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Fundamental Theorem of Calculus Suppose that f : [a, b] → R is continuous, and for a ≤ x ≤ b defined G(x) =∫ x
a
f(x̃)dx̃. Then dG

dx = f(x) and
∫ b
a
f(x)dx = F (b)− F (a) for any anti-derivative F of f (F ′ = f).

Definition: Solution Given an open interval I that contains t0, a solution of the initial value problem dx
dt (t) = f(x, t)

with x(t0) = x0 on I is a continuous function x(t) defined on I with x(t0) = x0 and ẋ(t) = f(x, t) for all t ∈ I.

Existence and Uniqueness (1st order) If f(x, t) and ∂f
∂x (x, t) are continuous for a < x < b and for c < t < d then for

any x0 ∈ (a, b) and t0 ∈ (c, d) the initial value problem has a unique solution on some open interval I containing t0.

Definition: Stable stationary point A stationary point x∗ is stable if for all ε > 0, ∃δ > 0 such that |x0−x∗| < δ =⇒
|x(t)− x∗| < ε,∀t ≥ 0. A stationary point is unstable if it is not stable.

Definition: Attracting point A stationary point x∗ is attracting if ∀ε > 0,∃δ > 0 such that |x0− x∗| < δ =⇒ x(t)→
x∗, t→∞. Attracting points are stable.

Separation of variables dx
dt = f(x)g(t). Check for f(x0) = 0, identify solution in that case. Then divide and solve.

Don’t forget the absolute values in the ln!!!

Exact Equations The differential equation f(x, y) + g(x, y) dydx = 0 is exact iff fy = gx.

Homogeneous equations A first order differential equation is homogenous if it can be written as dy
dx = F (y/x). Make

the substitution u = y/x, dydx = u+ xdudx so that xdudx = F (u)− u, which is separable.

Bernoulli equations The differential equation dy
dx+p(x)y = q(x)yn, n 6= 0, 1 can be solved with the substitution u = y1−n

to obtain du
dx + (1− n)p(x)u = (1− n)q(x).

Existence and Uniqueness (2nd order) Given a function f(x2, x1, t) suppose that f , ∂f
∂x1

, ∂f∂x2
are continuous for

a1 < x1 < a2, b1 < x2 < b2, t1 < t < t2. Then for all initial conditions x(t0) = x0, ẋ(t0) = y0 with x0 ∈ (a1, a2) and
y0 ∈ (b1, b2) and t ∈ (t1, t2) there exists a unique solution (a continuous function with two continuous derivatives that satis-
fies the initial conditions and DE) of ẍ = f(ẋ, x, t) on some interval I containing t0.

Definition: Linear Independence The functions x1(t), . . . , xn(t) are linearly independent on an interval I if the only
solution of α1x1(t) + · · ·+ αnxn(t) = 0, for all t ∈ I is α1 = · · · = αn = 0.

Definition: Wronskian The Wronskian of two functions x1 and x2 is W [x1, x2](t) = det

∣∣∣∣ x1(t) x2(t)
ẋ1(t) ẋ2(t)

∣∣∣∣. If W [x1, x2] 6=

0 on I then the functions x1 and x2 are linearly independent.

Homogenous linear second order Consider aẍ+ bẋ+ cx = 0. Solve ar2 + br+ c = 0. If the roots are distinct and real,
write x(t) = Aer1t +Ber2t. If the roots are repeated, x(t) = Aert +Btert, if the roots are complex conjugates, r = µ± iλ so
x(t) = eµt(A cos(λt) +B sin(λt)).

Particular equation forms

• nth order polynomial: Guess an nth order polynomial

• Exponential: If exponential is solution to homogenous equation, guess Ctert. If homogenous equation has repeated
roots and exponential is the solution, guess Ct2ert.

• Sine or cosine (or both): xp(t) = C sinωt + D cosωt. If given trig function solves the homogenous equation, guess
xp(t) = Ct sinωt+Dt cosωt.

• Product of elementary functions: Take product of guesses.

Higher order linear equations with constant coefficients Solve homogeneous equation with guess ert, obtain roots
r of auxiliary equation.

• Each non-repeated real root contributes ert.
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• For roots repeated m times, we have m linearly independent solutions ekt, tekt, . . . , tm−1ekt.

• For non-repeated complex conjugates µ± iλ, we have two solutions: eµt sinλt, eµt cosλt

• For repeated complex conjugates repeated m times, introduce 2m solutions: eµt cosλt, eµt sinλt, teµt cosλt,
teµt sinλt, . . . , tm−1eµt cosλt, tm−1eµt sinλt.

Higher order linear inhomogeneous equations Given dnx
dtn +p1(t)d

n−1x
dtn−1 +· · ·+pk(t)d

n−kx
dtn−k +· · ·+pn−1(t)dxdt +pn(t)x = 0,

the general solution is the linear combination of n linearly independent functions that satisfy:

W [f1, . . . , fn](t) = det

∣∣∣∣∣∣∣
f1(t) · · · fn(t)

...
. . .

...
dn−1f1/dt

n−1(t) · · · dn−1fn/dt
n−1(t)

∣∣∣∣∣∣∣ 6= 0, t ∈ I

Reduction of Order Given a(t)ẍ+b(t)ẋ+c(t)x = 0, suppose u(t) is one known solution, then substitute x(t) = u(t)y(t)
and obtain [a(t)u(t)]ÿ + [2a(t)u̇(t) + b(t)u(t)]ẏ = 0, which is a linear first order equation for ẏ.

Variation of Constants Consider ẍ+ p(t)ẋ+ q(t)x = g(t). Suppose we have the homogenous solution xc(t) = Ax1(t) +
Bx2(t). Seek solutions to the inhomogeneous problem in the form x(t) = u1(t)x1(t) + u2(t)x2(t). Impose condition that
u̇1(t)x1(t) + u̇2(t)x2(t) = 0. Then ẋ = u1ẋ1 + u2ẋ2 and we end up with u̇1ẋ1 + u̇2ẋ2 = g(t). Solve two equations:

u̇1x1 + u̇2x2 = 0

u̇1ẋ1 + u̇2ẋ2 = g(t)

Then:

u̇1 =
−x2g
W

u̇2 =
x1g

W

where W = x1ẋ2 − x2ẋ1. Integrate to obtain u1 and u2.

Cauchy-Euler Equations Given ax2 d
2y
dx2 + bx dydx + cy = 0, substitute x = ez to obtain ad

2y
dz2 + (b− a)dydz + cy = 0.

Alternative solution: Try y(x) = xk to obtain the indicial equation: ak(k − 1) + bk + c = 0.

• Case 1: Two real roots. Then the general solution is y(x) = c1x
k1 + c2x

k2 .

• Case 2: Repeated real roots: Use reduction of order to find the second solution to be xk lnx. Hence y(x) = c1x
k +

c2x
k lnx.

• Case 3: Complex Roots: Write k = ρ± iω. Then y(x) = xρ[c1 cos(ω lnx) + c2 sin(ω lnx)].

Power series solutions of second order linear equations Given y′′ + p(x)y′ + q(x)y = 0, write y(x) =
∑∞
n=0 anx

n.

Ensure solution converges by ensuring |x| limn→∞

∣∣∣an+1

an

∣∣∣ < 1 for all x ∈ I or calculate the radius of convergence ρ =

limn→∞

∣∣∣ an
an+1

∣∣∣. Express p(x) and q(x) as power series as well p(x) =
∑∞
n=0 pnx

n, q(x) =
∑∞
n=0 qnx

n. If p and q are not

analytic, see pages 184-186 of Robinson.

Regular Singular Equations Consider y′′+ p(x)y′+ q(x)y = 0. If p(x) and q(x) are not analytic but xp(x) and x2q(x)
are, then make the guess y = xσ

∑∞
n=0 anx

n and find the recursion relation. Find the indicial equation: σ(σ − 1) + p0σ + q0
where p0 and q0 are from writing p(x) = p0

x + p1 + p2x+ . . . and q(x) = q0
x2 + q1

x + q2 + q3x+ . . ..

• Case 1: σ1, σ2 are distinct real roots that do not differ by an integer. Then we have c1
∑∞
n=0 anx

σ1+n+c2
∑∞
n=0 bnx

σ2+n.

• Case 2: σ1 = σ2 + n, n ∈ Z, n ≥ 1. Find the first solution y0(x) =
∑∞
n=0 anx

n+σ2 . Then the second solution will be in
the form y1(x) = y0(x) lnx+

∑∞
n=0 bnx

σ2+n where σ2 is the smaller of the two roots.

• Case 3: Repeated roots. Find the first solution y0(x) =
∑∞
n=0 anx

n+σ. Then the second solution will be in the form
y1(x) = y0(x) lnx+

∑∞
n=1 bnx

σ+n. Note the sum is taken from 1.
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Definitions: Vector First Order Equations For n differential equations with:

ẋ1 = f1(x1, x2, . . . , xn, t)

ẋ2 = f2(x1, x2, . . . , xn, t)

...

ẋn = fn(x1, x2, . . . , xn, t)

Write x = (x1, . . . , xn)T and f(x, t) = (f1, f2, . . . , fn)T . Then we have dx
dt = f(x, t).

The solution to this differential equation with initial value x(t0) = x0 on open interval containing t0 is the continuous
function x : I → Rn that satisfies the differential equation and initial conditions.

Uniqueness and existence for vector first order equations If f(x, t) and Df(x, t), where Df is the matrix of first

partial derivatives Df =

 ∂f1/∂x1 · · · ∂f1/∂xn
...

. . .
...

∂fn/∂x1 · · · ∂fn∂xn

 are continuous functions of x and t with x ∈ U = (a1, b1)× (a2, b2)×

· · · × (an, bn) and c < t < d, then for any x0 ∈ U and t0 ∈ (c, d) there is a unique solution on some open interval containing
t0. Note: to check continuity of Df, simply check the continuity of each of ∂fi/∂xj for i, j = 1, 2, . . . , n.

Matrix Differential Equations Given ẋ = Ax where x is a column matrix of unknown functions, if A has distinct
real eigenvalues: Write x(t) = Aeλ1tv1 + . . . with eigenvalues λi and corresponding eigenvectors vi.

Diagonalizing Given the matrix differential equation dx
dt = Ax, we find a diagonalising matrix of eigenvectors P such

that we can write x = [v1v2 · · · ]x̃ = Px̃ and dx̃
dt = d

dtP
−1x = P−1APx̃. Then the equation for x̃ is dx̃

dt = diag(λ1, . . . , λn)x̃
which is uncoupled and hence we obtain x̃1(t) = Aeλ1t, etc. We then write the general solution for x = Aeλ1tv1 + . . ..

Phase diagrams for coupled equations Draw in the eigenvectors through the origin (in both directions). Add arrows
towards the origin if the eigenvalue if negative, away from the origin if the eigenvalue is positive. Fill in the curves at the
side based on whether the origin is a stable point, unstable point or saddle point.

Definition: Stable manifold The stable manifold W s(0) of the origin is all those points lying on trajectories that
approach the origin as t→∞. For a stable node, it is the whole plane, for a saddle point, the eigenvector corresponding to
a negative eigenvalue and for an unstable node, just the origin.

Definition: Unstable manifold The unstable manifold Wu(0) of the origin is all the points lying on trajectories that
would approach the origin if the sense of time were reversed. For the stable node, it is just the origin, for a saddle point, only
the eigenvector corresponding to the positive eigenvalue (in both directions) and for the unstable node it is the whole plane.

Complex Eigenvalues and Eigenvectors Let A have eigenvectors η− = v1 − iv2 and η+ = v1 + iv2, and corre-

sponding eigenvalues λ± = ρ ± iω. Then A can be diagonalised using [v1v2] to obtain [v1v2]−1A[v1v2] =

(
ρ ω
−ω ρ

)
.

Hence we need to solve the simpler equation dx̃
dt =

(
ρ ω
−ω ρ

)
x̃. In polar coordinates with the vertical and horizontal

coordinates being x̃ and ỹ respectively, the solution to this simplified equation satisfies ṙ = ρr, θ̇ = −ω and hence we have
r(t) = r(0)eρt, θ(t) = θ(0)− ωt, which spiral around the origin with angular velocity −ω.

Definitions: Spirals in 2D systems If the real part of the complex eigenvalue is negative, the origin is stable and is
called a stable spiral. If the real part of the eigenvalues is positive, then the origin is an unstable spiral. If the eigenvalues
are purely imaginary, the orbits are circles centred at the origin and the origin is referred to as a centre.

Repeated Real Eigenvalue (Non-zero) We can only find one eigenvector v directly from the repeated eigenvalue λ.
Pick any vector v2 not in the same direction as v. Define v1 = (A−λI)v2, and the solution is x(t) = [Ateλt+Beλt]v1+Aeλtv2.
v1 will be in the same direction as the eigenvector v. Near the origin, trajectories will be parallel to the eigenvector. Far
away from the origin, trajectories will also be parallel to the eigenvector, but in the other direction. Hence trajectories have
to “turn around” and form an S-shaped improper node.

Homogeneous Difference Equations Given axn+2 + bxn+1 + cxn = 0, make the guess xn = kn to get the auxiliary
equation ak2 + bk + c = 0.
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• Case 1: Distinct real roots. General solution is xn = c1k
n
1 + c2k

n
2 .

• Case 2: Repeated roots. Find the first solution xn = kn. The second solution will be nkn. Then the general solution
will be c1k

n + c2nk
n.

• Case 3: Complex Roots. Write k = a± ib = re±iθ. Then the solution is xn = rn[c1 cosnθ + c2 sinnθ].

Non-homogeneous Difference Equations Given axn+2 + bxn+1 + cxn = fn, make the following guesses for the
particular solution:

• Polynomial in n. Guess a polynomial of the same order.

• Power fn = λn. If λ is not a solution of the auxiliary equation, try αλn. If λ is a non-repeated root of the auxiliary
equation, try αnλn. If λ is a repeated root, try αn2λn. Solve for α.

Non-linear first order difference equations: Fixed points A fixed point is a point x∗ such that f(x∗) = x∗.

Stable fixed points A fixed point is stable if for any ε > 0 there exists a δ > 0 such that |x0−x∗| < δ =⇒ |fn(x0)−x∗| <
ε for all n ≥ 1.

Attracting point A point is attracting if there is a δ > 0 such that |x0 − x∗| < δ =⇒ fn(x0)→ x∗ as n→∞.

Unstable fixed points A point is unstable if there exists ε > 0 such that for all δ > 0 we can find an x0 with |x0−x∗| < δ
but |fn(x0)− x∗| > ε for some n > 0.

Periodic orbits A periodic orbit of period k is a sequence of k values {x1, . . . , xk} such that f(xj) = xj+1 for
j = 1, 2, . . . , n− 1 and f(xn) = x1. Also we require f(xj) 6= x1 for j = 1, 2, . . . , n− 1.

Coupled Non-linear Equations: Stationary points Due to uniqueness of solutions, curves in the phase diagram
cannot cross each other. If two curves cross, that point must be a stationary point so that the curves do not actually pass
through it.

Linearization Calculate the Jacobian matrix, then substitute the coordinates of the stationary point to find the constant
coefficient matrix near each stationary point.

4


