence is not exact.

Criterion 2: Bendixson’s Criterion If F and G have continuous partial derivatives in x and y in some region D and D
is simply connected (i.e. no holes), then if Fx+Gy does not change sign over the region D, then there are no closed orbits in D.

Proof Suppose, to the contrary, that there exists a closed trajectory C in D. We apply Green’s theorem to the closed
trajectory C. Then we write:

∮
C

(F~v1 +G~v2) · ~nds =

∮
C

(Fdy −Gdx)

=

∫∫
Ω

(
∂F

∂x
+
∂G

∂y

)
dxdy 6= 0 by hypothesis that the sum of partial derivatives does not change sign

But we note that the integral:
∮
C

(Fdy − Gdx) on a closed trajectory is the integral of the tangent vector of the curve
dotted with the normal vector of the curve. But clearly, this dot product has to be zero because the tangent vector is always
orthogonal to the normal vector. Hence we have a contradiction, and hence there cannot be any closed trajectories in the
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region D.

Criterion 3 Let F and G have continuous partial derivatives in x and y in some region D. If there are no critical points
in some bounded region R ⊂ D, then if there exists t0 such that the solution (x(t), y(t)) stays in R for all t > t0, then the
solution is either periodic or spirals towards a periodic solution. Then the region R must contain a critical point or have a
hole that contains a critical point.

If we have a trajectory (x(t), y(t)) that remains for all t ≥ t0 inside R, then there are only three possibilities:

• The trajectory approaches a critical point.

• The trajectory is a closed orbit.

• The trajectory approaches a closed orbit.

Sketch of proof Let x(t0) = x0 ∈ R. Then the trajectory passes through x0. Pick a transversal curve
∑

that passes
through x0. Then the trajectory makes an angle with the transversal curve. Let xn be the points of subsequent return of
the solution to

∑
. Such points may or may not exist. If any of the return points xn is the same as a previous return point

xk, k < n, then the solution is a closed orbit. Now if the return points do not repeat, then it must be the case that the points
xn proceed in one direction along

∑
.

10.2 Wednesday 3 Dec 2014

Review of previous session Recall that we wanted to find trajectories that are solutions to the non-linear system:

dx

dt
= F (x, y)

dy

dt
= G(x, y)

on the plane. Let the first partial derivatives of F and G be continuous on region R. Then a trajectory ~x(t) = (x(t), y(t))
that stays inside R for all t ≥ t0 is either (i) approaching a critical point or (ii) a closed orbit or (iii) approaching a closed orbit.

Proof Let the trajectory pass through ~x(t0) = ~x0. Consider a curve Σ that also passes through ~x0 and does not have
a tangent vector that is coincident to the tangent vector of ~x at ~x0. We claim that the points ~xn, the nth intersection of
the trajectory with Σ, follows monotonically the same order on Σ. This follows because the flow represented by F and G
is continuous, hence at some point between two intersections we must have that the tangent vector of ~x turns around so
that it can intersect Σ again. An intersection cannot occur between two previous intersections since there would be some
place where it is not traverse to the flow. ??? Since the sequence {~xn} is monotonic and bounded, it will have a limit
at ~y ∈ Σ. Now consider the solution that starts at ~y and look at where it first returns to Σ again. Consider the first
return map ~x ∈ Σ 7→ γ(x) ∈ Σ which is the first point where the solution starting at ~x returns to Σ. Then we know that
γ(~y) = limn→∞ γ(~xn) = ~y by construction of ~y. But the point whose return map is itself is a closed curve. Hence the orbit
starting at ~y is a closed orbit.

Damped Pendulum again Recall that in the damped pendulum:

dx

dt
= y

dy

dt
= −ω2 sinx− γy

In the undamped case, the energy function V = (1 − cosx) + y2

2ω2 is constant along the trajectory since using the chain

rule dV
dt = 0. However, in the damped case γ 6= 0 and dV

dt = − γ
ω2 y

2 ≤ 0 the energy is decreasing along trajectories.

Examining Energy Functions Note that in the previous case, we know that the energy function is constantly decreas-
ing along the trajectory. Hence we can examine the level sets of the energy functional to estimate the trajectories of the
system. The trajectories will cut the level sets and tend towards the minimal energy areas.

Lyapunov Stability Consider a point ~x0 = (x0, y0) which is a critical point for the non-linear system. Let U(~x0) be
some open neighbourhood of the critical point. Consider a real-valued function defined on the neighbourhood: L : U(~x0)→ R
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which is continuous on U(~x0) and satisfies L(~x(t0)) ≥ L(~x(t1)) if t0 < t1, ~x(t0), ~x(t1) ∈ U(~x0)\{~x0}. Call L the Lyapunov
function. Call this function a strict Lyapunov function if L(~x(t0)) > L(~x(t1)). If we can find such a strict Lyapunov function,
then there are no closed orbits in U(~x0) because if there is a closed orbit then this function will have to keep decreasing
and will hence achieve a different value when the trajectory returns to the starting point. Sublevel sets of L Consider the
set Sδ = {~x ∈ U(~x0)|L(~x) ≤ δ}. Define S0

δ ⊂ Sδ that is the connected component of Sδ that contains ~x0. If S0
δ ⊂ U(~x0)

is a closed set and has no boundary in common with the boundary of ∂U(~x0) then it is invariant under the forward time
evolution. If you are inside the sub level set you remain inside the sub level set.

Now we can take δ to be small and obtain that the sub level set will shrink around ~x0. Formally, ∀ε > 0,∃δ > 0 such
that S0

δ ⊆ Bε(~x0) and Bδ(~x0) ⊆ S0
ε where Bε is the n-ball of radius ε entered at ~x0. This says that the {S0

δ} are shrinking
to ~x0 as δ → 0. Proof Consider the statement S0

δ ⊆ Bε(~x0). If this was false then ∀n ∈ N, there exists ~x0 ∈ S0
1/n with

||~xn − ~x0|| ≥ ε. But since S0
1/n are connected sets we can follow the point outside the n-ball towards ~x0, and at some point

we will cut the boundary of the n-ball. Formally, there exists ~yn with ||~yn − ~x0|| = ε. Then we have an infinite sequence of
points ~yn on the n-ball of radius ε around ~x0. This n-ball is a compact set and hence there has to be some subsequence that
converges to a point on the circle ~ynk → ~y ∈ ∂Bε(~x0). But the function L is continuous hence we also have L(~ynk)→ L(~y).
But we know that ~ynk ∈ S0

1/nk and L(~ynk) ≤ 1
nk
→ 0 and hence L(~y) = 0. But we know that ~y is at a distance ε from the

centre of the n-ball ~x0 and we know that the minimal value of L occurs at ~x0 Contradiction.

Now consider the second property Bδ(~x0) ⊆ S0
ε . If this were false then there exists ~xn with ||~xn − ~x0|| ≤ 1

n but with
L(~xn) > ε. But L is continuous so as ~xn → ~x0 implies L(~xn)→ L(~x0) = 0. Contradiction.

10.3 4 Dec 2014 Recitation

Exponential of commuting matrices Prove that if AB = BA then exp(A+B) = exp(A) exp(B).

Proof Write the LHS as:

exp(A+B) = I +
A+B

1!
+

(A+B)2

2!
+ . . .

Note that the binomial expansion is not true in general unless the matrices commute. But since this is the case here, we
write:

exp(A+B) =

∞∑
n=0

∑n
k=0

n!
k!(n−k)!A

kBn−k

n!

= exp(A) exp(B)

after some algebra.

10.4 Friday 5 Nov 2014

Lyapunov Function Recall that if ~x0 is a critical point of a non-linear equation and there is a Lyapunov function L
in the neighbourhood U(~x0) of ~x0 such that L : U(~x0) → R is continuous and satisfies L(~x0) = 0 and L(~x) > 0 and
L(~x(t0) ≥ L(~x(t1)) for t0 < t1 for a solution ~x(t) of the non-linear equation, then ~x0 is a stable critical point. If L is strict,
then the solutions ~x(t) flow into the critical point. Note that we have only defined L to be continuous. If the strict Lyapunov
function is differentiable, then L(~x(t0)) > L(~x(t1)) for t0 < t1 is equivalently written as d

dtL(~x(t)) < 0. We write:

d

dt
L(~x(t)) = ∇L(~x(t)) · (F,G)

where we recall that the non-linear equation was dx
dt = F (x, y), dydt = G(x, y) so (F,G) is the derivative of ~x(t) along the

solution flow. Hence we can write the strict differentiable Lyapunov function condition as:

(∇L) · (F,G) < 0

Example Consider the system:
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dx

dt
= y

dy

dt
= −x

Consider the function L(x, y) = x2 + y2. This is a differentiable function, hence we can check the condition for the
Lyapunov function. We have that ∇L = (2x, 2y) and (∇L) · (y,−x) = (2x, 2y) · (y,−x) = 2xy − 2yx = 0. Hence this is a
non-strict Lyapunov function and L is constant along solution flows. Hence trajectories stay on level sets of L, and hence
the solutions must be moving on circles around the origin (i.e. closed orbits) because L(x, y) is radially symmetric.

Example 2 Consider the system:

dx

dt
= y

dy

dt
= −x− ηy

Consider the same function as above: L(x, y) = x2 + y2. Then we examine ∇L · (F,G) = 2xy − 2yx − 2ηy2 = −2ηy2.
Then L is a Lyapunov function and ~x0 = (0, 0) is a critical point and the solutions spiral into the critical point.

Summary of Lyapunov functions For the linear system ẋ = F (x, y), ẏ = G(x, y) with (0, 0) being a critical point and
if (1) there exists L(x(t), y(t)) with dL

dt < 0 then (x(t), y(t))→ (0, 0) as t→∞. (2) If dL
dt ≤ 0 then (0, 0) is stable, including

the possibility that (0, 0) is a centre. (3) If dL
dt > 0 then (0, 0) is an unstable critical point.

Polar Coordinates Example Consider the system:

dr

dt
= r(1− r2) + µr cos θ

dθ

dt
= 1

where the µ > 0 term represents a small perturbation. If µ = 0 then we know that we have closed orbits with r = 1.
Consider an annular region R with inner radius r1 and outer radius r2. We choose the inner radius such that r1 <

√
1− µ

and the outer radius large. We examine the behaviour of the solution along the boundaries of the annulus. Note that along
the inner boundary, dr

dr ∼ r + µ cos θ. Along the outer boundary, the dominant term is nonlinear dr
dt

∑
−r3. Hence solutions

flow into r2. If µ is sufficiently small such that sign changes in the cosine do not affect the overall sign of dr
dt , then solutions

at r1 tend to flow outwards. Then there must be a closed orbit that remains in the annulus since solutions flow into R and
there are no solutions flowing out of R.

Example: Van der Pol equation for triode oscillations Consider the system:

dx

dt
= y

dy

dt
= −x+ µ(1− x2)y

This system has a critical point at (0, 0) and the linearisation there is:

dx

dt
= −y

dy

dt
= −x+ µy

Examining the trace and determinant, we obtain that if 0 < µ < 2, then we have an unstable spiral and if µ ≥ 2 then we
have an unstable node. We observe that:

∂F

∂x
+
∂G

∂y
= µ(1− x2)
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hence in the region |x| < 1 the function above will be positive and hence there will not be any periodic orbits there. We
now transform the system to polar coordinates. Writing r2 = x2 + y2, we have that:

x
dx

dt
+ y

dy

dt
= r

dr

dt
= µ(1− r2 cos2 θ)r2 sin2 θ

Consider the annular region R will small inner radius r1 and large outer radius r2. At the large r2 boundary we know
that the dominant term will be the dr

dt = −µr3 cos2 θ sin2 θ (there is an r on the LHS) which is non-positive. Note that near

the y-axis, this is no longer the dominant term and the sign of drdt is positive. Hence the solutions may escape the region near
the y-axis.
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