Chapter 1

Week 1

1.1 Lecture 31 Mar 2014

1.1.1 Malb Review

Inner Product Define < z,y >=z -y = Z?:l z;y; € R.
Norm Define |[z|| = vz -z = />, 7.

Distance Define d(z,y) = ||z — y|| = />y (xi — yi)%.
Triangle inequality ||z + y|| < ||z|| + ||y]|

Cauchy-Schwartz ||z - y|| < ||z|| - ||y]|-

1.1.2 Topology of R”

Convergence Suppose we have a sequence of points x; € R™. We say the sequence of points converges to a x, x; — x
iff ||z; — z|| — 0 iff Ve > 0,3NVn > N, ||z, — z|| < e. Write this as lim; ,. 2; = . Hence it follows that |z;| < ||z|| and
[|z]| < v/nmax |z;|. Also, convergence of a sequence to a point is equivalent to pointwise convergence of the coordinates to
the coordinates of the limit.

Open ball Given a € R™, and r > 0, define B, (r) = {z : ||z — a|| < r} to be the open ball with center a and radius r.

Closed ball B,(r) ={z : ||z —a|| <7}
Sphere S,(r) ={z : ||z —a|| =1}

Open Rectangular Box Given vectors a = (a1, ...,a,) and b = (b1, ...,by,). Define the interval between a and b to be
(a,b) = (a1,b1) X ... X (an,b,) € R™. The closed box is just the same, but with closed intervals [a, b].

Interior Point Let S C R, a € S. a is an interior point of S if there exists > 0 such that B,(r) C S. Equivalently,
a is an interior point of S iff there is an open box B so that a € B and B C S. The set of all interior points of a set is the
interior of the set. Call this Int(S).

Open Set A set S C R"™ is open if every point of S is an interior point. Equivalently, S is the union of open balls/boxes.
By definition, the empty set is open. Also, the whole space R™ is open. Note also that (a, b] is not open. However, an open
set U € R™ is not open when viewed as a subset of a higher dimension space R™+1.

Exterior point A point ¢ € R” is in the exterior of S if a € Int(R™\S), if it is in the complement of S. Denote the
exterior of set S as Ext(S5).



Boundary Point A point a € R™ is at the boundary of S C R™ if Vr > 0, B,(r) has points in S and outside S. Denote
the set of all these points as 9S. Note that 95 = R™\(Int(S) U Ext(S5)).

Closed set A subset S is closed if it contains all its boundary points. Note that if S C R" is closed iff S C R™*! is
closed in R"*!. The following are equivalent (TFAE): (i) S is closed (ii) R™\S is open (iii) S is closed under limits: for
a, € S,a, >a = a€S.

Proof Assume S is closed. If a ¢ S, then there is a positive real number r > 0 such that B,(r) NS = ¢, so R™\S is
open. Hence (i) = (i7). Now let a € 9(.9), then a ¢ R™\S since the complement is open, so a € S. Hence (i1) = (). If
an € S and a,, — a, then a ¢ Ext(S). Hence (i) = (4i4). If a € 35, then for each n, there exists a,, € B,(1/n)N.S. Hence

Basic Facts about Open and Closed Set (i) If we have a collection of open sets, then their union is also open. (ii)
If there are finitely many open sets, then their intersection is also open. Note that if there are infinitely many sets, (ii) does
not apply. Consider the intervals (—1/n,1/n). THen the intersection of infinitely many such sets over the natural numbers
is just the zero element, and this is not open.
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De Morgan’s Law R™\ N; S; = U;(R™ — S;) and R™\ U; S; = N;(R™ — S;).
All finite sets are closed
Neither open nor closed The interval (0, 1] is neither open nor closed.

Closure The closure of a set S, S, is the union of the set and its boundary. S = S U d(S). Hence the closure of (0, 1]

includes zero, hence it is (0,1] = [0, 1]. The closure of an open ball is simply the closed ball. Can think of the closure as the
set including all the limits of convergence of the set. If S is a closed set, it equals its own closure.

Theorem from Mala Let S C R be closed and bounded. Then S has both a maximum point and a minimum point.

Proof Since S is bounded, let a be the greatest lower bound (inf) of S and let b be the least upper bound of S (sup).
We will show that a,b € S, so S contains the minimum and maximum. Consider a. Then for every € > 0, SN[a,a +¢€) # ¢
there has to be some elements € away from a, since a is the limit. Also, (a —€,a] N (R — S) # ¢, that is, there are also some
elements outside of S when you decrease a slightly.

Compact A set C C R™ is compact if for every arbitrary covering of C by open sets, C C Uy U Us,..., C is contained
within finitely many of them C' C U; U...UU,. Example: finite sets are compact. This is because every member of the
finite set is part of some set. Let m; be such that a; € U,,,. Let m = max(my,...,mg). Then {a1,...,ax} CUU...UU,,.
Another example: The closed ball is compact, but the open interval (0,1) is not compact. This is because I can see (0, 1) as
the infinite union of intervals (1/m,1 — 1/m) for m > 0. However, any finite subcovering will not contain (0, 1), since you
can always find elements in (0, 1) that are outside the finite collection of sets.

Bounded A set S C R"™ is bounded for some large r if S C By(r) for some open ball centered at the origin. Otherwise,
it is unbounded.

Heine-Borel Theorem A set C C R" is compact iff C is closed and bounded. Hence the closed ball/box is compact.

Proof = : Assume C is compact. Then C is contained within the infinite union of open balls By(1) U By(2)... = R".
By compactness, C is contained within finitely many of them, that is C C By(m), for some m, since all previous open balls
are contained within By(m). Hence C is bounded. To show that C is closed, we show that its complement R™ — C is open.
Pick some point a outside C. Let V,,, = R™\ B, (1/m), which is open. Also, V; C V,... and C C U,,V,,, since the intersection
of all the balls is the single point a. By compactness, C is containing in finitely many of those sets, hence it is contained in
Vi for some m (V;,, contains all the sets before it). So CNB,(1/m) = ¢ or B,(1/m) C R™\C. Hence we have found an open
ball centered at a that is disjoint with C. Hence the complement of C is open, and hence C is closed.

<+ It will suffice to prove that every closed box B = [a,b] = [a1,b1] X ... X [an,by] is compact. This is because if C is
closed and bounded, then C' C B for some closed box B. Let C' C Uy U U, ... with each U; open be a covering of C. Then
B C (R*"-C)UU,UUs,. .., since any point in B is either in C or not in C. If it is in C, it will be contained within the covering.



If it is not in C then it will be contained in R™ — C'. But R"™ — C is open. Hence for some m, BC (R" - C)UU; U...UU,,
soCCUyU...U,,.

Any closed interval is compact It will suffice to show that the unit interval in the real line is compact. Split this
interval into two subintervals of equal length. Call these Iy and I;. Repeat this process to obtain Iyg, Io1, [10, 111 Then
we have closed intervals indexed by binary numbers. Assume that I is contained within an infinite union of open sets U;.
Assume, to the contrary, that the interval cannot be contained within finitely many of the open sets. Say a binary sequence
S is bad if we cannot contain I by finitely many U;s. Hence if an interval is bad, and we split it into half, at least one of the
two halves is going to be bad. If S is bad, then one of SO or S1 is also bad. So we can find an infinite sequence of zeroes and
ones such that the binary number represented by that sequence corresponds to a bad interval. Then taking the intersection
of all these intervals with length going to zero, it will converge to a single point. Call this point x. Then x belongs to some
U;, since x was in the original interval, which was covered by the infinite union of U;. Since U; is open, there exists some
interval around x that is completely contained in U;. But that means that the interval obtained by repeated halving can be
contained within U;, which is an open set. But this means that the interval cannot be bad. Contradiction. This means that
the original interval cannot be bad. To do this in higher dimensions, we do this similarly. For example, in R?, we cut the
interval into 4 pieces instead. Hence in general, in R™, we cut the interval into 2™ subintervals.
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Topology of R™ 1. Convergence: Ve > 0,3N (€)s.t.¥n > N(e), ||z, — z|| < €.
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Notation Let f: D C R® — R™, with the domain D and range f(D) = {f(z) : « € D}. If m # 1, then we can write the
function in terms of its components f(z) = (fi(z),..., fm(z)), and define the scalar field f;(x) be the ith coordinate of f(z)
with f; : D CR™ —» R.

Limits Let a € R™ be such that Vr > 0, (By(r)\{a}) N D # ¢ so that there is some point in the domain arbitrarily close
to a. Note that we do not assume that a is part of the domain D. Let b € R™ such that lim,_,, f(x) = b. This means that
Ve > 0,36 > 0 such that whenever z € D and 0 < ||z —al| < d, then || f(z) —b|| < e. In terms of components lim,_,, f(x) = b
iff V1 <4 <m, lim,_,, fi(z) = b;, when b= (by,...,by).

Continuity Let a € D. Then f(a) is defined. We say that f is continuous at a if lim,_,, f(z) = f(a). Note that a cannot
be an isolated point of D. This means that there are points in the domain that are arbitrarily close to a. An isolated point a
is such that there exists an n-ball around it such that the points in the n-ball are not in the domain. But by convention, we
consider that f is continuous at any isolated point of the domain. Equivalently, f is continuous at a € D iff for any sequence
of points x,, € D such that x,, — a, we have that f(z,) converges to f(a). fis continuous at a iff each f; is continuous
at a also. fis continuous at A C D iff f is continuous at every point a € A. In particular, f is continuous iff it is continuous on D.

Continuity preserved under composition Let g: D CR" - R™ and f: E CR™ — R* and a € D, g(a) € E. Then
if g is continuous at a, and f is continuous at g(a), then the composition of the functions f o g(x) = f(g(z)) is continuous at
a. Prove by considering a sequence xz,, € D that approaches a. Then consider the sequence g(x,) and f(g(zy)).

Example: Projection Function Consider p; : R" — R, such that p;(z1,...,2z,) = ;. p; is continuous.

Example: Linear functions All linear functions are continuous. Note that T(z) — T'(a) = T(z — a) so it suffices to
check continuity at 0. Taken an element L = (Lq,...,L,) € R® or L = Lyey + ...+ Lye, where ¢; is the standard basis of
R™. We apply the linear transformation T'(L) = L1T(e1) + ...+ L,T(e,). If L — 0, then L; — 0, so T(L) — 0. Hence T is
continuous at zero, and by linearity, it is continuous at every point.

Example: Polynomials Addition and multiplication defined on R? — R are continuous, so by composition and the

continuity of projection functions, every polynomial P(xy,...,2,) = ck17,,,7knxlf1 e xﬁ" is continuous.

P(zlvuvxn)

Example: Rational functions Rational functions Oz

the denominator are not zero.

where P and Q) are continuous are continuous whenever



Equivalent formulation of continuity Let f : R™ — R™. Then f is continuous (at every point) iff for every open
U C R™, the preimage f~1(U) = {z € R", f(x) € U} is open relative to D. Equivalently, if U is closed, the preimage must
be closed relative to D for f to be continuous.

Proof (= ) If a € f~'(U), then f(a) € U, so e > 0 such that By, (e) € U. By continuity, 36 > 0 such that
f(Ba(8)) € Byay(€), s0 Ba(6) € fH(U). (+:) Let a € R™. Fix € > 0 in roder to find § > 0 such that f(B,(0)) C By (e).
Now Bj(q)(€) is open in R™, so by assumption the preimage of that set f_l(Bf(a) (€)) is open in R™ and contains a, so 3§ > 0
such that B, (8) C f~H( By (€) so f(Ba(0)) € Bya)(e).

Level Set and continuity L.(f) = {x € R": f(z) = ¢} = f~'({c}). If f is continuous, then L.(f) is closed.

Open Relative to Set Let D C R™. We say that A C D is open relative to D if for each element a € A there is r > 0
such that B,(r) N D C A. Equivalently, this means that A is open in D iff A = DN U where U is an open set in R".

Closed relative to set Similarly, define for A C D to be closed in D iff A is the intersection of D with a closed set in
R™.

Continuity and Compactness Let f : C C R™ — R™ be continuous and C compact. Then the image f(C) is compact.

Proof Let f(C) C UjU. .. be a subset of an infinite collection of open sets. Let f~1(U;) = CNW; with W; open in R™. This
follows because f is continuous. Then C' C Wy U.. ., so there is k such that C C Wi U...UWy so C C f~HU)U...Uf~H(Uy)
so f(C) CU;U...UUg. So f(C) is covered by a finite subcovering.

Theorem If f: C CR"™ — R™, with f continuous and C compact, then f has a minimum and maximum point in C, such
that 3zmin, Tmax € C such that Vo € C, f(xmin) < f(2) < f(@maz)- Note that f(C) is a compact subset of the reals, since f
is a scalar field. Hence we can immediately use the sup and inf of a set of real values.
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Review of 1 variable differentiation Let f : D C R — R,a € Int(D) Then define A = limy,_,o =1 when the limit

flath)—f(a)=Ah
h

exists. Rewrite this as limj,_.q = 0. This is the same as when the absolute values go to zero.

Multivariable differentiation Now let f : D C R™ — R™. Then let A be a linear function such that Ah is a good
approximation of f(a + h) — f(a).

Differentiability A function f : D C R™ — R™ is differentiable at a point a € Int(D) with derivative L : R” — R™

which is a linear transformation, if limy,_,g Hf(a+h)ﬂh‘(‘a)7L(h)” = (0. This is defined because if h is small enough, it will be

within the open ball at a. If the derivative of { at a exists, we call it the total derivative, and denote it by f/(a) or T, f.
Uniqueness of total derivative Such an L, if it exists, is unique.

Properties of the total derivative f(a + h) = f(a) + f'(a)(h) + ||h||E(a, h), where E(a,h) can be thought of as the
error of the approximation. F(a,h) € R™.

Directional Derivative Define the directional derivative for f : D C R™ — R™,a € Int(D),u # 0, ||u]| = 1,u € R"

flativ)—f(a)
t

to be f'(a,u) = lim;_,o € R™ if it exists. For a vector-valued function, f’(a,u) exists iff f!(a,u) exists for all

t=1,...,m.

Partial Derivative The ith partial derivative of f, f'(a, ei),% or D, f(a), is the directional derivative with u being the
ith unit vector. For a vector valued function, we can write this as D, f(a) = (D;fi(a),..., D;fm(a)).

Proposition If { is differentaible at a, then all its directional derivatives exist, and the directional derivative f’(a,u) is
obtained from the total derivative operating on w: f’(a,u) = f'(a)(u).

Proof Let L satisfy the definition of the total derivative. Then for every ¢ € R, if h = tu, then ||f(“+t“)‘;|ﬁf;|ll)_L(t")|| —0

as t — 0. Since L(tu) = tL(u) since L is a linear transformation, for ¢ > 0, we can multiply by ||lu|| # 0 to get
w — L(u) - 0 ast — 0. For t < 0, we multiply by —[|u|]| # 0 so that w — L(u) - 0ast — 0.
Hence f'(a,u) = L(u).

Computing the total derivative Since the total derivative is a linear transformation from R™ to R™, it will be an
m X n matrix in matrix form. Choose the standard basis (ey, ..., e,) for R™ and (di,...,d,,) for R™. We simply evaluate the
derivative at the standard basis vectors. Let v = 7| aje; € R™. Then f'(a)(v) = f'(a) X271, aje; = 3300 o f'(a)(e;) =

>y aj%(a) =y gg’i (a)d;. We can reverse the order of summation to get f'(a)(v) = >, 37", o g:{’ﬂ (a)d;.
J J J

Hence (f'(a))i; = gi; (a). Call this the Jacobian matrix, D f(a).
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Special cases for the total derivative: Scalar Field Let f: D C R™ — R. Then the Jacobian matrix is a 1 x n matrix
containing the list of partial derivatives of f. This is a row vector in R™, hence it can be viewed as an element in R™. This
is called the gradient of f. Note that we can write the operation of the linear operator on an arbitrary vector v as an inner



product: f'(a,u) = f'(a)(u) = Vf(a)-u. Note further that Vf-u = ||V f|| cosf if u is a unit vector. Hence V f points in the
direction of maximum rate of increase increase of f, and this maximum value is ||V f||.

Special case: n=1 Consider f : D C R — R™. Hence we can view f(¢) as the position of a moving particle at time
t € R. Then f/(t) is an m x 1 column vector with the entries as the derivatives of each component of f. This can be viewed
as a vector in R™, which is the velocity vector. When this is non-zero, this vector is the tangent line to the parametrized
curve f(t) at t.

Proposition Let f € D CR"™ — R™, a € Int(D). If { is dfferentiable at a, then f is continuous at a.

Proof Let L be the derivative of f. Then for a h # 0, then f(a + h) — f(a) = IIhll(f(a+7|)h_“f(a)_L(h) + L(h). But by

the definition of the derivative, the W — 0as h — 0. Also, L(h) — 0 as h — 0 also, since L is a linear

transformation. Hence limp, o f(a + h) — f(a) = 0, and the function is continuous at a.

Theorem Let f: D CR™ — R™, a € Int(D), and let € > 0 be such that B,(¢) C D. Let all the partial derivatives of f
exist in B,(e) and are continuous at a. Then f/(a) exists.

Definition: Continuously Differentiable Let f : D C R — R™, with D open. f is continuously differentiable or C! if
all the partial derivatives exist in D and are continuous in D. Hence the total derivative exists at each point in D. Note that
even in 1-dimension, even if f is differentiable, f does not need to be O, since the derivatives can be discontinuous.

Higher order partial derivatives Consider f : D C R™ — R™, with D open, and assume all partial derivatives of f
exist in D. Then we can form the partial derivatives of the partial derivatives.
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Theorem Let f: D CR™ — R™ and a € Int(D). Suppose all the partial derivatives of f exists at a and are continuous at
a. Then the total derivative of f at a exists.

Proof Let a = (ay,...,a,). Also consider a vector u = (uy, ..., u,). Then consider the linear map L;(u) = Z?Zl ui%(a)
(which is actually the ith row vector of u multiplied by the Jacobian of f at a). Now write f(a+u) — f(a) =Y ¢;(a; +u;) —
¢j(a;), where ¢;(t) = f(ar + ui,a—1 + uj—1,t,aj41,...,a,). So ¢;(t) includes only the first few components of u. So in

fact we are building up f(a + u) from f(a) in terms of component by component in u. Each element in the sum is basically
moving in one particular standard unit vector direction. Hence we can apply the mean value theorem on each element in the
sum. In effect, we are saying:

f(a+u)_f(a):f(a'1 +U1,a2—|—uQ,...,an—|—un)—f(a1,a2,...,an)
(a/l +ulaa/2a-"7a“n)_f(a17a’27"'?a/n)

f
flar +ui, a0 + ua, ... a,) — flar +ur,ag,...,a,)

- -

+ flar +ur, a0 + ugy ..., Q1 F Up—1, G + Uy) — fla1 + w1, a2 + Uz, ..., Qp—1 + Up—_1,0n)

Argh just refer to Apostol for the proof.
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Clairaut’s Theorem Let f: D CR"™ — R™, ¢ € Int(D), and € > 0 such that B.(e) C D. Let 1 <4,j < n. If all the partial
derivatives D; f, D; f and the mixed derivatives D;; f, D;; f exist in B.(e) and the mixed derivatives are continuous at ¢, then
the mixed derivatives are the same at the point c.

Proof We can assume n = 2, where we fix the values of all other variables, and only allow x; and z; to vary. We can
also assume that m = 1, since we can treat f in terms of its coordinates, which are scalar functions. Hence we consider the
function f : D C R? - R, ¢ = (a,b) € D, and € > 0 such that B.(¢) C D. Now take h,k > 0 sufficiently small such that
we can form a rectangle in 2-space with coordinates (a,b), (a + h,b), (a,b+ k), (a + h,b + k) such that all the points in the
rectangle are contained within B.(e). Define the difference A(h,k) = f(a + h,b+ k) — f(a + h,b) + f(a,b) — f(a,b+ k).



Rewriting this, A(h,k) = [f(a + h,b+ k) — f(a + h,b)] — [f(a,b+ k) — f(a,b)]. Choose a point x € [a,a + h]. Con-
sider the difference G(z) = f(z,b + k) — f(x,b) as a function of one variable. Then A(h,k) = G(a + h) — G(a). We

examine G'(x) = %(x,b + k) — %(a,b). Now we can apply the mean value theorem to obtain that there exists some

point 1 € (a,a + h) such that G(a + h) — G(a) = G'(z1)h. Hence A(h,k) = h[%(ml,b + k) — %(Jcl,b)]. Now consider
the function G1(y) = %(wl,y). Hence we can write A(h,k) = h[G1(b+ k) — G1(b)]. Using the mean value theorem

one more time, A(h, k) = h[kG}(y1)] = hkaizgz (1,y1) for some y; € (b,b+ k). Hence, A(h, k) = hk%(xhyl) for some

(z1,y1) € (a,a+h)x(b,b+k). Now we notice that we can exchange the roles of x and y to obtain that A(h, k) = hk% (x2,Y2)

for some (z3,y2) € (a,a+h)x(b,b+k). Notice this provides the two-dimensional mean value theorem. Hence, we can compare

2 2
the equations for A(h, k), cancel out hk since it is a positive non-zero number, to obtain that aam—afy(xg, Yya) = %(m, Y1)-
Now we can take the limit as (h,k) — 0. Then (z1,y1) — (a,b) = ¢ and (z2,y2) — (a,b) = ¢ also. Since the mixed partial
derivatives are continuous at ¢, we have that the mixed partial derviatives are also equal at c.

Review: Mean value theorem For F continuous in [a,a +1],] > 0, and F’ exists in (a,a +1), then F(a+1) — F(a) =
F'(y) -1 for some y € (a,a +1).

Notation If f : D C R™ — R™ with D open, we say that f is in C? if all the first and second order partial derivatives
exist in D and are continuous in D. If a function is C?, then the mixed derivatives are equal. Similarly, we can define partial
derivatives of order larger than 2, and we define a function to be in C*, k > 1 if all the 1st to kth order partial derivatives
exist in D and are continuous in D. Then after repeated application of Clairauts Theorem, we have that if f is in C*, then
all the mixed partial derivatives of order less than order equal to k are equal provided they contain the same variables with
the same multiplicity (since a single variable may occur more than once). Hence the order of differentiation does not matter
for these functions (up to kth order derivatives). If f has continuous derivatives of any order, then we say that f is in C*° or
smooth.
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1D Chain Rule Given a function h(x) = f(g(z)),h = fog. Then h'(a) = f'(g(a))g’(a) in one-dimension.

Multivariable chain rule Consider the function f: D C R® — R™, g: E C R¥ — R™. Assume that a € Int(F) and
g(a) € Int(D), and assume that ¢'(a) and f’g(a)) exist. Then the derivative of the composition h = f o g exists and is equal
to h'(a) = f'(g9(a)) o ¢’(a). In terms of Jacobian matrices, Dh(a) = Df(g(a)) - Dg(a).

Special Case 1 f : DR® — R is a scalar field. Write f(y1,...,%n). Also assume g : E C RF — R™. Write
g(x1,...,2k), which are actually n scalar functions. Then g corresponds to a change of variables y; = ¢;(z1,...,2zx). Given
h=fo g7 ( 1, xR) = f(gl(xl, .. ;vk) oy gn(z1, ... 2,)) and h: E C R¥ — R. Then, after multiplying the Jacobians,
83;2 = ng e + —|— (a) and % is evaluated at a.

Oyn Oz

Polar Coordinates Consider the function f : R? — R, which we can write as f(z,y). Now consider the function
: R? — R? with g(r,0) = (rcosf,rsinf). Consider the composition h = f o g, h(r,0) = f(rcos@,rsinf). Then
ﬂ 9/ 9z 4 919y and similarly for 6.
or — 9z or T 9y or Y
Special Case 2 Consider f: DR R, g: ECR —-R" Then h=fog: ECR — R. Then A(t) = f(g1(t), ..., gn(t)).

Applying the chain rule, h/(t) = %% +... if 69". But each gy is a single valued function. Hence we can write this as

the derivative. 4 = (Vf) - ¢/(t), with V f evaluated at g(t).

Definition: Path and Curve A path, or parametrized curve is a continuous map « : I — R" from an interval I in R.
Note that I can be closed or open. The range of the curve «([) is the set of all points in R™ associated with the interval is
the curve. For example, consider the unit circle. Then I = [0, 27], and the path is «(t) = (cost,sint). The curve is the unit
circle. Note that the same curve can be parametrized by different paths. For instance 8(T') = (cos2t,sin2t) is a different
path that traces out the same curve.

Examples The cycloid is defined by the path «(t) = (¢t —sint, 1 —cost),t > 0. It is the path that a point on a unit circle
traces as the circle rolls.

Examples The helix in R? is defined by the path a(t) = (cost,sint,t).

Compactness Note that if the interval I is closed and bounded, then it is compact. Hence the image of I, a([), is also
compact. However, if I is an open interval, then the image can be unbounded.

Velocity If o/(tg) exists at some point ¢y, we call it the velocity or tangent vector of a at tg. If o/(tg) # 0, then the
1-dimensional space Aa/(tp), A € R is the tangent space of a at to. The line a(tp) + A/ (tp) is the tangent line at ¢y. Also,
for small h, a(ty + h) = a(ty) + ha/(tg).

Tangent Space to Level Sets Take a scalar field f: D C R™ — R, ¢ € R. Then the level set of f at ¢ is L.(f) = {z €
D : f(z) = c}. Note that if f is continuous, then the level set L.(f) is a closed set of R™.
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Proposition Given f : D € R™ — R, with D open. Consider a point ¢ € R. Let a € L.(f) such that f(a) = ¢. Now consider
a path a : I — R™ which is differentiable and let ¢y € Int(I) be such that a(tg) = a and a(I) C L.(f). Then if the gradient
of the function V f(a) exists, then it is orthogonal to the tangent of the path at this point: o' (tg). That is, V f(a)-a/(t) = 0.
Note that this is applicable for any path that passes through a, and is completely contained in L.(f).

Proof Take any point ¢ € Int(I). Then f(a(t)) = ¢, since «(t) is on the level curve. Note ¢ is a constant. Now we
differentiate both sides with respect to t. Then we obtain @ =0=Vf(a)- ' (ty) by the chain rule.

Definition: Affine tangent space If o € L.(f) and Vf(a) = f'(a) # 0, we call {x € R" : Vf(a) -z = 0} the tangent
space of L.(f) at a point a. We call the affine space {x € R" : Vf(a) - (x — a) = 0} the affine tangent space attached to a.
This is the translated subspace. Note that if we take any differentiable path passing through a, then the tangent at a lies in
the tangent space. Equivalently, for every vector in the tangent space, there is a path such that its tangent at a is the vector
in the tangent space.

Example: 3D Suppose we have a function f : R® — R, then the tangent plane attached to a € L.(f) is defined by
Vf(a)-(z—a) =0, assuming D f(a) # 0. Writing this out in components, g—i(a)(x —a1)+ %(a)(y —ag)+ %(a)(z —a3) =0.

Remark Consider a function g : R? — R. The graph of this function is a surface in 3 dimensions: {(x,y,2) : 2 = g(z,y)}.
But this a level set in R? : Lo(f), where f(z,y,2) = z — g(z,v).

Taylor’s Theorem for Scalar Fields Recall Taylor’s Theorem in 1 variable: f(a + h) = f(a) + >, 1 a)hk +

m)
Mhm. f is defined in some open interval contained in [a,a + h], and has continuous derivatives up to order m, and
U E [a,a + h]. Now consider the scalar field version: Consider the function f : D C R™ — R, D open, a € D where
a is a point at Which all the derivatives below exist. Define for any h = (hl, ooy hy) € R with f/(a,h) = f'(a)(h) =

Vi) -h=>31", 396 L (a)h;. The second order is f’(a,h) =Y ZJ 1 396 d:c (a)h;hj. Similarly, we define the third deriva-

tive to be f"(a,h) = Y27 301 Y p, 5o m 8“( a)h;hjh,. Now by the definition of the total derivative, we have that

fla+h) = f(a)+ f'(a,h) + ||h]| - E1(a,h), where Ey(a,h) is an error that goes to zero when ||h|| — 0. Taylor’s theorem
gives us the higher order approximations.

Taylor’s Theorem Let f : D C R* — R, D open and a € D, with A € R" such that the line connecting a
and a-+h is contained in D: [a,a + h] C D. Also assume that f is in C™. Then there exists v € [a,a + h] such that

me1 f) (g (m) (o,
fla+h) = f(a)d = 11f ( k) S W(L!’h)'

Proof (Sketch) Define the function of one variable g(t), which is g(t) = f(a + th). Then this function is defined on
some open interval that contains the interval [0,1]. By Taylor’s Theorem for the one-variable function f, we have that
g(1) = fla+h) = g(0) + 7 g )(0 + (M),(g), where 6 € [0,1]. Note that we omit the 1* in the Taylor expansion. We
examine the derlvatlves of g: g ( ) = f'(a+ th)( ) = Vf(a+h)-h by the chain rule. Writing this explicitly, we have that

g () = Z;L 1 81 (a + th)h Evaluating this at ¢ = 0, we have that ¢'(0) = f’(a h). For the second derivative, we apply the

chain rule to each 1nstead of f. Then we obtain ¢”(t) = ZJ Dy (% ax (a4 th)h;h;. Then evaluate at zero to obtain
f"(a,h).

Corollary f(a+ h) = f(a) + > 1y 1 )(a h oy [|RI|™ - Em(a, h), where E,,(a,h) — 0 as h — 0 is the error associated

with the approximation. We obtain E,,(a, h) from the Taylor Formula by adding and subtracting M We note that

E(a, h) goes to zero, since £ is continuous at a.

3.3 Lecture 18 Apr 2014

Extrema of functions A function f : D C R" — R. We say f has a local maximum at ¢ € D if 9r > 0 such that
x € Be(r)N D = f(z) < f(a). Define the local minimum similarly. f has an absolute/global maximum at some a € D if
f(@) < f(a),Vx € D. Define the notion of the absolute/global minimum similarly. Suppose the function is continuous and
defined on some compact set. Then there will be an absolute minimum and an absolute maximum.

Theorem Consider the function f : D C R” — R, D open, and let a € D be a local extremum (either maximum or
minimum). Then if the function is differentiable (i.e. total derivative exists) at this point, it has to be zero. Le. the gradient



is zero, so all the partial derviatives at this point vanish.

Proof Consider ¢g(t) = f(a + th),t € (—1,1), and h small. Then g has a local extremum at the point ¢ = 0, i.e. at
g(0) = f(a). Hence we know by 1 variable calculus that the derivative there will be zero. But we realize that ¢’(0) is the
directional derivative of f at a in the direction h. But h is arbitrary, and f’(a) is a linear function, hence we can multiply h
by any scalar to obtain that the total derivative has to be zero to ensure that all directional derivatives vanish.

Definition Consider f : D C R" — R, a € Int(D). a is called a stationary or critical point if the total derivative
f/(a) = 0 at that point. Note that all local extremum are critical points.

Saddle point If f/(a) =0 but a is not a local extremum, then a is called a saddle point.

Hessian Test Aka second derivative test. Examine this for f : D C R? = R, D open, f is in C?. Let a € D be a critical

point. Let A = g;j,B = aifgy,c 8 f Define A = AC — B?, the determinant of the Hessian matrix < g g > (1) If

A < 0, then a is a saddle point. (2) If A >0 and A > 0, then a is a local minimum. (3) If A > 0 and A < 0, then a is a
local maximum. (4) If A =0, then the test is inconclusive.

Hessian Test in n-variables Write the Taylor formula to second order for f in C?, f : D C R® — R,a € Int(D).
fla+h)= f(a)+ f(a)h+5>7 ij=1 8z78x,( a)hihj+||h||>E2(a, h). At a critical point f’(a) = 0. Hence, when h is sufficiently

small, the second term would determine the sign of f(a + h) — f(a). We form the Hessian matrix (82““))%:1. Note that

ZTiTj

since f is in C?, the mixed partials are equal, and the Hessian matrix is symmetric. Then (1) if all its eigenvalues of H(a)
are strictly positive, f has a relative minimum at a (2) if all its eigenvalues of Hy(a) are strictly negative, f has a relative
maximum at a (3) if it has some positive and some negative eigenvalues, then f is a saddle point at a. (4) If some eigenvalues
are zero, we cannot tell.

About symmetric matrices Suppose A is a real symmetric n x n matrix. Then we associate with A the quadratic
form Q4 : R" — R, a function of n variables. So for h = (h1,...,h,) € R", Qa(h) = >_, ; a;jh;h;. The quadratic form
coresponding to the matrix A is called positive definite of Q4(h) > 0if b # 0. Q4(0) = 0 obviously. Slmllarly, Q@ 4 is negative
definite of Q4 < 0 if h # 0.

Proposition: Symmetric matrices If Q4 is positive definite, then there is a positive number M > 0 such that
Qa(h) > M]||h||? for every h.

Proof of proposition Multiply h by A. Then, by inspection of the quadratic form Qa(Ah) = A\2Q4(h). Hence we can
re-write (for h # 0), Pick A = 1/||h||. Hence Qa(h/||h|]) = Qa(h)/||h||?>. But h/||h|| are the points on the unit sphere.
Hence it suffices to find an M such that when x is on the unit sphere, then Q4(z) < M. But the unit sphere is a compact
set. Hence by compactness, such an M exists. Then the proposition follows.

Criterion for positive definiteness Let A = (a;;) be a symmetric n x n real matix. Then Q4 is positive definite iff

all its eigenvalues are strictly positive. It is negative definite if all its eigenvalues are negative. Recall that a symmetric real
matrix has real eigenvalues.
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Diagonalizing the Hessian Note that if A is diagonal, then the entries along the diagonal are the eigenvalues, and the
quadratic form associated with it is Qa(h) = Ath? + ...+ A\,h2. So the only way for Q4 (h) > 0 for all h is for A; ...\, > 0.

Proof of Hessian Test in n-variables We prove (1), that f has a relative minimum at a if all the eigenvalues of the
Hessian are strictly positive. (2) follows from (1) by multiplying the function by -1. We consider the Taylor formula for
fla+h)= f(a)+ f'(a)h + %szzl %(a)hihlj + ||h||?E2(a, h). We note that the second derivative term in the Taylor
formula is %Q(a), where @(a) is the quadratic form corresponding to the Hessian at a. Taking into account that f'(a) = 0
since a is a critical point, we rewrite the Taylor expansion as: f(a+h)— f(a) = 1Q(a) +||h||* E2(a, h). We need to show that
f(a+h)— f(a) is dominated by $Q(a). We assume that the eigenvalues of H(a) are positive. Hence there is M > 0 such that
Q(h) > M||R||?. Hence we need to find § > 0 such that if 0 < [|h|| < &, then Es(a, h) < M/4. Hence ||h|[*E2(a, h) < 2||h||>.
Hence we have 3Q(h) > &||h|[2, so f(a+ h) — f(a) > 0 if h is small enough. Hence f has a local minimum at a.

Proof for 2 dimensions Define A, B and C as per theorem 9.7. We note that the Hessian eigenvalues A1, Ay satisfy
A+ A=A+ C, A\ = A. Note that if A < 0, then A1, Ay have the opposite signs, and a is a saddle point. If A > 0,
then Aq, A2 have the same sign. Also, AC > B2, so A, C have the same sign. If A > 0, then A+ C > 050 A\; + Ay > 0, so
A1, A2 > 0, so we have a local minimum at a. Repeat for A < 0 for local maximum.

Alternative criteria for positive definiteness Consider the corner matrices (square matrices including the top left
hand corner). Then the matrix is positive definite if all the determnants are greater than 0. The matrix is negative definite
if the determinants alternate between strictly negative and strictly positive.

Constraint-extrema and Lagrange Multipliers General problem: given f : D € R®™ — R, D open, and constraints
Gis---s9m D CR7PR,m < n. Call theset S ={z € D :¢gi(x) =0,...,9m(z) = 0}. A point a € S is a relative/local
maximum of f at S if f(a) > f(z) for all x € SN B,(r) for some r > 0. Define a local minimum similarly.

Method of Lagrange Multipliers Consider the general problem described above. Let f,g1,...,gn bein C'. Let g € S
be such that Vg1 (xo), ..., Vgm(zo) are (always) linearly independent. Then if z( is a local extremum of f in S, then V f(zo) is
a linear combination of Vg1 (o) ... Vgm(zo). That is, there are A1, ..., Ay, such that V f(zg) = AMVg1(zo)+. ..+ A Vam(xo).
Note that if m = 1, then we just require that Vg(zo) # 0 for linear independence.

Proposition If non-empty F' C R"” is closed and xy € R™, then there is a point in F closest to xg.

4.2 Lecture 23 Apr 2014

Sketch of proof We consider a differentiable path passing through zg € S that is entirely contained in S. Let this path be
a : I — S differentiable with a(0) = z¢. Consider the function h(t) = f(«(t)) so that h(0) = f(xg). Then zy will also be a
local extremum of h(t). By 1 variable calculus, this means that the derivative will be zero at xy. By the chain rule, we obtain
that A/ (t) = V f(zo) - &/(0), so Vf(zg) L o/(0). Now since the path lies on S, it must satisfy the constraints g;(a(t)) = 0.
Differentiating this and using the chain rule, we obtain that Vg;(x¢) - o/(0) = 0. Hence we have that Vgi(zo) L o/(0).
Combining this with other constraint conditions, we have that o/(0) L< Vgi(xg), ..., Vgm(xo) >, the subspace spanned by
the m gradient vectors. It remains to show that any vector orthogonal to the subspace is a velocity vector o/(0) for some path
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a. (Need advanced calculus for this. This is true by the implicit function theorem.) Then V f(x) will be orthogonal to any
vector orthogonal to the subspace < Vgi(xo), ..., Vgm(zo) >. Hence V f(x¢) is in the subspace, and is a linear combination
of the vectors spanning the subspace.

Implicit function theorem Suppose a function has continuous partial derivatives. Assume that the gradient is non-zero
at (ao, b, o). This means that at least one of the partial derivatives is not zero. WLOG, assume that the partial derivaitve
with respect to z is non-zero. Then around (z,y) = (ag, bo), g(z,y, 2) = 0 is exactly the graph of a C'! function h(x,y) where
h(ao, bo) = Cp-

Riemann integration Consider a closed n-dimensional box B = [a,b] = [a1,b1] X ... X [an,ny] € R™. The volume of the
box is defined to be the product []"_;(b; — a;). The regular partition of the box consists of subdividing each side [a;, b;], to
form the sequence a; = zf < 2} <... <zl <b; =i, and considering the boxes [[}, [z} ,x} ,,]. Write P = {S;}%_, for
such a partition. A refinement of the partition P is such that the boxes in P are entirely contained in the refinement. Note
that any two partitions P;, P, have a common refinement P. Assume we have a scalar function f : B — R that is bounded.
Take the partition P = {5} }?:1 to be a partition of B. For each box, take the supermum f; = sup f(S;) and a; = inf f(5;).
Define the upper sum U(f, P) = Z?Zl vol(S;)p; and the lower sum L(f, P) = Zle vol(S;)a;. Note that L(f, P) < U(f, P).
If P’ is a refinement of P, then L(f, P) < L(f,P’) <U(f,P") < U(f, P). Note that if & = sup f(B) and 8 = inf f(B), then
the upper and lower integrals are bounded below by vol(B)a and bounded above by vol(B)S. Define the lower integral to be
I(f) = supp L(f, P) and upper integral I(f) = infp U(f, P). Notet that I(f) < I(f). A function is integrable if I(f) = I(f).
Equivalently, this means that given € > 0, there is P such that U(f, P) — L(f, P) < e. If the integral exists, we write fB fto
be the integral of the function f over B.

4.3 Lecture 25 Apr 2014

Step function f is a step function in B if f is bounded and there is a partition P = {P; }§:1 such that f is constant with

some value c¢; on P;. Then f is integrable and the value of this integral is Z?Zl c;vol(Pj). Note that we do not care what
happens on the boundary of each sub-partition.

Proof We create a refinement of the partition P by introducing divisions arbitrarily near the boundaries of each earlier
partition. We then prove that for all € > 0 we can form a refinement of the given partition P. such that U(f, P.) and L(f, P.)
are within € of the sum Z§:1 ¢;vol(P;). Hence this discrete sum must be the common value of the lower and upper integrals.

Theorem Let f be continuous on B. Then f is integrable. That is, any continuous function is integrable.

Proof This proof is based on Uniform Continuity aka Small Span Theorem. Take any e and find the § using uniform
continuity. 777

Uniform Continuity /Small Span Theorem If f : D C R"® — RF is continuous and its domain D is compact, then f
is uniformly continuous: Ve > 0,36 > 0 such that Va,y € D, ||z —y|| < I = ||f(z) — f(¥)|| <e.

Proof We fix ¢ > 0. We want to find a § > 0 that works for every set of points z,y € D. By continuity, given x € D,
there is 7, > 0 such that y € B, (z) = ||f(y) — f(#)]| < ¢/2. Hence if y, z € By, (z) then f(y) — f(2)|| <e. Call s, = 37.
Then D is covered by union of open balls U{B,.(s;) : € D}, so by compactness, it is contained in finitely many of them, say
m many. We pick ¢ to be the minimum of s, in the finitely many sets. Hence if z,y € D and if ||z — y|| < J, then for some
i, ||z — ai]| < sz, for some 1 <i <m. So ||y — ;|| < 28z, = 1y, by the triangular inequality. Hence both z,y € B, (z;) so
1f (@) = fWll <e.

Definition: Content zero A bounded set A C R"™ has content 0 if for every positive €, there are closed boxes Q1, ... Qm
such that A is contained in the union of the boxes, and the total volume of the boxes vol(Q1,) + ...+ vol(Qm) < €. Obser-
vation: If A has content zero and B C A, then B also has content zero. Also, if we have finitely many sets with content zero,
their union also has content zero. This is because we can cover each with set with boxes with total volume smaller than €/n,
if there are n such sets, and the total volume will be less than e. Also note that if we have a path ¢ : B — R, where B C R"
is a closed box and ¢ is continuous, then the graph of ¢ is a set in R"*1, graph(¢) = {(z1,...,2n,y) € R 1 (21,...,2,) €
B, ¢(x1,...,2,) = y}. Then the graph of ¢ has content zero. Also, if A has content zero, so does its closure. Prove this by
ACQU...UQy = ACQU...UQn=0Q1U...UQ, = Q1U...UQ,,. Note that even though the real interval [0, 1]
does not have content zero in the real line, it has content zero if considered in R2, since it is just a straight line and can be
covered by rectangles that are arbitrarily small.

Theorem If f : B — R is bounded, and B C R", and f is continuous except at every point in the set of content zero (i.e.
the set of discontinuities has content zero), then f is integrable.
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Definition: Jordan Measureable A bounded set A C R™ is Jordan measureable (hence is continuous) if 9(A) has
content zero. Let f : A — R be a bounded function which is continuous in the interior of a Jordan measureable set. Then
we can define the integral of f by considering the integral of another function i) = f, where B is a closed box containing A
(which is possible since A is bounded), and where f extends f to B such that f(x) =0if x € B,z ¢ A. Now we note that f
is continuous in A and outside A (but in B), but is not continuous along the boundary. But the set of boundary points has
content zero, hence f is integrable. Note that we can choose any such B, since the values outside A does not contribute to
the overall value of the integral.

Definition: Volume of a Jordan Measureable set If A is Jordan measureable, define vol(A) = fA 1.

Fubini’s theorem Consider n = 2 first. Let { be a bounded, integrable function defined on a box B = [a1,b1] X [az, ba].
Let A(z) = fabj f(z,y)dy,z € [a1,b1] exist as an integral of one variable. Assume A(x) is integrable on [ay,b;]. Then

IS5 flz,y)dzdy = f:ll {ffj f(z, y)dy} dz. Note that we can switch the order of integration too.
Fubini’s theorem for continuous functions If f : B C R” — R is continuous, then A(z) exists and is integrable. We
note that f(B) is automatically bounded since B is a closed box and f is continuous. We can hence use the iterated integral

form for the double integral. Note that if a function is integrable, it does not necessarily mean it is continuous. It can be
discontinuous on a set of content zero.

Fubini’s theorem for n dimensions If { is continuous on B = [a1,b1] X ... X [an, by, then we can consider the integral
of f over B using the iterated integrals in each dimension. Note that the order of integration does not matter.
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Chapter 5

Week 5

5.1 Lecture 28 Apr 2014

Alternative formulation of uniform continuity Consider f : D C R™ — R, consider a subset of its domain S C D.
Let f on D be bounded. Hence there exists the sup and inf g = sup f(5),« = inf f(5), with @ < 8. Define the span or
oscillation of f on S to be osc(f,S) = f — a. The diameter of S is diam(S) = sup{||z — u|| : =,y € S}. To say that f is
uniformly continuous on S is to say that Ve > 0,36 > 0 so that for any subset S € D, if diam(S) < 4, then osc(f,S) <e. If
f is continuous and D is compact, then f is uniformly continuous on D.

Theorem If B C R" is a box and f : B — R is continuous, then f is integrable.

Proof f is uniformly continuous on B, since the closed bx is bounded and closed, hence it is a compact set. Fix ¢ > 0 and
let § > 0 be such that ||z —y|| < ¢ then |f(z) — f(y)| < € for z,y € B. Now we need to find a fine enough partition such that
the difference between the upper and lower sums is less than e. Let P = {P; }gf be a partition of the box B such that the
diam(P;) < 0. Then the oscillation of the function on each box osc(f, P;) < e. Call B; = sup f(P;) and a; = inf f(P;), then
the difference between the upper and lower sum if by definition }.(8; — a;)vol(P;) = >, osc(f, iJvol(P;) < € x vol(B)
Now the volume of B is a fixed number, and epsilon is arbitrary, hence we can make the difference arbltrarlly small too.

Stronger version of theorem We do not require that the function is continuous everywhere on the closed box. Let
B C R™ be a closed box, f : B — R be bounded and continuous except at a set of points with content zero. Then f is
integrable on B.

Sketch of Proof Enclose the discontinuous points in a collection of rectangles in a partition. Now in the other rectan-
gles, the function is continuous, and hence is uniformly continuous on those rectangles. Hence we can find a finer partition
for the continuous rectangles to find that its oscillation can be made arbitrarily small. Now we can make the collection of
discontinuous rectangles have arbitrarily small volume.

Even stronger theorem We can characterize which functions are integrable on a box. A set is call null if it can be
covered by an infinite sequence of rectangles of content zero. If a function has discontinuities that is Lebesque null, then it
is integrable.

Graph of continuous functions Let ¢ : B = [a,0] C R®™ — R be continuous. Then the graph of this function
graph(¢) C R™+! has content zero.

Proof Consider n = 1 for simplicity. Choose an e > 0. Partition the interval [a,b] into {P;}¥_, small enough such
that on P; the oscillation of ¢ < e. This is possible by uniform continuity. Hence, we can enclose the graph of that small
subpartltlon in a box Bj of volume vol(P;)-e. Hence the whole graph of ¢ is contained in finitely many boxes of total volume

< Z] L Vol(Pj)e =€ - vol(B). Hence we can make this volume arbitrarily small.

Fubini’s theorem proof (refer to previous day’s notes) Partition [a1,b1] into {S;}72, and [ag,bs] into {T}}_;.
This gives a partition P = {S; x T} of B. Now we define the step functions s,t : B — R by s = inf(f(S; x T})) on
Int(S x Ty), and ¢ to be the supremum of the same. We note that s < f < t. Define the lower sum of f on P to be
L(f,P) = [5s, and the upper sum if U(f,P) = [zt. It is easy to check that the Fubini theorem holds for finite step

functlons. doi<j<mi<k<n Gk = D1<i<m (Zlgkgn ajk). Hence we have that s(z) = f s(z,y)dy < fa flz,y)dy = A(z) <
f;: t(z,y)dy = t(x). Hence [[,s = ffll [f:; s(x,y)dyldr < f be f(x,y)dyldz < f f (z,y)dyldz = [[5t. But P was

14



an arbitrary partition. Hence f is integrable over B, and is equal to the iterated integral.

Integration over special regions Define a region of type I (in R?) to be contained within the graph of two functions:
P(x), p(x). We can write this as {(z,y) : a <z < b, ¢(x) <y < 1p(x)} where ¥, ¢ are continuous with ¢(z) < ¢(x). A region
of type II is analogous to type I, where we contain the region bounded by ¢(y) and ¢ (y) instead. A region of type III is of
both type I and II, which can be viewed as between two functions in the x direction or y direction. E.g. of type III domains:
boxes and spheres. Now we can talk about the integral of the function on each of these domains, since the boundaries are
graphs of functions, and hence the boundary has content zero.

Integral of type I domain Let D be of type I, f continuous on D. Then the integral of fon D [, f = f fw(w f(x,y)dyldz.

This holds for type II domains too, except that we reverse the order of integration. Domains of type III can be done in either
order.

3 dimension domains A type I domain is the set of all triples {(z,y,2) € R? :a; <z < by, ¢(z) <y < (x),n(x,y) <
z < O(x,y)} with ¢,,n,0 continuous. Define the type II domain by switching the conditions of x and y. Then the integral

is [ffp £ = L0 [ ) . 2)dz] dy] dz.

5.2 30 Apr 2014 Midterm Review

Question: How do you know whether an extrema on a constrained function is a local min or a max? Do Lagrange multipliers
give saddle points?

5.3 Recitation 01 May 2014

Examples Consider A = (0,1) U {2} C R. What are the interior points and boundary points of A? Is A open or closed?

Solution The interior points of are Int(A) = (0,1). Consider a point a € (0,1). Then a € A. Also, consider the open
neighbourhood B, (r) around a. Since 0 < @ < 1, we choose 7 = min(1 — a,a)/2. Then the open neighbourhood will be
contained entirely in A. Hence a is an interior point of A. The boundary points of A are 0,1,2. Note that every open ball
centered at each of these points will contain points that are in A and not in A. We have that By(r)NA # ¢ and By (r)NA® # ¢.

Example 2 Consider Q C R. Same question as above. Fact: Qis dense in R. This means that for allz € R, Ve > 0,3g € Q
such that |¢ — z|e. This means that there is always a rational number arbitrarily close to any real number. In the opposite
direction, Vg € Q,Ve > 0,3z e R\Q: |¢ — z| < e.

Solution Let ¢ € QQ, any interval around g has to contain q. But the interval has to contain point that are irrational
too. Hence that point q is a boundary point. Hence it means that Q is contained in its boundary 0Q. Now we need to check
an arbitrary irrational point x € R\Q. x is also a boundary point. Hence the boundary is the whole of the real line. Q is
neither open nor closed.

Example 3 Let f(z,y) = 2% + y%. Show that f is differentiable. Using an easy criterion, f is differentiable if its partial
derivatives exist and are continuous. D, f = 2x, Do f = 2y, which are clearly continuous. From the definition, we have that f is
differentiable if there exists a linear transformation L(z,y) with L : R? — R such that lim, o ”f(T+“1’y+“2)HJI(II’y) Llwuz)ll
0. But we know that this is going to be the gradient V f(x,y) = (2z,2y). Writing out the limit,

Limit = hm ||(I +’Z,L1)2 + (y + U2)2 — I’2 — y2 — 21”11,1 — 2yu2||
e [full

2 4 .2
. uy +u
:hm%
u=0 \/ui + uj

= lim ||ul|
u—0
-0

Example 4 Find the global extrema of f(z,y, z) = 3z + 3y + 82 subject to the constraints g;(z,y,2) =22+ 22 -1=0
and go(z,y,2) = y?> + 22 — 1 = 0. We first note that f is continuous as it is a polynomial. Also, the domain is bounded and
closed, because a single cylinder is a closed set, and the intersection of two closed sets is still closed. The domain is bounded
because we can rearrange the constraints to be y> =1 — 22 < 1. Hence |y| < 1. Also, 22 =1 — 22 < 1. Hence |z| < 1. Also

2=1-22<1So|z| <1. Since |z|,|yl,|2| < 1, the domain is bounded. Hence the constrained extrema exists. We first
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find the gradient of the constraints: Vg = (22,0, 2z2), Vga = (0, 2y, 2z). We note that as long as (z, vy, z) # (0,0, 0), then the
gradient vectors are linearly independent, since they cannot be a linear multiple of the other. But we know that the point
(0,0,0) does not satisfy the constraints. Hence we have that (z,y,2) # (0,0,0), and the constraint gradients are linearly
independent.

5.4 Lecture 02 May 2014

Volume below graph of two-dimensional function Let f > 0 be a non-negative function defined on B = [ay, b1] X [az, b2].
Consider the set F' = {(z,y,2) : (z,y) € B,0 < z < f(«, y)} The boundary of this set has content zero hence it is a Jordan
measureable set. By definition, the volume of F: Vol(F) = [[[,.1. We want to show that Vol(F f [ f(z,y)dzdy. By

Fubini’s theorem, Vol(F) = [[[. ldzdydz = f ! U@ [ Of(x’y) 1dz} dy} de = [[5 f(z,y)dzdy.

Example: Volume of ellipsoid Let F = {(z,y,2) : é + g—j + i < 1}, a,b,c > 0. The projection of this el-
2

lipsoid to the xy plane is an ellipse: i—z + 4% < L Applymg the Fub1n1 theorem, we have Vol(F) = [[[. ldzdydz =

e { fb\/e(m/a)?) { sz/lf(r/aﬂf(y/b)z 1dz] dy} iz = “abe

—by/1—(z/a)? 1—(z/a)?—(y/b)?

Example: Volume of tetrahedron Consider tetrahedron with corner at origin, and points at (1,0, 0), (0,1,0),(0,0,1).
Then T = {(z,y,2) : ¢,y,2 > 0,2 +y + z < 1}. This is effectively the solid under the function f(x,y) =1 — 2 — y on the
domain {(z,y) : 2,y > 0,2 +y < 1}. Hence the volume is Vol(T fo (1 —x — y)dydz.

Solid of revolution Calculates the volume of the solid of revolution. Consider a type I region in R? bounded below by
¢(x) and above by 9 (x), and with x bounded between [a, b]. Rotate this region around the x-axis. Consider first the solid of
revolution obtained by rotating the graph under the function ¥ (z): {(z,y) : a < 2 < b,y < (x)} around the x-axis. Call this
S1. Similarly, rotate the graph of the smaller function ¢(x) and call its volume Ss. Then the required volume is the difference
of the two volumes S = S; — S3. Note that we can write S1 = {(z,y,2) :a <z <), ,w( )<y< w( ), —vVU(z)?2 —y2 <z <

Vi y%}. We can apply Fubini’s theorem to this to obtain: Vol(S f fw (@) f v (m) ~ldzdydr = fb mip(z)?dx
Similarly Vol(S2) fa n¢(x)%dx. Hence Vol(S) = Vol(S1) — Vol(Ss) = fa 7r(¢(sc)2 — ¢(x)? )dx.

Centroid of Jordan Measureable set The centroid of a Jordan measureable set @ C R? is the point (2g,90) =

(‘UQ rdvdy JIq ydmdy) It is the average x and y coordinate. The area(Q) = [[, ldzdy = A. It Q = {(z,y) : z € [a, ], §(2)

area(Q) 7 area(Q) o
4 T b 2)2 —b(x)2
y <(z)}. Then § = Lo 1 ) vlyde _ [ )2A¢( )4 Phen Vol(S) = 21y A.

IN

Line Integral Recall that a continuous path or parametrized curve is the continuous function « : [a,b)] C R — R™. A
differentiable path means that o’(t) exists at every t on the domain [a,b]. « is in C! if o/(t) is continuous. Call a path
piecewise C if there is a partition of [a, b] such that o is C'* on each subpartition. « is simple, if « is 1-1. Hence it does not
cut itself. A closed path is a path such that a(a) = a(b). A closed path is simple.

Rectifiable Path and Length Cosnider a path a : [a,b] — R™ continuous, and consider a partition P = {t, =
a, tl,... tm-1,tm = b}. Consider the polygonal path a(a) — «(t1) — a(ta) — .... This path has length L(P) =
> Yla(t zJrl) — a(t;)]|. « is rectifiable if all L(P) are bounded. That is 3IM > OVP,L(P) < M. Then define the
length of a to be L(a)) = supp L(P). Not every continuous path is rectifiable.

Theorem If « is piecewise C1, then « is rectifiable and L(« f [l (t)||dt = f [lv(t)]|dt.
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Chapter 6

Week 6

6.1 Lecture 05 May 2014

2

Example: Length of an ellipse Consider the ellipse 75 + z—; = 1. Parametrize this curve using a(t) = (acost, bsint),0 <

t < 2. The derivative is o/(t) = (—asint,beost), so ||o/(t)]| = Va2 cos?t + b2 sin®t. By symmetry of the curve, we can
write the length as 4 foﬂ/ * Va2 cos? +b2 sin? tdt. This is an elliptic integral.

Arclength function Suppose we have a piecewise C! path « : [a,b] — R™. Consider a t € [a,b]. Now we define
s(t) = fat ||/ (w)du, the length of the path between a and the arbitrary point ¢ along the path. Clearly, s(a) = 0, s(b) = L(a).
Also, s(t) is increasing. If the derivative o/(t) # 0 along the path, then s(t) is strictly increasing. Now by the fundamental
theorem of calculus, s'(t) = ||a/(t)|| = v(t). s(t) is called the arc-length function of a.

Line integrals of vector fields Consider a piecewise C! path « : [a,b] — R™. Let the curve of this path C' = «a([a, b])
be contained in D C R™. Also consider a function f: D C R™ — R™ to be a bounded vector field. Then the line integral of f

over ais [ f-do = fab f(a(t))-o/(t)dt. We can also write this as [, f-da, but note that the integral depends on «, not just C.

Geometric motivation Suppose «(t) is the position of a moving particle at time t. Consider the force field F' : R® — R™.
Then the work done by the field on the particle is the line integral of F along a: W = [ F(a(t)) - o/ (t)dt.

Parameter change First consider a path « : [a,b] — R™. Consider a change of parameters: u : [¢,d] — [a,b] which is
bijective, C' and has non-zero derivative u/(t) # 0. The last condition (along with continuity of the derivative) means that
u’ is always positive or negative on [c,d]. We call this change of parameters orientation preserving if ' > 0 and orientation
reversing if v/ < 0. Consider the composition § = aou. Then S(t) = a(u(t)),t € [c, d].

Example Consider the parameter change that maps a — b and b — a. u(t) = —t + a + b. Since v/(t) = —1 < 0, it is an
orientation reversing parameter change.

Equivalent path Call two paths equivalent, or a ~ 3 if § = « o u for some orientation preserving u. Note that if u
is orientation preserving, then u ™! is also orientation preserving. Equivalence is transitive, so if & ~ 8 and 8 ~ 7, then a ~ 7.

Theorem: Integral invariance under parameter change Assume «, 8 are piecewise C! and a ~ 8. Then for an
s p Yy

continuous f: [ f-da= [ f-dB.

Proof This is a straightforward application of the chain rule. Assume that o is C'. If « is only piecewise C', we just
break the integral into finitely many partitions that are C* on each. Now ((¢) = a(u(t)) with orientation preserving u. By
the chain rule 8'(t) = o/ (u(t))u'(t). Note that o (u(t)) is a vector while u/(¢) is a real number. So the integral with respect to

B is, by definition, [? f-ds = [ f/(B(t)) - B'(t)dt = [ f(a(u(t))) - o (u(t))u(t)dt. Now we can make the change of variable
v = u(t),dv = u'(t)dt. Then we can write the integral as fs(%c))::f f(a(v)) - o/ (v)dv = [ f - da. Note that if u is orientation
reversing, then we have that [ f-da=— [ f-dp.

Example Take o € C1, s(t) = f; [la/ (p)||dp = f;v(p)dp,t € [a, b], where p is just a dummy variable. Then s : [a,b] —

[0, L(v)]. Ifv(p) # 0, then the integral is strictly increasing. Now consider the change of parameter u = s~! : [0, L(«)] — [a, b]
is an orientation preserving reparametrization of . Then the domain of the composition is [0, L(«)].

17



Line integrals of scalar fields with respect to arclength Consider a path « : [a,b] — R" that is piecewise C*.
Assume that the curve traced by the path is contained in D C R”™, and consider a scalar field f: D C R™ — R. Then the

integral with respect to arclength is defined to be [, fds = [ fds = f f(a(t))]|/(t)||dt, since the differential arclength is
ds = ||/ (¥)||dt. If o ~ B or a ~ —f3, then the integral has the same value for both paths.

Geometric motivation Consider R3. Consider a thin wire parametrized by «. Let the linear density of the wire be
f(z,y,z). Then the mass of a small piece of wire is given by dm = f(«a(t))||c/(¢)||dt. Hence the integral with respect to
arclength represents the total length of the wire. If the total mass is called M, then the center of mass of the wire is the

point (Z, 7, z), given by T = fcf(ojvw and so on. When f = 1, then the center of mass is called the centroid of C.

Connectlng the two types of integrals Consider the path « as before, o/(t) # 0. We define the unit tangent vector
T(t) = 2O et F be a vector field. Con51der the scalar field g( ( )) f(a(t)) - T(t) which is the projection of f(«(t))

IEZOIN '( il
along T'(t). tThen we have that [, gds = [ g(a(t))||o/(t)||dt = [ f(a T(@)||le/ @)]|dt = [ fla(t)) o/ (t)dt = [ f-da.

~—

6.2 Lecture 07 May 2014
Second Fundamental Theorem of (1D) Calculus Recall that f t)dt = g(b) — g(a) for g € C*.

Second FTC for line integrals Given « : [a,b] — R", a being piecewise C!. Let a([a,b]) € D be open. Also let
g:D CR"— R. Then. [Vg-da = g(a(b)) — g(a(a)). Note that this line integral does not depend on the path, but only
on the end-points. This is not true when g is any scalar field; it must be a gradient. This reduces to the 1D version when
n = 1 and when « is the identity. Also note that if « is a closed path, such that a(a) = «(b), then the line integral is zero.
Use fC Vg - da = 0 as the notation for a closed path integral.

Proof Assume WLOG that « is continuously differentiable. If not, we can just treat each finite piece separately. Consider
the function h(t) = g(a(t)),t € [a,b]. Use the chain rule to obtain A'(t) = Vg(a(t)) - &'(t). Now h'(t) is continuous since g

and «(t) are continuous. Hence by the 1D FTC, the integral of [ Vg-da = fab Vg(a(t)) o (t)dt = f; B (t)dt = h(b) — h(a) =
9(a(b)) — g(a(a)).

Example Compute [ f-da, where f(z,y,2) = (2zy+ 2,22, z) along the path a(t) = (e',e*,t?),0 <t < 2. We note that
f is the gradient of ¢, ¢(z,y, z) = %y + xz. Hence the integral is simply ¢(a(2)) — ¢((0)).

First FTC (1D) Recall that if f € C* on [a,b], then for = € [a,0], ([ f)’

First FTC for line integrals Suppose we have f : D C R®™ — R"™ continuous with D open. Suppose that for every
piecewise C'! path included in D, the line integral of f along that path depends only on the endpoints, then f is the gradient
of some ¢ : R* = R, ¢ € C.

Proof postponed for now

Connectedness Consider an open set U C R™. We consider two points z,y € U to be equivalent: = ~ y iff there
exists a piecewise C'!' path contained in U from x to y. Now we note that z ~ z, and if x ~ y, then y ~ z. Also, if
x ~ yand y ~ z, then x ~ z. The equivalence class which is denoted by [z]. = {y : = ~ y}, the set of all points
equivalent to x, is called the connected component of x in U. Then U, which is any open set, is the disjoint union of its
connected components. We note that [z]. is open. This is because U is open, hence we have an open ball around any
point y contained entirely in U. Then if  ~ y, then we can pick a z € By(r), then connect the point z to the point y by
a straight line, and we have a piecewise C'! path connecting x to z. Hence x ~ z, and z € [x].. We call U connected if it
has only 1 connected component. This means that any point in U can be connected to any other point by a piecewise C! path.

Theorems on Connectness The following are equivalent: (1) U is connected. (2) Any 2 points in U can be connected
by a continuous path contained entirely in U. (3) Any 2 points in U can be connected by a polygonal path parallel to the axes
(i.e. can connect the points with a collection of horizontal or vertical paths in 2D, for instance). (4) U cannot be decomposed
into two disjoint non-empty open sets.

Proof of the First FTC for line integrals We can assume, working separately on each connected component of
D, that D is connected. Then we can take any point o € D and define for each other x € D, the following func-
tion ¢(z) = [ f - da, where a is a piecewise C' path lying completely in D from zy to z. Now ¢(z) is well defined,
since the integral of f along any path does not depend on the path. Now we want to show that V¢ = f. Hence we
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have to show that g 2 = f;. Now consider the straight line connecting x and = + he;,e; being the ith basis vector,
with h small enough S0 that the line is contamed entirely in D. NOW we take the path a(t) = z + t(he;),t € [0,1].

Then ¢(z + he;) — = [f da = fo o (t)dt = fo f(x + the;) - e;dt. Hence dividing by h on both sides,
M f f (z —|— the;) - e;dt = fo fl + thel-)dt. We now make the change of variable u = th, du = hdt, hence the
RHS becomes T fo filz + ue;)du = £(g(h) — g(0), where g(y) = [ fi(z + ue;)du. Now we take h — 0. Then the LHS
becomes 8‘159(6””) ¢'(0) = fi(z) by the 1D FTC.

Corollary Suppose we have a vector field f : D C R™ — R, D open, f continuous. Then the following are equivalent. (1)
f is the gradient of some ¢ : D C R™ — R. (2) Line integrals of f over paths in D depend only on the endpoints, (3) every
f f-da=0. We call f a conservative field if these happen, and we call ¢ a potential function for f.

Proposition f: D C R™ — R, D open and connected, f continuous. Then ¢ is uniquely determined up to a constant.
Note it is important that D is connected. If D is not connected, we can defined f separately on each disjoint domain, and we
can obtain a V¢ = 0 for each set, but with ¢ having a different constant value for each disjoint set.

Proof It will suffice to show that if ¢ € C!, and V¢ = 0, then ¢ is a constant. Pick a path a between two points. Then
d(a(t)) — ¢(a(b)) = [V - da = 0. Hence it means that ¢(a(a)) = ¢(a(b)), and ¢(z) = ¢(y).

6.3 Lecture 09 May 2014

Conservative fields Consider a function f : D C R®™ — R", f continuous, D open. The following are equivalent: (1) f is
conservative, (2) f = V¢, ¢ : D CR™ — R, (3) Line integrals of f over paths in D depend only on endpoints, (4) line integrals
over closed paths are zero. Call ¢ the potential function. In a connected domain, the potential ¢ can be determined up to a
constant: ¢(z) = [ f - da for a path a connecting a reference point zy to an arbitrary point in the connected domain.

Example: Newtonian Potential 3 dimensional. Consider a mass M at the origin, and another mass m at coordinates
(x,7,2). Then the force field is defined on the domain D = R3\{0}, f(z,y,2) = G%m 7, r = /22 4+ y? + 22. Now we can
verify that f is conservative, and has a potential function given by ¢(z,y, z) =

GMm
-

Example: Arbitrary Conservative Field Consider a function f : D C R® — R3, D open and connected. Consider
a particle of mass m moving along a path «a(t),t € [0,1], a € C?, a(]0,1]) € D. Let the particle move under the force f.
Define the kinetic energy at time t to be E(t) = 2muv(t)? = im||a/(t)||, where v(t) is the speed. Also, by Newton’s second
law, f(a(t)) = ma’(t). THen the line integral [ f-da = [ f(a(t)) - &/(t) = [ma(t) - o' (t) = [ImL(/(t) o/ (t)) =
[imL(v(t))? = +m(v(1)? —v(0)?) = E(1) — E(0). Note that if f is conservative, then f = V¢, then [ f-da = ¢(b) — ¢(a).
We call (in physics) —¢ to be the potential energy, sch that the sum of the potential and kinetic energy is a constant, since
the integral equals ¢(1) — ¢(0) = E(1) — E(0) = E(1) — ¢(1) = E(0) — ¢(0).

Necessary conditions for a vector field to be a gradient Let f : D C R® — R” be a C* vector field, D open. Let

= (f1,---y fn)- is conservative, then <i,j <n, 52 = 2. For example, in n = 2, we write f = (P,Q), so we
If £ i tive, then V1 < i,j < n, 2fc = 2l F 1 2 t P
@ @
require %P = %g.
Proof If f = V¢, then f;, = %. Since ¢ € C? (since f has continuous first order partial derivatives, which are the
second order partial derivatives of ¢), the mixed partials are equal, hence aiza‘ij = gi Jl = ijgaci = gTZ'

Simply connected open set Suppose we have an open U C R™ which is connected. Then we say that U is simply
connected if any continuous closed path contained in U can be continuously transformed inside U to a single point. This can
be understood as U having no holes.

Example of a non-simply connected open set Consider U = R?\{0}. U is not simply connected, since any circle
centered at the origin cannot be shrunk to a point at the origin, since the origin is not contained in U.

Example of a typical simply connected open set: Convex Set A set U is convex if for any a,b € U, the line
connecting a to b is completely contained in U. A convex set is simply connected. W ecan pick any closed path « contained
completely in U. We can shrink the curve using ¢s(t) = a(t) — s[a(t) — a(0)], s € [0, 1] to shrink the curve to the point «(0).

Necessary and sufficient conditions for vector field to be a gradient Given f: D C R® — R", D open, f € C2.

If D is simply connected, then the following are equivalent: (1) f is conservative (2) g:f = gw , 1<4,5 <n.
J

19



Importance of being simply connected Consider the domain D = R?\{0}. D is not simply connected. Also let
f(@,y) = (-, 212) = (P.Q). We note that %—I; = %. However, f is not conservative. Note that we can calculate
the line integral of f on the circle a(t) = (cost,sint),t € [0,27]. [ f-da = 27 # 0. Hence although « was closed, the line

integral along a was not zero. Hence f is not conservative.

Example Consider the vector field f(z,y,z2) = (2* + 2zy, 22, 322?) defined on R*. Calculate [ f -da on an ellipse
a(t) = (acost,bsint, 0) lying in the x-y plane.

Jordan Curve A Jordan curve, or a simple closed curve, is a 1-1 closed curve. A typical example is the circle/ellipse.

Jordan Curve Theorem If « is a Jordan curve in R?, and C is the graph of o, then R?\C' = U UV with U,V disjoint
and open, with U bounded, V unbounded, and C' = 9(U) = 9(V). Call U the interior of C and V the exterior of C. Note
that this differs from the interior/exterior in the context of open sets. The interior of a curve (which has content zero) is
empty. But in the Jordan curve theorem, the interior is the set of points it encompasses. We call a Jordan curve positively
oriented if transversing it, the interior is on the left. An alternative way to verify whether a domain is simply connected is
to check that for every closed Jordan curve in the set, the interior of the curve is contained in the domain.
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Green’s Theorem Consider a Jordan curve « : [a,b] — R?, positively oriented, piecewise C'. Call the interior of the
curve U, call the curve C. Let f : D C R? — R? be a C" vector field where D C R? is open and contains the interior of

the curve U and the curve C: UUC C D. Let f = (f1,fo). Then [ f-da = [[, (% - %) dzdy, where R = U U C.

Note that we can substitute U for R, since the curve C has content zero, hence the integral on C is zero. Write ¢ f - dao,
with a small counterclockwise arrow on the circle for this integral Alternative notation: f = (P,Q),a(t) = (x(t),y(t)), then
§f-da= ff(P, Q) - (2(t), f Pz (t)z'(t)dt + f Qz(t), y())y' (t)dt. Write a'(t)dt = dx and o/ (t)dt = dy.
Hence this can be written as thPdm + Qdy. Note that this does not depend on «, but only on C.

Other domains Consider the annulus (donut in 2D). Visualize a horizontal cut through the center. Then the top of
the annulus above the cut obeys Green’s theorem, as well as the bottorn half Hence apply Green’s theorem separately to
each piece. Call the upper half Ry and the lower half R. Then [ f R 95 — ‘g, We note that the path traced along the cut
will cancel out, since both halves traverse it in opposite directions. Let the inner curve be Cy and the outer curve be Cj.
Then the integral is fcl Pdx + Qdy — fCQ Pdx 4+ Qdy. Note we can do the same for two or more holes inside the curve. Just
perform 2 or more cuts, with one cut across each hole.

Application of Green’s Theorem: Calculation of Area Let C be a piecewise C! Jordan curve, given by a positive

parametrization « : [a,b] — R2. Let the interior of the curve be U. By defintion, the area of the Uis A(U) = [ fU dxdy. Hence
we want to obtain a vector field w1th o= — 88—1; = 1. Hence we just choose f(z,y) = (0,x). Then 8Q =1, %}j = 0, so their sum
is 1. Hence we can apply Green’s Theorem to obtain that [[; ldzdy = §, Pdx + Qdy = ¢, Qdy = f Q Ly()y (t)dt =
fabx( t)y'(t)dt. Similarly, using the vector field f(x,y) = (— y,O), we have that A( = —§ydz = —f y(t)z' (t)dt. We can
also add the two formulae and divide by two to obtain A(U) = 3 f — a'(t)y(t)]dt. Note that we can use this to

determine if « is positively oriented or not. If « is p051tively orlented, then the sign of f: x(t)y'(t)dt should be positive. If
the sign of the integral is negative, then we have just chosen the wrong direction.

Proof of Green’s Theorem for the 51mple rectangle case Note that by taking Q = 0 and then P = 0 respectively in
Green’s Theorem, we have that — ¢, Pdz = | [ 5 =5 da:dy and § Qdy = [ f .- dxdy Hence we can obtain Green’s Theorem
by adding up these two formula. It will suffice to prove the first formula, for the second one follows similarly. Consider a
rectangle [a, ] X [c,d]. Call the bottom line Cy, the right side Co, the top line C3 and the left line Cy. For C, we use the
parametrization C; : t — (a+t(b—a),c),t € [0,1], Cy : t — (b, c+(t—1)(d—¢)),t € [1,2], C5 : t — (b+(t—2)(a—Db),a),t € [2,3],
Cy:t— (a,d+ (t —3)(c—d)),t € [3,4]. Call these paths a, as, a3, ay respectively. Then f(} is the sum of the integrals
over each individual curve (line). Now we have chosen that @ = 0, hence the integral ¢ Pdz = | c, Pdzx + fCa Pdzx, since
the integral along Cy and Cy faces a constant value (since the value of x is fixed on each line), hence integrates to zero
(7). Consider the equivalent parametrization for oy, 81 : ¢t — (t,¢),t € [a,b] and for —ag, B : t — (t,d),t [a b]. Then

$o Pdx = be t,c)dt — be t,d)dt. Hence — §, Pdx = fab( P(t,c) + P(t,d))dt. Now we calculate ffR 9P jrdy using
Fubini’s theorem. Then this is f ( fcd or (a? y)dy) dz. By the fundamental theorem of calculus in one variable, this is equal
to fa [P(x,d) — P(x, c)|dz. Hence, comparing this result with the one for — §, Pdz, we obtain that — §, Pdx = [/, %dmdy.

Note that this proof can be used for any curve made of lines parallel to the x or y-axes.

Theorem Consider D C R? which is simply connected and open. Then let f = (P,Q) : D C R? — R? be C! Then f is

conservative iff 28 = 92 in D.
y Oz
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Proof Now we have proven the forward direction last week. Now we prove the reverse direction. For any Jordan curve
a in D that satisfies 8—1; = %, we have that fc f-da = 0. The rest of this proof is showing that this works for any curve.

Winding numbers Consider o as a piecewise Ct Jordan curve and consider a point zg = (o, y0) & @([a,b]). Then the
winding number of C relative to zp is W (a, 20) = W(C, z0) = 5= [,, [ g0 dy + 220 dy|, where r = /(z — x0)2 + (y — yo)?.
If « is just a normal curve (not necessarily Jordan) w turns out to be an 1nteger and tells you how many times a goes
around zp, and the sign tells you if it goes around in the counterclockwise direction or clockwise. For a Jordan curve, W is
either —1,1 or 0. W is +1 if 2z is in the interior and « is positively oriented, —1 if 2y is in the interior and « is negatively
oriented, and 0 if zg is in the exterior of C.

7.2 Lecture 14 May 2014

Del operator Consider ¢ : D C R™ — R, D open. Then ¢ has partlclc derivatives V¢ = (D19, ..., D, ¢) which is a vector
field: V¢ : D CR™ — R™. We define the formal vector V = ((%1 o

s o)

Divergence Consider f : D CR"™ — R™, with D open, and such that the partials of f exist. Define div(f) =V - f. We
note that this is equal to the trace of the Jacobian.

Laplacian Define A = V- V. We require that ¢ has second derivatives that exist in order for the Laplacian to be applied
to it. We note that the Laplacian is the trace of the Hessian. Now the Laplacian can also be applied to a vector field.
Consider F' = (F,...,F,). Then AF = (AF,...,AF,).

Harmonic We define ¢ to be harmonic if it has derivatives of second order and A¢ = 0, which is the Laplace equation.

Example Let ¢(21,...,z,) = r%, where a € R and r = [[(z1,...,2,)|| for z € R"\{O} For exarnple in the Newtonian
potential, we have that n = 3 and o = —1. We note that 87@ =ar® 37’" =are! o= ar® . Also, the second derivative
is a(a — 2)r* 422 + ar®=2. Hence A¢ = a(a —2)r*"2 + nar®=2. Now A¢p =0 iff a(a — 2) —|— no = 0. This requires o = 0
orn=2-—aq. Hence when n = 3, we require @« = —1 for the potentlal to be a harmonic function.

Cross Product (in 3D) Suppose we have u = (u, ug,u3),v = (v1,v2,v3) € R®. Then u x v = | uy us us |- Also
(% V2 VU3
note that u x v = —v X u.

Curl This only makes sense when n = 3. Consider F : D C R? — R3, D open, with F having partial derivatives. Write
F = (P,Q,R). Then curl(F) = V x F. The curl is a vector field V x F: D CR® — R3. If V x F = 0, then F is called

irrotational.

Proposition Suppose ¢ : D C R3 — R is a C? scalar field, and F : D C R3 — R3 is a 02 vector field, D open. Then (1)
V x (V¢) =0 (the curl of a gradient is zero) (2) V- (V x F) = 0 (divergence of a curl is zero).

Proof Expand out V x (V¢), and note that the mixed derivatives are equal, since ¢ € C2. Same thing for the second
proposition.

Theorem Given F : D C R® — R3, D open and simply connected, ' € C2. Then TFAE: (1) F is conservative (i.e.
F = V¢ for some ¢. (2)V x F =0 (i.e. F is irrotational.

Proof (2) = (1): Write out the components of the curl, set it to zero. This is exactly the condition for F' to be

of;
conservative in a simply connected set: af L a;{» L,
K2

Example Consider D = R*\{0}. Note that D is simply connected, since you can shrink any curve to a single point,
unlike the 2D case. Let G(:U,ywz):w m>1. Then V-G = 3 T Ifm#3,then V-G #0. Butif m=3,V-G=0.

Theorem Suppose D C R? is an open box and an open ball on all of R? (needs to be a two-simply connected set, which
is a set such that for any closed surface, its interior is also contained in the set. Then for any vector field G : D C R? — R3

in C1, TFAE: (1) V-G =0, (2) 3F : D CR3 — R3 in C? such that V x F' = G. We call F a vector potential for G.

Solenoidal If V - G = 0, we call G solenoidal.
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Example: Finding F such that its curl is G Consider a G : R? — R3. If V-G = 0, by Theorem above, there is some F
such that V x F = G. Now we can choose F = (P,Q, R) such that R = 0. We can do this because V x (F + V¢) =V x F
since the curl of a gradient is zero, and we can choose a gradient with the third coordinate being —R. Then we can solve for
F + V¢ with its third coordinate zero.

Change of variables for one variable Consider an ¢ : [a,b] — [¢, d] which is a change of variables, ¢ is one-one and onto,
with non-zero and continuous derivatives. Then ¢’ is either strictly positive (increasing function) or strictly negative (decreas-

ing function). Hence we can make the change of variables x = ¢(y),dx = ¢'(y)dy, so fcdf( dr = f¢ (d) f(o(y)d (y)dy.
Hence this is equal to f: fldy)ed' (y)dy if ¢’ > 0 and f: f(d(y)(=¢' (y))dy if ¢ < 0. In both cases, the integral is
J2 Fe)Ie' (v)ldy.

Diffeomorphism Consider U, V' open sets in R”, with 9(U) and 9(V') have content zero. Then a one-one correspondence
¢ : U — V such that both the function and its inverse function are C? is called a diffeomorphism. Note that the determinant
of the Jacobian of a diffeomorphism is non-zero (recall that ¢ o ¢~ = I, and by the chain rule D(¢) - D(¢~!) = I. Taking
the determinant of both sides, we have that det(D@)det(D(¢~')) = 1. Hence the determinant is non-zero) Write this as
det(D¢(u)) # 0,Vu € U. Alternative interpretation: ¢ is smooth and invertible with ¢ =1 smooth as well.

Inverse function theorem If ¢ : U — V is a C'! function, bijective and det D(¢(u)) # 0, then ¢ is a diffeomorphism.

Notation Let ¢ = (¢1,...,¢n). Then the Jacobian determinant of ¢ is denoted by H when defined on a bounded

open set U = (u1,...,Up).

Change of variables formula Consider U,V open sets with boundaries of content zero. Consider a diffeomorphism
¢ : U —V (1-1, onto, C1 detD(¢( )) 75 0,Vu € U) and detD(¢(u)) bounded. Then for a continuous bounded function f,

Jy F@r,. o a)dey - dag = [, f(6(w))|det D (u)|duy - - - duy,

Intuitive proof Since U and V have boundary of content zero, we can replace them with their closures, since the bound-
ary would not contribute to the integral. We can also write z; = ¢;(u1,...,u,) for (u1,...,u,) € U and (z;,...,2,) € V.
Then dz = dx; - - - dx, = |detDé(u)|duy - - - duy, = |detD(u)|du. Also, Vol(V) = [, |detDp(u)|duy - - - duy,.

Examples Consider ¢ = T, a linear transformation. Then D¢ = m(T),det(D¢) = det(m(T)) # 0, hence T is invertible.
Then dx = |det(m(T))|du. Also Vol(V') = |det(m(T))|Vol(U).

Polar Coordinates Given a point (x,y) define r = /22 + 2 and 0 such that x = rcosf,y = rsinf. We choose r > 0
and 6 € [0,27]. Consider the change of coordinates function ¢(r,0) = (z,y). Then % = cos¥, g:g = —rsinf, and so on.
The Jacobian determinant is . Hence we replace dxdy with rdrdf. Then the integration formula is | fv flx,y)dedy =

[Ji; f(rcos@,rsin@)rdrds.

23



Chapter 8

Week 8

8.1 19 May 2014 Lecture

Example: Cylindrical coordinates Consider (r,6,z) — (x,y,2) under the change of variables ¢. = = rcosf,y =
rsin@, z = z. Then the Jacobian determinant is r. Hence when integrating, we replace dxdydz with rdrdfdz.

Example: Spherical coordinates When integrating we replace dzdydz = r2 sin 8drdfde.

Parametrized surfaces Consider only surfaces in R?. A parametrized surface consists of a set D C R? of the form
D =UUC, where C is a piecewise C* Jordan curve and U is the interior of C and a continuous map ® : D C R? — R3 such
that ®(u,v) = (X (u,v),Y (u,v), Z(u,v)). Hence the image of ® on D is a surface in R®. If ® is one-to-one on U, we call the
surface simple. Call the surface parametrized by ® as S. Also, if ® is one-to-one on the Jordan curve C, then the image of C
under @ is also a Jordan curve in R3.

Example: Explicit Parametrization Consider f : D C R? — R as a C' function. Then the surface S is the graph of
f on D. Then the parametrization is ®(u,v) = (u, v, f(u,v)). This parametrization is clearly one-one.

8.2 Lecture 21 May 2014

Another parametrization of a hemisphere (Stereographic Projection) Consider the southern hemisphere of the
unit sphere. Take the point with coordinate (0,0, 1), and connect this point with an arbitrary point on the hemisphere, and
identify the point (u,v) where this line intersects the zy plane. This is a one-to-one correspondence between the points on the
unit disk and the points on the hemisphere. We can write the formula for this mapping ®(u,v) = mﬂu, 20, u? +v? —1).

Plane parametrization Consider the plane containing the point (xg, yo, 20) with normal vector (a,b,¢) # 0. Then the
equation of the plane is a(z — o) + b(y — yo) + ¢(z — z9) = 0. Take two vectors that are not lying on the same line (linearly
independent). Then we can use the following parametrization ®(u,v) = (o, yo, 20) + up + vq, (u,v) € R%.

Surface given by a level set Consider the function f(z,y,z) = 0, and a point where the gradient is non-zero. Then
we can represent the surface locally using the implicit function theorem.

Definition: Regular Point and Regular Parametrization Given (ug,v9) € U, we say that (ug,vg) is a regular
point for ® if g—i(uo, vp) and g—f(uo, vp) are independent. That is the same thing as saying that the cross-product is not the
zero vector. Note that the cross product of these vectors is a normal to the surface a the point ®(u,v). Call the normal
vector n(ug,vg). Hence we can define the tangent plane at that point to be n(ug,vo) - (x — zo,y — Yo, 2 — 20) = 0, where
2o = X (ug,vo),yo = Y (ug, vo), 20 = Z(ug, vg). If every point in U is regular we call ® regular or smooth.

Example: Explicit Parametrizatiqn Given ®(u,v) = (u, v, f(u,v)), we have that g—qu’ = (1,0, %), and g—i’ = (0,1, g—{)).
The cross product of these vectoris is (fg—jj, f%, 1) which is not zero, since the z-coordinate is always 1. Hence when you

have an explicit parametrization, then the cross product of the derivative is never zero, hence all points are regular points,
and the parametrization is regular. Also, the normal always points in the positive z-direction, since the z-coordinate is 1.
Note that we can think of the surface as the level set of the function h(u,v,z) = z— f(u, v) corresponding to h = 0. Then the
normal to the level surface is the gradient of h(u,v, z), which is Vh = (—%, —%, 1). We note that this is the same vector

as the one obtained from the cross product. Hence this concept of the normal is consistent.
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Area of a parametrized curve Take ® to be a simple (one-to-one) regular parametrized surface. Then the tangent
plane at some point (ug,vg) is a reasonable approximation of the surface around that point. If we increase u by Au, then

®(up + Au, vo) & P(uo, v0) + 22 (ug, vo) Au. Similar equation for ®(ug,vo + Av). Then the rectangle with dimension Au, Av
in uv-space becomes a parallelogram defined by the vectors g—‘iAu, %Av with area AS = Hg—i X ‘g—‘f H AuAv. We define the

area of the parametrized surface to be the integral a(®) = [, ’ g—f X %—‘fH dudv.

Surface Integrals over Scalar Fields Given D, ® as before, and f : R € R — R3 a bounded function defined on some
subset of R®, with ®(D) C R. Then [[, fdS = [, f(®(u,v))||22 x 22|| dudv.

8.3 Lecture 23 May 2014

Surface Integral over Vector Fields (Flux of a vector field) Consider a vector field F : P C R3 — R3, surface

S C P and a regular parametrization ® at (ug,vp). Then the normal to the surface at (ug,vg) is given by the cross
product g—i’ X ‘g—f, which is non-zero (by defintion of the regular point. Hence we can consider the unit vector in the nor-

mal direction. Write this as n(ug,v9) = % We define the integral (or flux) of F over ® to be [[,(F -n)dS =
du v
[f F(®(u, ) - n(u,v)||22 x Z2||dudv = [[, F(®(u,v)) - (42 x 22) dudv.

Invariance under change of parameters Consider the domain D in uv-space with a parametrization ® that maps this
domain onto R3, forming the surface S. Now consider a diffeomorphism ¢ from domain U in st-space to range V in uv-space.
Then det(D¢) # 0 since ¢ is a diffecomorphism. Then we have a parametrization of S using ¥(s,t) = ®(¢(s,t)), ¥ = P o ¢.
Then [, fdS = [, fdS. The flux is invariant under change of parameters provided det D(¢) > 0, which means the change
is orientation preserving.

Sketch of proof By the chain rule, 2% x ¥ = 22 (4(s, 1)) x 22 (¢(s,t)) det(Dg(s, t)).

Pappus’ Theorem for Surfaces Let C be the graph of z = f(x) > 0, f € C*, f : [a,b] — R2. Now we rotate this
graph around the z-axis, obtaining a surface. Call S the surface of revolution of C' around the z-axis. Then Pappus’ theorem
says that the area of S is a(S) = 2wLh, where L is the length of C, and h is the distance of the centroid of C to the
z-axis. Note that we can parametrize S using polar coordinates of the projection ®(u,v) = (ucosv,usinv, f(u)). Note that
92 x 92 — (—uf'(u)cosv,uf’(u)sinv,u). Hence the norm is uy/1+ f/(u)2. Hence a(S) = 027r f:u\/l + f(w)2dudv =
2 f;x\/l + f'(z)?dz. Then we can parametrize the curve C using a(z) = (z, f(2)),a <z <b. So ds = /1 + f'(z)dz, so

- - _ .- [, zds
a(S) = 2m [ xds = 2z L because by definition of z = Jaj—.
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Week 9

9.1 28 May 2014 Lecture

Stokes’ Theorem Consider a positively oriented piecewise C'* Jordan curve v, v : [a,b] — R? and a parmetrization ® such
that the image of ® on D = UUC, where U is the interior of v and C' is the graph of v, forms the surface S. Let ® be regular
on U and also be C? on some open set containing D. Let a = ® -~y be the path traced out by v under the parametrization ®.

Let F be a C! vector field defined on some open set R, with S C R. F: R C R?® — R3. Then faF -da = ffq)(V x F)-ndS.
The integral § F -da is called the circulation of F on o.

Relation between Green’s Theorem and Stokes’ Theorem Take ® to be the "identity” parametrization ®(u,v) =
(u,v,0). Let S =D and let F : R C R? - R?. Let F(u,v,w) = (F(u,v),0) be the three-dimensional analogue of F. Let
F = (P,Q). Then F = (P,Q,0). Then Stokes’ Theorem says that [[,(V x F)-ndS = § F - dv, where y(t) = (a(t),0). Now

the third coordinate of V x F is % — %—f. We note that the unit normal vector n is in the z-direction, so Stokes’ theorem

becomes [, (% — %—f) dudv = §_(P,Q) - dov, which is just Green’s Theorem.

Curl zero function If F is C! and F : R® — R? with V x F = 0 everywhere, then 2% = % for all 0 < i,j < 3 since
J i

F is conservative. This shows that § - da = 0 for any closed curve a.

Example The integral of a curl on a closed surface is zero: [[(V x F)-ndS = 0.

9.2 29 May 2014 Recitation

Homeomorphism A function is continuous, the inverse exists, and the inverse is continuous.

Diffeomorphism A function is infinitely smooth, the inverse exists, and the inverse is also infinitely smooth.

9.3 30 May 2014 Lecture

Example Consider the upper unit hemisphere {(z,y,2) : 2 + y?> + 22 = 1,2 > 0}. The boundary of the hemisphere
is the unit circle on the zy-plane, call it C. We can parametrize the boundary using 7(t) = (cost,sint). We can also
parametrize the upper hemisphere using the stereographic projection. Pick the point (0,0,—1), and draw a line connect-
ing (0,0,—1) to a point on the unit disk on the zy plane, then extrapolate it to hit the hemisphere. The domain of the
parametrization is the unit disk. Then the corresponding a(t) = (cost,sint,0). Consider a vector field defined on all of R?
as F(z,y,2) = (coszsinz,z® + zy,e® + ¥’ 7). We want to calculate the surface integral [J$(V x F) - ndS over the
hemisphere. By Stokes’ theorem, we know that the integral is equal to ¢ F - da. Note too that by Stokes’ theorem § F'- da is
also the surface integral of V x F over any surface that shares the same boundary as the hemisphere. We choose the surface
to be the unit disk, with the "identity” parametrization (u,v) +— (u,v,0) for u? +v? < 1. Hence in this case, the unit normal
vector is just (0,0,1). Hence we are only interested in the z-coordinate of the curl, which is 322 — x. Hence the integral is
just fo:unit disk(?mc2 — x)dzdy. Using polar coordinates x = rcosf,y = rsind,r € (0,1],0 € [0,27), the integral becomes
3m/4.

Gauss’ Theorem/Divergence Theorem Consider a bounded region V' C R? that is enclosed by a boundary S which
can be decomposed into finitely many pieces S = S U---US,, where S; is a parametrized surface and S;,.S; do not overlap
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except at their boundaries. Then for any C! vector field F which is defined on some open set containing V U S, we have that
JJ(F-n)ds =370 [[g (F-n)dS = [[[, (V- F)drdydz provided that the normal vector to S at every point on S points
outside V. /

Example If ' =V x G is solenoidal, then V- F =V - (V x G) =0, 50 [[((V x G) - ndS = [[4(F -n)dS = 0.

Two concentric spheres Consider spherical surfaces S; and Sy with Sy contained inside Ss, and consider V to be the
solid between Sy and Sp. Then we can write [[[, (V- F)dzdydz = [[y (F'-n)dS — [[4 (F'-n)dS since the direction of the
unit outward normal is in the opposite direction for Ss and S;. The unit normal to the surface is outwards away from the
origin at Sy and inwards towards the origin at S1. Note that in the equation [[ (F-n)dS — [[g (F'-n)dS, the normal n is
pointing outwards away from the origin, since the minus sign is always included. Note that if V- F' = 0 in the region V, then
JJF-ndS=0,and [[g (F-n)dS = [[q (F-n)dS, so the surface integrals through the individual surfaces are the same.
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Chapter 10

Week 10

10.1 Lecture 2 June 2014

Example Consider S to be the unit sphere, V the unit ball, and compute [[4(2* 4y + 2)dS. Let n be the unit normal to S
pointing outwards, which is (z,y, z). We need to find a vector field F such that F'-n = 22 +y+ 2. We write F = (F}, F», F3),
so F' = (z,1,1). Hence [[4(2* +y+ 2)dS = [[((F -n)dS = [[[, V- (x,1,1)dzdydz by the divergence theorem. The result
is just the volume of the unit ball, 47/3.

Solving for curl of zero divergence vector field Let F' be C* on R%. If V- F = 0, then F = V x G for some vector
function G. Suppose F = (F1, Fy, F3). Then Gy = [ Fao(x,y,t)dt — [ F3(z,y,0)dt,G2 = — [ Fi(z,y,t)dt, G3 = 0 plus any
gradient V f(z,y, z) because the curl of a gradient is zero.

10.2 Lecture 4 June 2014

Implicit function theorem: Motivation Let C be a curve in R2. Often, C is given as the graph of a function (which can
be a function of x or y). But there are some natural curves that are not the grpah of a function, such as the circle. More
generally, consider a curve C which is given by {(z,y) : #(z,y) = 0}, the level set of some function ¢. Roughly, the implicit
function theorem says that if ¢ is “nice”, then locally (which means that there is a neighborhood) C looks like the graph of
a C! function. Intuitively, if ¢ € C?, then locally there is a tangent plane T' at each point. As long as T is not vertical (i.e.
g—ﬁ(xo, yo) = 0), then we can use it to write C as the graph of a function near (xq,yo)-

Statement of IFT in two-dimensions Let D C R? be open and let ¢ : D — R be C'. Suppose that there exists a
point (zo,yo) € D such that ¢(xg,y0) = 0. This is just the point on the surface we are starting from. Also suppose that

%ﬁ(mo,yo) # 0. Then there exists open U with xo € U and V with 39 € V such that 3!f : U = V, f € C' such that

¢(x,y) =0 < y = f(x). This is also applicable when we exchange the roles of z and y.
Corollary: The Derivatives of f Vz € U, ¢(z, f(z)) = 0. By the chain rule, we differentiate both sides with respect
_%¢
to x to obtain %% + g—‘f;% = % + %f/($> = 0, with the derivatives of ¢ evaluated at (z, f(x)). So f/'(z) = %= (z, f(z)).
‘ By
Hence we can use this to know the linearization of f(z) = f(zo) + (z — zo) f'(x0) + o(|z — z¢]), since f(xo) = yoyand ' (zo0)
is calculated using this Corollary.

Corollary II If C is a compact curve such that V¢ # 0 on C, then we can write C' = U} ;G;, where G; is the graph of
a C! function.

Statement of IFT in n-dimensions Let D C R"*™, and F : D — R™ such that (z,y) = (¢1(z,y), ..., ¢m(z,y)) with
z=(21,...,2,) and y = (y1,...,Ym). Suppose that there exists a (zo,yo) € D such that F(zg,y0) = 0. Also assume that

det (DEF(@ﬁlLOD = det (%) # 0,1 <i,j < m. Then there exists open U with xo € U and open V with yo € V' and

3f : U — V with f € C' such that F(z,y) =0 <= y = f(z). Notice the parallel to the two-dimensional case, since a real
number is non-invertible if and only if it is zero. Hence we require that the Jacobian is invertible, so its determinant is non-zero.

Inverse function Theorem Let D C R” be open. Let G : D — R™ be C!. Suppose that det DG(a) # 0 for a € D.
Then there exists an open U that contains a¢ and V that contains b = G(a) such that G : U — V is bijective, and G~! is C!.
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10.3 Recitation 05 June 2014

cosf —sinf

. , and the determinant is 1.
sinf  cosf

Rotation Matrix For an anticlockwise rotation in #, we have that (

cosf —sinf O
Rotation in the xy plane | sinf cosf 0
0 0 1
cosf 0 —sind
Rotation in the xz plane 0 1 0
sinf 0 cosf

10.4 Final Review 07 June 2014

Example: Conservative Forces and Path independence Consider a path a(t) := (t2,t3 cos(nt)) for ¢t € [0,1] which
traces out the curve C. Let F(x,y) = (y,x) be a vector field. Compute [F -da = fol F(a(t)) - o/(t)dt. Note that F
is continuous since it is the composition of continuous functions. F is also defined on all of R2. Also, the domain R? is
simply connected. We note that gf = gf 2 =1 Hence F is conserative. Since F' is conservative, the line integral of F' is
path-independent. We can hence choose a straight-line path connecting the start and end points of C. We note that the
start point is (0,0) and the end point is (1, —1). We choose 8(t) = (0,0) + ¢(1,—1),¢ € [0, 1] that connects the two points

using a straight line. Then 8'(t) = (1,—1). So the integral is fol F(B(¢)) - (1,-1)dt.

Example 2 Let S be the unit sphere in R*. Compute [[¢(32% — y* + 2?)dS. We note that the surface S is a closed
surface. Also, the function F(z,y,z) = (3z,—y,z) is such that F(x,y,z) -n = (3z,—-y,z) - (z,y,2). So the integral is
ffs(?)a:, —y,2)-ndS. We note that F is C? since it is made up of polynomials. Then by the divergence theorem, the integral

is [[[,, V- (3z, —y,z)dxdydz = [[[,,(3)dzdydz = 4.

Alternative solution to Example 2 Note that [/, 2*dS+ [[44?dS = [[2*dS by symmetry. Formally, we can apply
a coordinate change that exchanges any two coordinates. This coordinate change has determinant 1. Hence the Jacobian
determinant is 1, and the integral will be the same if we exchange between z, y, z. Hence the integral is just ffs 22 +y?+2%dS
by linearity of the integral. But 2 + y? + 22 = 1 since this is the unit sphere. Easy.

Example 3: Another symmetry argument Prove that ffooo e dy = /7. We note that the square of the integral is
1= e’ dy 1= e~ dy = 1= e~ @*+¥*) dzdy. Write this in polar coordinates. Then the integral is fOQW I e~ rdrdf =
oo
0

RIRS

= fozﬂ e /2 = . Hence the square root of this is /7.
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