
Ma1c Notes (Apostol)

1.1 Definitions

1. Open n-ball Let a be a given point in Rn and r be a given positive number. Then the set of all points x ∈ Rn such
that ||x− a|| < r is called an open n-ball of radius r and center a. Call this B(a; r).

2. Interior Point Let S be a subset of Rn and assume that a ∈ S. Then a is an interior point of S if there is an open
n-ball with center at a, all of whose points belong to S. That is, points in the neighbourhood of a all belong to S. The
interior of a set is the largest open set contained in the set.

3. Open Set A set in Rn is called open if all its points are interior points. That is, S is open iff S = intS.

4. Open Covering (R) An open covering of a set A in Rn is a collection U = {Vα} of open sets in Rn such that
A ⊆ ∪αVα. U may be infinite, possibly uncountable.

5. Subcovering (R) A subcovering of an opencovering U = {Vα} of a set A is a subcollection U ′ of U such that any
point of A belongs to some set in U ′.

6. Compact (R) A set A in Rn is compact iff any open covering U = {Vα} of A contains a finite subcovering. This is a
generalization of the notion of being closed and bounded. A closed interval [a, b] ∈ R is compact for any real numbers
a,b by the Heine-Borel Theorem.

7. Bounded A set A in Rn is bounded if we can enclose it in a closed rectangular box.

8. Cartesian Product The Cartesian product of two intervals in R1 is the set in R2 defined by A1×A2 = {(a1, a2)|a1 ∈
A1 and a2 ∈ A2}.

9. Exterior A point x is exterior to a set S if there is an n-ball B(x) containing no points of S. The set of all points in
Rn exterior to S is called the exterior of S, or ext S.

10. Boundary A point which is neither exterior to S nor an interior point of S is called a boundary point of S. The set of
all boundary points of S is called the boundary of S, or ∂S.

11. Polynomial in n variables A scalar field P defined on Rn by a formula of the form P (x) =
∑p1
k1=0 · · ·

∑pn
kn=0 ck1,··· ,knx

k1
1 · · ·xknn

is called a polynomial in n variables x1, . . . , xn.

12. Derivative of scalar field with respect to a vector Given a scalar field f : S → R, where S ⊆ Rn, let a be an
interior point of S and let y be an arbitrary point in Rn. Then the derivative of f at a with respect to y is denoted by

the symbol f ′(a; y) = limh→0
f(a+hy)−f(a)

h , when the limit exists.

13. Directional derivative If y is a unit vector, f ′(a; y) is called the directional derivative of f at a in the direction of y.
Intuitively, it is the instantaneous rate of change of a function, moving through a point with a velocity.

14. Partial derivative If y = ek, the kth unit coordinate vector, the directional derivative f ′(a; ek) is called the partial
derivative with respect to ek, and denoted by Dkf(a). Hence Dkf(a) = f ′(a; ek).

15. Existence of Directional Derivatives through a point does not imply continuity Also, the existence of all
partial derivatives does not imply that the function is differentiable at that point.

16. Differentiable Scalar Field Let f : S → R be a scalar field defined on a set S in Rn. Let a be an interior point of S, and
let B(a; r) be an n-ball lying in S. Let v be a vector with ||v|| < r such that a+v ∈ B(a; r). f is differentiable at a if there
exists a linear transformation Ta : Rn → R and a scalar function E(a,v) such that f(a+v) = f(a)+Ta(v)+ ||v||E(a,v)
for ||v|| < r where E(a,v)→ 0 as ||v|| → 0. The linear transformation Ta is called the total derivative of f at a.

17. Differentiable (R) Let f : D ⊆ Rn → Rm, a ∈ Int(D). Then f is differentiable at a iff there exists a linear map

L : Rn → Rm such that limu→0
||f(a+u)−f(a)−L(u)||

||u|| = 0

18. Gradient ∇f(a) is the vector whose components are the partial derivatives of f at a: ∇f(a) = (D1f(a), . . . , Dnf(a)).

19. Parametrized curve (R Week 3) A parametrized curve in Rn is a continuous function α : [r, s]→ Rn.

20. Curve (R Week 3) A curve C in Rn is the image C = α([r, s]) of the map. This curve has an orientation.

21. Directional Derivative Along a Curve Let T be the unit tangent vector (norm 1) along the curve. Let r describe
a curve C, parametrized by t. Then ∇f [r(t)] · T (t) is the directional derivative of f along the curve C. This can be
written as ∇f · T , or df

ds .
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22. Tangent vector (R Week 3) Let C be a differentiable curve in Rn parametrized by an α : [r, s]→ Rn. Let a = α(t0)
with t0 ∈ [r, s]. Then α′(t0) is called the tangent vector to C at a (in the positive direction). If α′(t0) 6= 0, the tangent
space at a is the one-dimensional subspace of Rn spanned by α′(t0). If α′(t0) = 0 the tangent space at a is undefined.

23. Level Set Let f be a scalar field defined on a set S on Rn. The level set is L(c) = {x|x ∈ S, f(x) = c}.

24. Tangent Plane A plane through a point a with normal vector N consists of all points x satisfying N · (x− a) = 0.

25. Tangent Space (R Week 3) Let f : D ⊆ Rn → R be a differentiable scalar field and a ∈ Lc(f). If ∇f(a) 6= 0 then
we define the tangent space Θa(Lc(f)) to Lc(f) at a to be the vector space Θa(Lc(f)) = {x ∈ Rn|∇f(a) · x = 0}.

26. Normal Vector (R Week 3) A normal vector to Lc(f) at a is a vector v ∈ Rn orthogonal to all vectors in Θa(Lc(f)).

27. Multivariable Tangent Plane The tangent plane to a level surface L(c) at a point a consists of all x in Rn satisfying

∇f(a) · (x − a) = 0. In three dimensions, write ∇f = D1f î + D2f ĵ + D3fk̂. Hence we require D1f(a)(x − x1) +
D2f(a)(y − y1) +D3f(a)(z − z1) = 0.

28. Differentiably parametrized (R Week 3) We say that S ⊂ Rn can be differentiably parametrized around a ∈ S if
there is a bijective differentiable function α : Rk → S ⊂ Rn with α(0) = a and so that the linear map T0α has largest
possible rank, namely k. The tangent space to S at a is simply the image of T0α, a linear subspace of Rn. We must
have k ≤ n.

29. Level set of vector field is an intersection (R Week 3) Let f : Rn → Rm be a vector field with components
(f1, . . . , fm). Then for c = (c1, . . . , cm) ∈ Rm the level set Lc(f) = {x ∈ Rn|f(x) = c} = Lc1(f1) ∩ . . . ∩ Lcm(fm),
and the tangent space Θa(Lc(f)) = {x ∈ Rn|(Tαf)(x) = 0} is defined if Taf has largest possible rank of m. Hence we
require that ∇f1(a) . . .∇fm(a) be linearly independent. We also have Θ(Lc(f)) = Θa(Lc1(f1)) ∩ . . . ∩ Θa(Lcm(fm))
and dimR Θa(Lc(f)) = n−m.

30. Derivative of vector field with respect to a vector Given a vector field f : S → Rm defined on a subset S of Rn.

If a is an interior point of S and if y is any vector in Rn, we can define the derivative f′(a; y) = limh→0
f(a+hy)−f(a)

h
whenever the limit exists. The derivative is a vector in Rn. Hence we can write this as f′(a; y) =

∑m
k=1 f

′
k(a; y)ek.

31. Differentiable Vector Field A vector field f is differentiable at an interior point a if there is a linear transformation
Ta : Rn → Rm such that f(a + v) = f(a) + Ta(a) + ||v||E(a,v) where E(a,v)→ 0 as v→ 0. The linear transformation
Ta is called the total derivative of f at a.

32. Implicit Representation A surface in 3-space can be described by Cartesian equations of the implicit representation
form F (x, y, z) = 0.

33. Jacobian Determinants The determinant of the Jacobian matrix is given by ∂(f1,...,fn)
∂(x1,...,xn) = det


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

...
...

. . .
...

∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn

.

34. Relative maximum The scalar field f is said to have a relative maximum at a of a set S in Rn if f(x) ≤ f(a) in some
n-ball B(a) lying in S. This is an absolute maximum if the inequality holds for all x ∈ S.

35. Extremum A number which is either a relative maximum or a relative minimum of f is called an extremum of f.

36. Stationary Points Assume f is differentiable at a. If ∇f(a) = 0 the point a is called a stationary point of f.

37. Saddle Point A stationary point is called a saddle point if every n-ball B(a) contains points x such that f(x) < f(a)
and other points such that f(x) > f(a).

38. Hessian Matrix The n × n matrix of second-order derivatives Dijf(x) is called the Hessian matrix, and is denoted
by H(x) = [Dijf(x)]ni,j=1 whenever the derivatives exist.

39. n-dimensional interval An n-dimensional interval is the Cartesian product of n one-dimensional closed intervals. If
a = (a1, . . . , an) and b = (b1, . . . , bn), we write [a,b] = [a1, b1] × · · · × [an, bn] = {(x1, . . . , xn)|x1 ∈ [a1, b1], . . . , xn ∈
[an, bn]}.

40. Span THe span of a scalar field f on n-dimensional interval [a,b] is the difference between the maximum and minimum
values of f on the interval.

41. Partition The n-dimensional partition of the interval [a,b] is the Cartesian product P = P1 × · · · × Pn, where each
Pk = {x0, x1, . . . , xr−1, xr} such that ak = x0 ≤ x1 ≤ · · · ≤ xr−1 ≤ xr = bk.
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42. Partition (R Week 4) A partition of R is a finite collection P of subrectangular closed boxes S1, . . . , Sr ⊆ R such
that (i) R = ∪rj=1Sj and (ii) the interiors of Si and Sj have no intersection for all i 6= j.

43. Refinement (R Week 4) A refinement of a partition P = {Sj}rj=1 of R is another partition P ′ = {S′k}mk=1 with each
S′k contained in some Sj .

44. Smooth vs Piecewise Let J = [a, b] be a finite closed interval in R1. A function a : J → Rn which is continuous on
J is called a continuous path in n-space. The path is smooth if the derivative a′ exists and is continuous on the open
interval (a, b). The path is piecewise if the interval [a, b] can be partitioned into a finite number of subintervals in each
of which the path is smooth.

45. Line Integral Let a be a piecewise smooth path in n-space defined on an interval [a, b], and let f be a vector field
defined and bounded on the graph of a. The line integral of f along a is denoted by the symbol

∫
f · da and is

defined by the equation
∫

f · da =
∫ b
a

f[a(t)] · a′(t)dt, whenever the integral exists. In terms of components, this is∑n
k=1

∫ b
a
fk[a(t)]α′k(t)dt =

∫
f1dα1 + · · ·+ fndαn.

46. Orientation Let a be a continuous path defined on an interval [a, b], and let u be a real-valued function that is
differnetiable, with u′ never zero on an interval [c, d], and such that the range of u is [a, b]. Then the function b defined
on [c, d] by the equation b(t) = a[u(t)] is a continuous path having the same graph as a. Two paths a and b so related
are called equivalent. If the derivative of u is always positive on [c, d], the function u is increasing and the two paths a
and b trace out the curve C in the same direction (u is orientation-preserving). If the derivative of u is always negative,
a and b trace out C in opposite directions (u is orientation-reversing).

47. Rectifiable Curve A rectifiable curve is a curve with finite length.

48. Arc-length function Let a be a path with a′ continuous on an interval [a, b]. The arc-length function is s(t) =∫ t
a
||a′(u)||du. The derivative is s′(t) = ||a′(t)||.

49. Line integral with respect to arc length Let a be a path with a′ continuous on an interval [a, b]. Let φ be a scalar
field defined and bounded on C, the graph of a. The line integral of φ with respect to arc length along C is denoted by∫
C
φds =

∫ b
a
φ[a(t)]s′(t)dt whenver the integral exists. If φ is obtained by the dot product of a vector field f defined on

C and the unit tangent vector T(t) = da
ds , then

∫
C
φds =

∫
C

f · da.

50. Flow Integral When f denotes a velocity field and T(t) is the unit tangent vector, then the line integral
∫
C

f ·Tds is
the flow integral of f along C. When C is closed, the flow integral is called the circulation of f along C.

51. Connected Set Let S be an open set in Rn. The set S is connected if every pair of points in S can be joined by a
piecewise smooth path whose graph lies in S.

52. Disconnected Set An open set S is said to be disconnected if S is the union of two or more disjoint non-empty open
sets.

53. Convex Set A set S in Rn is called convex if every pair of points in S can be joined by a line segment, all of whose
points lie in S. Every open convex set is connected.

54. Exact Differential Equation A differential equation P (x, y)dx + Q(x, y)dy = 0 is called exact in S if there is an
associated vector field V(x, y) = P (x, y)i + Q(x, y)j such that V(x, y) = ∇φ(x, y) is the gradient of a scalar potential
for each point in S.

55. Step Function A function f defined on a rectangle Q is said to be a step function if a partition P of Q exists such that
f is constant on each of the open subrectangles of P.

56. Double Integral of a Step Function Let f be a step function which takes the constant value cij on the open
subrectangle (xi−1, xi)× (yj−1, yj) of a rectangle Q. The double integral of f over Q is defined by the formula

∫∫
Q
f =∑n

i=1

∑m
j=1 cij · (xi − xi−1)(yj − yj−1).

57. Integral of a bounded function If there is one and only one number I such that
∫∫
Q
s ≤ I ≤

∫∫
Q
t for every pair of

step functions satisfying s(x, y) ≤ f(x, y) ≤ t(x, y), the number I is called the double integral of f over Q. When such
an I exists, f is said to be integrable on Q.

58. Bounded Set of Content Zero Let A be a bounded subset of the plane. The set A is said to have content zero if
for every ε > 0, there is a finite set of rectangles whose union contains A and the sum of whose areas does not exceed
ε. Hence a bounded plane set of content zero can be enclosed in a union of rectangles whose total area is arbitrarily
small.
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59. Ordinate Set Let S be a type I region bounded between a ≤ x ≤ b, φ1(x) ≤ yφ2(x). If f is non-negative, the set of
points (x, y, z) ∈ R3 such that (x, y) ∈ S and 0 ≤ z ≤ f(x, y) is called the ordinate set of f over S.

60. Closed curves Suppose a curve C is described by a continuous vector-valued function α defined on an interval [a, b].
If α(a) = α(b), the curve is closed.

61. Simple Closed Curve/Jordan Curve A closed curve such that α(t1) 6= α(t2) for every t1 6= t2 in the half open
interval (a, b] is a simple closed curve. A simple closed curve that lies in a plane is called a Jordan curve. A Jordan
curve decomposes the plane into two disjoint open connected sets having the curve C as their common boundary. One
region is bounded, and is called the interior (or inner region) of C. The other is unbounded and is called the exterior
(or outer region) of C.

62. Simply Connected Plane Set Let S be an open connected set in the plane. Then S is called simply connected if,
for every Jordan curve C which lies in S, the inner region of C is also a subset of S.

63. Winding Number Let C be a piecewise smooth closed curve in the plane described by a vector-valued function α
defined on an interval [a, b], say, α(t) = (X(t), Y (t)), t ∈ [a, b]. Let P0 = (x0, y0) be a point which does not lie on the
curve C. Then the winding number of α with respect to the point P0 is denoted by W (α, P0) and is defined to be the

value of W (α, P0) ≡ 1
2π

∫ b
a

[
(X(t)−x0)Y ′(t)

r2 − (Y (t)−y0)X′(t)
r2

]
dt, where r2 = (X(t)−x0)2 + (Y (t)− y0)2. The value of this

integral is always an integer. If C is a Jordan curve, this integer is 0 if P0 is outside C and is +1 if P0 is inside C and
α traces out C in a positive direction, and is −1 if P0 is inside C and α traces out C in a negative direction.

64. Parametric Representations Of a sphere: x = a cosu cos v, y = a sinu cos v, z = a sin v with (u, v) ∈ [0, 2π] ×
[−π/2, π/2]. Of a cone x = v sinα cosu, y = v sinα sinu, z = v cosα, α is half the vertex angle, cone points in the z
direction, (u, v) ∈ [0, 2π]× [0, h].

65. Fundamental Vector Product Consider a surface described by r(u, v) = X(u, v)i + Y (u, v)j + Z(u, v)k, where
(u, v) ∈ T . If X,Y, Z are differentiable on T, define the two vectors ∂r

∂u = (∂X∂u ,
∂Y
∂u ,

∂Z
∂u ), ∂r

∂v = (∂X∂v ,
∂Y
∂v ,

∂Z
∂v ). The

fundamental vector product of the representation r is the cross product of the two vectors:

∂r

∂u
× ∂r

∂v
=

∣∣∣∣ ∂Y
∂u

∂Z
∂u

∂Y
∂v

∂Z
∂v

∣∣∣∣ i+

∣∣∣∣ ∂Z
∂u

∂X
∂u

∂Z
∂v

∂X
∂v

∣∣∣∣ j +

∣∣∣∣ ∂X
∂u

∂Y
∂u

∂X
∂v

∂Y
∂v

∣∣∣∣ k
=
∂(Y,Z)

∂(u, v)
i+

∂(Z,X)

∂(u, v)
j +

∂(X,Y )

∂(u, v)
k

Themagnitude of the fundamental vector product may be thought of as a local magnification factor for areas.

66. Regular Point If point (u, v) ∈ T is such that ∂r
∂u and ∂r

∂v are continuous and the fundamental vector product is

non-zero, then r(u, v) is a regular point of r. At each regular point, the vectors ∂r
∂u and ∂r

∂v determine a tangent plane

having the vector ∂r
∂u ×

∂r
∂v as a normal (section 12.3).

67. Singular Point A point r(u, v) at whch ∂r
∂u or ∂r

∂v fails to be continuous or ∂r
∂u ×

∂r
∂v = 0 is a singular point of r.

68. Smooth Surface A surface r(T ) is smooth if all its points are regular points.

69. Area of a Parametric Surface The area of S is a(S) =
∫∫
T

∣∣∣∣ ∂r
∂u ×

∂r
∂v

∣∣∣∣ dudv. If S is given explicitly as z =

f(x, y), then
∣∣∣∣∣∣ ∂r∂x × ∂r

∂y

∣∣∣∣∣∣ =

√
1 +

(
∂f
∂x

)2

+
(
∂f
∂y

)2

. If S is defined implicitly, then we have to use the Jacobian form:∣∣∣∣∣∣ ∂r∂x × ∂r
∂y

∣∣∣∣∣∣ =

√(
∂(Y,Z)
∂(u,v)

)2

+
(
∂(Z,X)
∂(u,v)

)2

+
(
∂(X,Y )
∂(u,v)

)2

.

70. Surface Integral of Scalar Field (R Week 8) Let S = r(T ) be a parametric surface described by a differen-
tiable function r defined on a region T in the uv-plane, and let f be a scalar field defined and bounded on S. The
surface integral of f over S is denoted by the symbol

∫∫
r(T )

fdS or
∫∫
S
f(x, y, z)dS and is defined by

∫∫
r(T )

fdS =∫∫
T
f [r(u, v)]

∣∣∣∣ ∂r
∂u ×

∂r
∂v

∣∣∣∣ dudv whenver the double integral on the right exists.

71. Surface Integral of Vector Field (R Week 8) Let F be a vector field on Φ. Then the surface integral of F over Φ,

denoted
∫∫

Φ
F ·ndS, is defined by

∫∫
Φ
F ·ndS =

∫∫
T
F (φ(u, v)) ·

(
∂φ
∂u ×

∂φ
∂v

)
dudv, where n is the unit normal vector to

Φ at φ(u, v). If F = (P,Q,R), write
∫∫

Φ
F · ndS =

∫∫
Φ
Pdy ∧ dz +Qdz ∧ dx+Rdx ∧ dy. The bilinear vector product

can be expanded as da ∧ db = ∂(A,B)
∂(u,v) dudv, where a, b = x, y, z.
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72. Smoothly Equivalent (R Week 7a) Suppose a function r maps a region A in the uv-plane onto a parametric surface
r(A). Suppose also that A is the image of a region B in the st-plane under a one-to-one continuously differentiable
mapping G given by G(s, t) = U(s, t)i + V (s, t)j, (s, t) ∈ B. Consider the function R on B by the equation R(s, t) =
r[G(s, t)]. Two functions r and R so related are called smoothly equivalent, and describe the same surface: r(A) and
R(B) are identical as point sets.

73. Simply Connected (R Week 8) A connected open set R ⊆ R2 is called simply connected if for any Jordan curve
C ⊂ R, the interior of C lies completely in R. If a region is not simply connected, it is called multiply connected.

74. Primitive mapping (R Week 8) Let D be an open set in R. A mapping φ : D → R2 is primitive if it is either of
the form g̃ : (u, v) 7→ (u, g(u, v)) or h̃ : (u, v) 7→ (h(u, v), v) with g, h in C1 and ∂g/∂v, ∂/∂u nowhere vanishing on D.

75. Parametrized k-fold (R Week 8) Let n, k be positive integers with k ≤ n. A subset Φ of Rn is called a parametrized
k-fold iff there exists a bounded, connected region T in Rk together with a C1 injective mapping φ : T → Rn, u 7→
(x1(u), x2(u), . . . , xn(u)) such that φ(T ) = Φ. When k = 2, this is a parametrized surface, and when k = 1, it is a
parametrized curve.

76. Orientable surface (R Week 9) A smooth surface Φ is orientable if as we move the inward normal along a curve on
Φ and come back to the initial point, then the inward normal continues to remain the inward normal. A smooth closed
surface is orientable with two possible orientations (inward/outward).

77. K-Forms (R Week 9) A 0-form on R3 is a scalar valued function f , a 1-form is a vector valued function (P,Q,R),
which we write ω = Pdx+Qdy +Rdz. A 2-form is a vector valued function (P,Q,R) which we write ω = Pdy ∧ dz +
Qdz ∧ dx+Rdx ∧ dy. A 3-form is a scalar valued function f which we write as fdx ∧ dy ∧ dz. The degree of a k-form
is k.

78. Derivative of k-forms (R Week 9) The derivative of a k-form is a k+1-form determined as follows: If f is a 0-form,

then df = ∂f
∂xdx+ ∂f

∂y dy+ ∂f
∂z dz. If ω = Pdx+Qdy+Rdz is a 1-form, then dω =

(
∂Q
∂x −

∂P
∂y

)
dx∧ dy+

(
∂R
∂x −

∂P
∂z

)
dx∧

dz+
(
∂R
∂y −

∂Q
∂z

)
dy ∧ dz. If ω = Pdy ∧ dz+Qdz ∧ dx+Rdx∧ dy is a 2-form, then dω =

(
∂P
∂x + ∂Q

∂y + ∂R
∂z

)
dx∧ dy ∧ dz.

If ω = fdx ∧ dy ∧ dz is a 3-form, then dω = 0.

1.2 Theorems

Theorem 5 (R Week 1) Let A be a subset of Rn which is closed and bounded. Then A is compact.

Corollary 1 (R Week 1) Closed balls and spheres in Rn are compact.

Proposition 1 (R Week 1) Let f : D → Rm be a vector field. Then f is continuous at every point a ∈ D iff the
following holds: for every open set W of Rm, its inverse image f−1(W ) := {x ∈ D|f(x) ∈W} ∈ D is open.

Proposition 2 (R Week 1) Let f : Rn → Rm be continuous. Then, given any compact set C of Rn, f(C) is compact.

Corollary 2 (R Week 1) Any continuous real valued function f on a compact set C ⊂ Rn has a maximum and a
minimum, i.e. there are xmax and xmin ∈ C so that f(xmin) ≤ f(x) ≤ f(xmax) for all x ∈ C.

Theorem 8.1 If limx→a f(x) = b and limx→a g(x) = c, then we also have:
(a) limx→a[f(x) + g(x)] = b + c (not proven)
(b) limx→a λf(x) = λb (not proven)
(c) limx→a f(x) · g(x) = b · c
(d) limx→a ||f(x)|| = ||b||.

Continuity A function f(x) = (f1(x), f2(x), . . . , fm(x)) is continous at a point iff each component fk is continuous at
that point. (Not proven completely in text)

Theorem 8.2 Let f and g be functions such that the composite function f ◦ g is defined at a, where (f ◦ g)(x) = f(g(x)).
If g is continuous at a and f is continuous at g(a), then the composition f ◦ g is continuous at a.

Theorem 8.3 Let g(t) = f(a + ty). If one of the derivatives g(t) or f ′(a + ty; y) exists, then the other also exists and
the two are equal. In particular, g′(0) = f ′(a; y).
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Theorem 8.4 Mean value theorem for derivatives of scalar fields: Assume f ′(a + ty; y) exists for each t in the interval
0 ≤ t ≤ 1. Then for some real θ in the open interval 0 < θ < 1 we have f(a + y)− f(a) = f ′(z; y), where z = a + θy.

Theorem 8.5 Assume scalar field f is differentiable at a with total derivative Ta. Then the derivative f ′(a; y) exists for
every y in Rn and we have Ta(y) = f ′(a; y). f ′(a; y) is a linear combination of the components of y. If y = (y1, . . . , yn),
then we have f ′(a; y) =

∑n
k=1Dkf(a)yk. This can be written as f ′(a; y) = ∇f(a) · y.

Lemma 1 (R Week 2) The total derivative linear map, if it exists, is unique.

Theorem 8.6 If a scalar field f is differentiable at a, then f is continuous at a.

Theorem 8.7 Sufficient condition for differentiability: Assume that the partial derivatives D1f, . . . ,Dnf exist in some
n-ball B(a) and are continuous at a. Then f is differentiable at a. Call f continuously differentiable.

Theorem 8.8 Multivariable Chain Rule. Let f be a scalar field defined on an open set S in Rn and let r be a vector-
valued function which maps an interval J from R1 into S. Define the composite function g = f ◦ r on J by the equation
g(t) = f [r(t)] if t ∈ J . Let t be a point in J at which r′(t) exists and assume that f is differentiable at r(t). Then g′(t)
exists and is equal to the dot product g′(t) = ∇f(a) · r′(t), where a = r(t).

Theorem 8.9 Assume vector field f is differentiable at a with total derivative Ta. Then the derivative f′(a; y) exists for
every y (?) in Rn and Ta(y) = f′(a; y). Let f = (f1, . . . , fm) and y = (y1, . . . , yn). Then Ta(y) =

∑m
k=1∇fk(a) · yek =

(∇f1(a) · y, . . . ,∇fm(a) · y). This can be written as Ta(y) = Df(a)y, where Df(a) is the m× n Jacobian matrix whose kth
row is ∇fk(a). The i, jth entry is the partial derivative Djfi(a). Hence,

Df(a) =


D1f1(a) D2f1(a) · · · Dnf1(a)
D1f2(a) D2f2(a) · · · Dnf2(a)

...
...

. . .
...

D1fm(a) D2fm(a) · · · Dnfm(a)


The Jacobian matrix is defined at each point where the mn partial derivatives Djfi(a) exist. The Jacobian matrix can also
be written as f′(a), and is the matrix representation for the linear transformation Ta.

Linear Map continuous: Lemma 4 (R Week 2) Let T : Rn → Rm be a linear map. Then ∃c > 0 such that
||Tv|| ≤ c||v|| for any v ∈ Rn.

Theorem 8.10 If a vector field f is differentiable at a, then f is continuous at a. (R): However, this does not mean that
the partial derivatives are continuous at a.

Lemma 2 (R Week 2) Let f1, . . . , fm be the component scalar fields of vector field f. Then f is differentiable at a iff
each fi is differentiable at a.

Theorem 8.11 Vector Field Chain Rule: Let f and g be vector fields such that the composition h = f ◦ g is defined in a
neighbourhood of a point a. Assume that g is differentiable at a, with total derivative g′(a). Let b = g(a) and assume that
f is differentiable at b, with total derivative f′(b). Then h is differentiable at a, and the total derivative h′(a) is given by
h′(a) = f′(b)◦g′(a). Note that this can be written as h′(a) = f′(g(a))◦g′(a). In Jacobian matrix form, Dh(a) = Df(b)Dg(a).

Total Derivatives of composite functions (R Theorem 1f) Assume Taf and Tag exist. Then Ta(f + g) exists
and Ta(f + g) = Taf + Tag. If f and g are scalar fields, and are differentiable at a, then Ta(fg) = f(a)Tag + g(a)Taf and

Ta(f/g) = g(a)Taf−f(a)Tag
g(a)2 if g(a) 6= 0.

Theorem 8.12 Sufficient condition for equality of mixed partial derivatives: Assume f is a scalar field such that the
partial derivatives D1f , D2f , D1,2f and D2,1f exist on an open set S. If (a, b) is a point in S at which both D1,2f and D2,1f
are continuous, we have D1,2f(a, b) = D2,1f(a, b).

Tangent vector in tangent space (R Week 3 Proposition 1) Let f : D ⊆ Rn → R be a differentiable scalar field,
with α : R →  Lc(f) a curve whcih is differentiable at t0 ∈ R and so that a = α(t0) is a smooth point of Lc(f). Then
α′(t0) ∈ Θa(Lc(f)).

Theorem 8.13 A stronger version of Theorem 8.12. Let f be a scalar field such that the partial derivatives D1f , D2f and
D2,1f exist on an open set S containing (a, b). Assume further that D2,1f is continuous on S. Then the derivative D1,2f(a, b)
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exists and we have D1,2f(a, b) = D2,1f(a, b).

Theorem 9.1 Let g be differentiable on R1 and let f be the scalar field defined on R2 by the equation f(x, y) = g(bx−ay),

where a and b are constants, not both zero. Then f satisfies the first-order partial differential equation a∂f(x,y)
∂x + b∂f(x,y)

∂y = 0

everywhere in R2. Also, every differentiable solution of the PDE has the form of f for some g.

Theorem 9.2 D’Alembert’s solution of the wave equation. Let F and G be given functions such that G is differentiable
and F is twice differentiable on R1. Then the function f given by the formula:

f(x, t) =
F (x+ ct) + F (x− ct)

2
+

1

2c

∫ x+ct

x−ct
G(s)ds

satisfies the one-dimensional wave equation: ∂2f
∂t2 = c2 ∂

2f
∂x2 and the initial conditions f(x, 0) = F (x), D2f(x, 0) = G(x) (i.e.

differentiation with respect to the second variable, t). Conversely, any function f with equal mixed partials which satisfies
the initial conditions and the wave equation necessarily has the form above.

Theorem 9.3 Let F be a scalar field differentiable on an open set T in Rn. Assume that the equation F (x1, . . . , xn) = 0
defines xn implicitly as a differentiable function of x1, . . . , xn−1, say, xn = f(x1, . . . , xn−1) for all points (x1, . . . , xn−1)
in some open set S in Rn−1. Then for each k = 1, 2, . . . , n − 1, the partial derivative Dkf is given by the formula
Dkf = −DkF

DnF
at those points at which DnF 6= 0. The partial derivatives involving DkF and DnF are evaluated at

the point (x1, . . . , xn−1, f(x1, . . . , xn−1)).

Theorem 9.4 Second-order Taylor Formula for Scalar Fields: Let f be a scalar field with continuous second-order partial
derivatives Dijf in an n-ball B(a) (so that the mixed derivatives are symmetric). Then for all y ∈ Rn such that a+y ∈ B(a),
we have:

f(a + y)− f(a) = ∇f(a) · y +
1

2!
yH(a + cy)yt, 0 < c < 1

This can also be written in the form:

f(a + y)− f(a) = ∇f(a) · y +
1

2!
yH(a)yt + ||y||2E2(a,y)

where E2(a,y)→ 0 as y→ 0.

Theorem 9.5 Let A = [aij ] be an n × n real symmetric matrix, and let Q(y) = yAyt =
∑n
i=1

∑n
j=1 aijyiyj . Then we

have (a) Q(y) > 0 for all y 6= 0 iff all the eigenvalues of A are positive (positive definite) (b) Q(y) < 0 for all y 6= 0 iff all the
eigenvalues of A are negative (negative definite).

Theorem 9.6 Let f be a scalar field with continuous second-order partial derivatives Dijf in an n-ball B(a), and let
H(a) denote the Hessian matrix at a stationary point a. Then we have (a) If all the eigenvalues of H(a) are positive, f
has a relative minimum at a (b) If all the eigenvalues of H(a) are negative, f has a relative maximum at a (c) If H(a) has
both positive and negative eigenvalues, then f has a saddle point at a. If all the eigenvalues of H(a) are zero, there is no
information concerning the stationary point.

Theorem 9.7 Let a be a stationary point of a scalar field f(x1, x2) with continuous second-order partial derivatives in a

2-ball B(a). Let A = D1,1f(a), B = D1,2f(a), C = D2,2f(a), and let ∆ = detH(a) = det

(
A B
B C

)
= AC −B2. Then we

have (a) if ∆ < 0, f has a saddle point at a, (b) if ∆ > 0 and A > 0, f has a relative minimum at a, (c) if ∆ > 0 and A < 0,
f has a relative maximum at a, (d) if ∆ = 0, the test is inconclusive.

Method of Lagrange’s multipliers If a scalar field f(x1, . . . , xn) has a relative extremum when it is subject to m
constraints, say g1(x1, . . . , xn) = 0, . . . , gm(x1, . . . , xn) = 0, where m < n, then there exist m scalars λ1, . . . , λm such that
∇f = λ1∇g1 + . . .+λm∇gm at each extremum point. Consider the system of n+m equations, and solve these for the n+m
unknowns x1, . . . , xn, λ1, . . . , λm.

Theorem 9.8 Boundedness Theorem for Continuous Scalar Fields. If f is a scalar field continuous at each point of a
closed interval [a,b] ∈ Rn, then f is bounded on [a,b]. That is, there is a number C ≥ 0 such that |f(x)| ≤ C for all x ∈ [a,b].
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Theorem 9.9 Extreme-value Theorem for Continuous Scalar Fields: If f is continuous on a closed interval [a,b] ∈ Rn,
then there exist points c and d in [a,b] such that f(c) = sup f and f(d) = inf f .

Theorem 9.10 Let f be a scalar field continuous on a closed interval [a,b] ∈ Rn. Then for every ε > 0 there is a partition
of [a,b] into a finite number of subintervals such that the span of f in every subinterval is less than ε.

Theorem 10.1 Let a and b be equivalent piecewise smooth paths. Then we have
∫
C

f · da =
∫
C

f · db if a and b trace
out C in the same direction, and

∫
C

f · da = −
∫
C

f · db if a and b trace out C in the opposite direction.

Theorem 10.2 Second Fundamental theorem of calculus for line integrals: Let φ be a real function that is continuous on

a closed interval [a, b] and assume that the integral
∫ b
a
φ′(t)dt exists. If φ′ is continuous on the open interval (a, b), we have∫ b

a
φ′(t)dt = φ(b)− φ(a).

Second Fundamental Theorem of Calculus for Line Integrals (R) Let g be a differentiable scalar field with
continuous gradient ∇g on an open set D in Rn. Then, for any two points P,Q ∈ D joined by a piecewise C1 path C lying
completely in D and parametrized by α : [a, b]→ D with α(a) = P and α(b) = Q, we have

∫
C
∇g · dα = g(Q)− g(P ).

Week 6 Corollary 1 Let g be a differentiable scalar field with continuous gradient ∇g on an open set D in Rn. Then
for any point P ∈ D and any piecewise C1 path connecting P to itself, we have

∫
C
∇g · dα = 0.

Theorem 10.3 Second Fundamental theorem of calculus for line integrals (multivariable): Let φ be a differentiable scalar
field with a continuous gradient ∇φ on an open connected set S in Rn. Then for any two points a and b joined by a piecewise

smooth path α in S we have
∫ b
a
∇φ · dα = φ(b) − φ(a). Note this is independent of the path in any open connected set

whenever the gradient is continuous.

Theorem 10.4 First Fundamental Theorem for Line Integrals: Let f be a vector field that is continuous on an open
connected set S in Rn, and assume that the line integral of f is independent of the path in S. Let a be a fixed point of S and
define a scalar field φ on S by the equation φ(x) =

∫ x
a

f · dα, where α is any piecewise smooth path in S joining a to x. Then
the gradient of φ exists and is equal to f, that is, ∇φ(x) = f(x),∀x ∈ S.

Theorem 10.5 Necessary and Sufficient conditions for a vector field to be a gradient: Let f be a vector field continuous
on an open connected set S in Rn. Then the following three statements are equivalent: (a) f is the gradient of some potential
function in S, (b) the line integral of f is independent of the path in S, (c) the line integral of f is zero around every piecewise
smooth closed path in S.

Theorem 10.6 Necessary conditions for a vector field to be a gradient: Let f = (f1, . . . , fn) be a continuously differen-
tiable vector field on an open set S in Rn. If f is a gradient on S, then the partial derivatives of the components of f are
related by the equations Difj(x) = Djfi(x) for i, j = 1, 2, . . . , n and every x in S.

Theorem 10.7 Assume the differential equation P (x, y)dx+Q(x, y)dy = 0 is exact in an open connected set S, and let
φ be a scalar field satisfying ∂φ

∂x = P and ∂φ
∂y = Q everywhere in S. Then every solution y = Y (x) whose graph lies in S

satisfies the equation φ[x, Y (x)] = C for some constant C. Conversely, if the equation φ(x, y) = C defines y implicitly as a
differentiable function of x, then this function is a solution of the differential equation.

Theorem 10.8 Differentiation under the integral sign: Let S be a closed interval in Rn with nonempty interior and
let J = [a, b] be a closed interval in R1. Let Jn+1 be the closed interval S × J in Rn+1. Write each point in Jn+1 as
(x, t),x ∈ S and t ∈ J . Assume that ψ is a scalar field defined on Jn+1 such that the partial derivative Dkψ is continuous

on Jn+1, where k = 1, 2, . . . , n. Define a scalar field φ on S by the equation φ(x) =
∫ b
a
ψ(x, t)dt. Then the partial derivative

Dkφ exists at each interior point of S and is given by the formula Dkφ(x) =
∫ b
a
Dkψ(x, t)dt. In other words, we have

Dk

∫ b
a
ψ(x, t)dt =

∫ b
a
Dkψ(x, t)dt.

Theorem 10.9 Necessary and sufficient condition for a vector field to be a gradient: Let f = (f1, . . . , fn) be a continuously
differentiable vector field on an open convex set S in Rn. Then f is a gradient on S iff we have Dkfi(x) = Djfk(x) for each
x ∈ S and all k, j = 1, 2, . . . , n.

Conservative Fields (R Week 6) Corollary 2 Let D be an open set in Rn and let f : D → Rn be a continuous
vector field. Then TFAE: (i) f∇φ for some potential function φ, (ii) the line integral of f over piecewise C1 curves in D is
path independent (iii) the line integral of f over closed, piecewise C1 curves in D are zero. Any vector field satisfying these
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is conservative.

Theorem 11.1 Double integration is linear (not proven): ∀c1, c2 ∈ R,
∫∫
Q

[c1s(x, y)+c2t(x, y)]dxdy = c1
∫∫
Q
s(x, y)dxdy+

c2
∫∫
Q
t(x, y)dxdy.

Theorem 11.2 Double integration is additive (not proven): If Q is subdivided into two rectangles Q1 and Q2, then∫∫
Q
s(x, y)dxdy =

∫∫
Q1
s(x, y)dxdy +

∫∫
Q2
s(x, y)dxdy.

Theorem 11.3 Comparison Theorem (not proven): If s(x, y) ≤ t(x, y) for every (x, y) in Q, then
∫∫
Q
s(x, y)dxdy ≤∫∫

Q
t(x, y)dxdy. If t(x, y) ≥ 0 for all (x, y) ∈ Q, then

∫∫
Q
t(x, y)dxdy ≥ 0.

Theorem 11.4 Every function f which is bounded on a rectangle Q has a lower intgral Il(f) and an upper integral Iu(f)
satisfying the inequalities

∫∫
Q
s ≤ Il ≤ Iu ≤

∫∫
Q
t for all step functions s and t with s ≤ f ≤ t. The function f is integrable

on Q iff its upper and lower integrals are equal, in which case we have
∫∫
Q
f = Il(f) = Iu(f).

Theorem 1 (R Week 4) Every continuous function f on a closed rectangular box R is integrable.

Small Span Theorem (R Week 4) For every ε > 0, there exists a partition P = {Sj}rj=1 of R such that spanf (Sj) < ε
for each j ∈ {1, . . . , r}.

Theorem 11.5 (Fubini’s Theorem) Let f be defined and boundeed on a rectangle Q = [a, b] × [c, d] and assume

that f is integrable on Q. For each fixed y in [c, d], assume that the one-dimensional integral
∫ b
a
f(x, y)dx exists, and

denote its value by A(y). If the integral
∫ d
c
A(y)dy exists it is equal to the double integral

∫∫
Q
f . In other words,∫∫

Q
f(x, y)dxdy =

∫ d
c

[
∫ b
a
f(x, y)dx]dy. Note that if f is non-negative, then this integral is equal to the volume of the or-

dinate set of f over Q.

Theorem 11.6 Integrability of continuous functions: If a function f is continuous on a rectangle Q = [a, b]× [c, d], then f

is integrable on Q. Moreover, the value of the integral can be obtained by iterated integration
∫∫
Q
f =

∫ d
c

[
∫ b
a
f(x, y)dx]dy =∫ b

a
[
∫ d
c
f(x, y)dy]dx.

Integration on compact regions: Theorem 6 (R Week 4) Let Z be a compact subset of Rn such that the boundary
of Z has content zero. Then any function f on Z which is continuous on Z is integrable over Z.

Theorem 11.7 Let f be defined and bounded on a rectangle Q = [a, b]× [c, d]. If the set of discontinuities of f in Q is a
set of content zero then the double integral

∫∫
Q
f exists.

Theorem 11.8 Let φ be a real-valued function that is continuous on an interval [a, b]. Then the graph of φ has content
zero.

Theorem 11.9 Let S be a region of type I, between the graphs of φ1 and φ2. Assume that f is defined and bounded
on S and that f is continuous on the interior of S. Then the double integral

∫∫
S
f exists and can be evaluated by repeated

one-dimensional integration:
∫∫
S
f(x, y)dxdy =

∫ b
a

[∫ φ2(x)

φ1(x)
f(x, y)dy

]
dx. This works for a region of type II also, but just

reverse the order of integration.

Pappus’ Theorem Consider a plane region Q lying between the graphs of two continuous functions f and g over an
interval [a, b], where 0 ≤ g ≤ f . Let S be the solid of revolution generated by rotating Q about the x-axis. Let a(Q) denote
the area of Q, v(s) the volume of S and ȳ the y-coordinate of the centroid of Q. As Q is rotated to generate S, the centroid
travels along a circle of radius ȳ. Pappus’ theorem states that the volume of S is equal to the circumference of this circle
multipled by the area of Q: v(S) = 2πȳa(Q).

Jordan Curve Theorem (R Week 7) Let C be a Jordan curve in R2. Then there exists connected open sets U, V in
the plane such that (i) U, V,C are pairwise mutually disjoint, and (ii) R2 = U ∪ V ∪ C.

Theorem 11.10: Green’s Theorem Let P and Q be scalar fields that are continuously differentiable on an open set
S in the xy-plane. Let C be a piecewise smooth Jordan curve, and let R denote the union of C and its interior. Assume

R is a subset of S. Then we have the identity
∫∫
R

(
∂Q
∂x −

∂P
∂y

)
dxdy =

∮
C

(Pdx + Qdy) where the line integral is taken

around C in the counterclockwise direction. Note that this is equivalent to the two formulae:
∫∫
R
∂Q
∂x dxdy =

∮
C
Qdy and
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−
∫∫
R
∂P
∂y dxdy =

∮
C
Pdx, by taking P = 0 or Q = 0 respectively.

Green’s Theorem using Curl (R Week 7a) Consider a plane region Φ with boundary as a piecewise C1 Jordan curve
C, with a C1 vector field g = (P,Q) on an open set D containing Φ. Then

∫∫
Φ

(∇× f) · kdxdy =
∮
C
Pdx+Qdy.

Area expressed as a line integral a(R) = 1
2

∫ b
a

∣∣∣∣ X(t) Y (t)
X ′(t) Y ′(t)

∣∣∣∣ dt.
Isoperimetric Inequality (Wirtinger Inequality, R Week 7) 4πA ≤ L2, L =

∮
C
ds is the length of a Jordan curve C.

Theorem 11.11 Let f(x, y) = P (x, y)i +Q(x, y)j be a vector field that is continuously differentiable on an open simply
connected set S in the plane. Then f is a gradient on S if and only if we have ∂P

∂y = ∂Q
∂x everywhere on S.

Theorem 11.12 Green’s Theorem for Multiply Connected Regions. Let C1, . . . , Cn be n piecewise smooth Jordan curves
having the following properties: (a) No two of the curves intersect. (b) The curves C2, . . . , Cn all lie in the interior of C1.
(c) Curve Ci lies in the exterior of curve Cj for each i 6= j, i > 1, j > 1. Let R denote the region which consists of the
union of C1 with that portion of the interior of C1 that is not inside any of the curves C2, C3, . . . , Cn. Let P and Q be

continuously differentiable on an open set S containing R. Then we have the following identity:
∫∫
R

(
∂Q
∂x −

∂P
∂y

)
dxdy =∮

C1
(Pdx+Qdy)−

∑n
k=2

∮
Ck

(Pdx+Qdy).

Theorem 11.13 Invariance of a line integral under deformation of the path. Let P and Q be continuously differentiable
on an open connected set S in the plane, and assume that ∂P

∂y = ∂Q
∂x everywhere on S. Let C1 and C2 be two piecewise smooth

Jordan curves lying in S and satisfying the following conditions: (a) C2 lies in the interior of C1 (b) Those points inside C1

which lie outside C2 are in S. Then we have
∮
C1
Pdx + Qdy =

∮
C2
Pdx + Qdy where both curves are traversed in the same

direction.

Transforming Double Integrals Consider X(u, v) and Y (u, v) in C1 on S. Let T be the set of points in the uv plane that
is mapped on to the xy plane. The double integral can be written as

∫∫
S
f(x, y)dxdy =

∫∫
T
f [X(u, v), Y (u, v)]|J(u, v)|dudv,

where J(u, v) is the Jacobian determinant. If J(u, v) = 0 at a particular point, that point is called a singular point. The
transformation formula is value when the singular points form a set of content zero.

Linear Transformation Consider a linear transformation x = Au + Bv, y = Cu + Dv, A,B,C,D constants. Then
J(u, v) = AD − BC, and for the linear transformation to have an inverse, J(u, v) 6= 0. The transformation formula is∫∫
S
f(x, y)dxdy = |AD −BC|

∫∫
T
f(Au+Bv,Cu+Dv)dudv.

Cross Product Lemma 1 (R Week 7a) (a) v × v′ = −v′ × v, (b) i × j = k, j × k = i, k × i = j, (c) v · (v × v′) =
v′ · (v × v′) = 0.

Curl Proposition 1 (R Week 7a) Let h be a C2 scalar field and let f be a C2 vector field. Then (a) ∇× (∇h) = 0
(b) ∇ · (∇× f) = 0.

Zero curl is conservative (R Week 7a) Let g : D ⊆ R2 → R2, D open and simply connected, g = (P,Q) being a
C1 vector field. Set f(x, y, z) = g(x, y) for all (x, y, z) ∈ R3 with (x, y) ∈ D. Suppose ∇×f = 0. Then g is conservative on D.

Change of variables in an n-fold integral Define new variables u1, . . . , un such that x1 = X1(u1, . . . , un), . . . , xn =
Xn(u1, . . . , un). If this is a one-to-one continuously differentiable mapping on T with Jacobian never zero, the transformation
formula is

∫
S
f(x)dx =

∫
T
f(X(u))|detDX(u)|du, where x = (x1, . . . , xn), u = (u1, . . . , un).

Transformation Formula (R Week 8) Let D be a bounded open set in Rn, φ : D → Rn a C1 one-to-one mapping
with Jacobian determinant det(Dφ) non-vanishing everywhere on D. Let D∗ = φ(D), and let f be an integrable function on
D∗. Then

∫
· · ·
∫
D
f(φ(u))|detDφ(u)|du1 · · · dun =

∫
· · ·
∫
D∗ f(x)dx1 · · · dxn.

Area cosine principle If a region S in one plane is projected onto a region T in another plane, making an angle γ with
the first plane, then the area of T is cos γ times the area of S.

Implicit area Suppose S is given by an implicit representation F (x, y, z) = 0. If S can be projected in a one-
to-one fashion on the xy-plane, the equation F (x, y, z) = 0 defines z as a function of x and y, say z = f(x, y) and

the partial derivatives are ∂f
∂x = −∂F/∂x∂F/∂z and ∂f

∂y = −∂F/∂y∂F/∂z for those points at which ∂F
∂z 6= 0. Hence we have that

a(S) =
∫∫
T

√
(∂F/∂x)2+(∂F/∂y)2+(∂F/∂z)2

|∂F/∂z| dxdy.
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Explicit parametrization (R Week 8) Let Φ be a surface in R3 parametrized by a C1, 1-1 function φ : T → R3,
φ(u, v) = (u, v, h(u, v)), which means that Φ is the graph of z = h(x, y). Then for any integrable scalar field f on Φ, we have∫∫

Φ
fdS =

∫∫
T
f(u, v, h(u, v))

√(
∂h
∂u

)2
+
(
∂h
∂v

)2
+ 1dudv.

Theorem of Pappus (Surface of Revolution) The surface of revolution obtained by rotating a plane curve of length
L about an axis in the plane of the curve has area 2πLh, where h is the distance from the centroid of the curve to the axis
of rotation. If the equation of the curve on a plane was z = f(x), a ≤ x ≤ b, a ≥ 0, then the surface of revolution when the

curve is rotated in the z-axis is a(S) = 2π
∫ b
a
u
√

1 + [f ′(u)]2du.

Theorem 12.1 Let r and R be smoothly equivalent functions related by R(s, t) = r[G(s, t)] where G = Ui + V j is
a one-to-one continuously differentiable mapping of a region B in the st-plane onto a region A in the uv-plane given by

G(s, t) = U(s, t)i+ V (s, t)j, (s, t) ∈ B. Then we have ∂R
∂s ×

∂R
∂t =

(
∂r
∂u ×

∂r
∂v

) ∂(U,V )
∂(s,t) where the partial derivatives ∂r/∂u and

∂r/∂v are evaluated at the point (U(s, t), V (s, t)).

Theorem 12.2 Let r and R be smoothly equivalent functions. If the surface integral
∫∫
r(A)

fdS exists, the surface

integral
∫∫
R(B)

fdS also exists and we have
∫∫
r(A)

fdS =
∫∫
R(B)

fdS.

Volumes and Surface Areas of n-spheres (Wiki) The n-sphere is the set of points in n + 1 space that are a fixed
distance from a particular point. Hence a 2-sphere is the usual surface of a sphere in 3 dimensions. V0 = 1, S0 = 2, Vn+1 =

Sn/(n+ 1), Sn+1 = 2πVn for a unit n-sphere. Or in closed form, Sn−1 = nπn/2

Γ( n
2 +1)R

n−1 and Vn(R) = πn/2

Γ( n
2 +1)R

n.

Volume of parallelpiped (R Week 8) If v1, . . . , vn are linearly independent vectors in Rn, then the volume of the paral-
lelpiped P spanned by the vectors is vol(P ) = |det(vij)|, where vij , j = 1, . . . , n are the coordinates of vi. Note that (vij)·(vij)t
is the symmetric matrix with entries < vj , vi >, the inner product of the jth and ith vector. Hence vol(P ) =

√
det(< vi, vj >).

Volume integral of scalar field on k-fold parametrization (R Week 8) Consider a k-fold parametrization Φ ⊆ Rn

and an integrable scalar valued function f over Φ. Then
∫∫

Φ
fdV =

∫∫
T
f(u)

√
det
(
< ∂φ

∂ui
(u), ∂φ∂uj

(u) >
)
du1 · · · duk.

Lemma 1 (R Week 9) Let A = (a1, a2, a3), B = (b1, b2, b3), C = (c1, c2, c3). Then A · (B × C) = det

 a1 a2 a3

b1 b2 b3
c1 c2 c3

.

Theorem 12.3: Stokes’ Theorem Assume that S is a smooth simple parametric surface, say S = r(T ), where T is a
region in the uv-plane bounded by a piecewise smooth Jordan curve Γ. Assume also that r is a one-to-one mapping whose
components have continuous second-order partial derivatives on some open set containing T ∪ Γ. Let C denote the image
of Γ under r, and let P,Q,R be continuously differentiable scalar fields on S. Let the curve Γ be traversed in the positive
(counterclockwise) direction and let the curve C be traversed in the direction inherited from Γ through the mapping function
r. Then we have:

∫∫
S

(
∂R

∂y
− ∂Q

∂z

)
dy ∧ dz +

(
∂P

∂z
− ∂R

∂x

)
dz ∧ dx+

(
∂Q

∂x
− ∂P

∂y

)
dx ∧ dy =

∫
C

Pdx+Qdy +Rdz

We can also write this as
∫∫
S

(∇× F ) · ndS =
∫
C
F · dα.

Theorem 12.4 Let F = (P,Q,R) on a continuously differentiable vector field on an open convex set S in 3-space. Then
F is a gradient on S iff we have curlF = 0 on S.

Properties of the curl and divergence ∇× (∇φ) = 0,∇ · (∇× φ) = 0 for every scalar field with continuous second
order mixed partial derivatives (C2).

Theorem 12.5 Let F be continuously differentiable on an open interval S in 3-space. Then there exists a vector field G
such that ∇×G = F iff ∇ · F = 0 everywhere in S.

Theorem 12.6: Divergence Theorem Let V be a solid in 3-space bounded by an orientable closed surface S, and let
n be the unit outer normal to S. If F is a continuously differentiable vector field defined on V, we have

∫∫∫
V

(∇·F )dxdydz =∫∫
S
F · ndS. Writing F = (P,Q,R) and n = cosαi + cosβj + cos γk, we re-write this as

∫∫∫
V

(
∂P
∂x + ∂Q

∂y + ∂R
∂z

)
dxdydz =∫∫

S
(P cosα+Q cosβ +R cos γ)dS.

11



Theorem 2: Gauss Divergence Theorem (R Week 9) Let V be a region in R3 with boundary Φ, a closed sur-
face, oriented by choosing the unit outward normal n to Φ. Let F = (P,Q,R) be a C1 vector field on V . Then we have∫∫∫

V
(∇ · F )dxdydz =

∫∫
Φ
F · ndS. In the notation of exterior differential calculus,

∫∫∫
V

(
∂P
∂x + ∂Q

∂y + ∂R
∂z

)
dx ∧ dy ∧ dz =∫∫

Φ
Pdy ∧ dz +Qdz ∧ dx+Rdx ∧ dy.

Theorem 12.7 Let V (t) be a solid sphere of radius t > 0 with center at a point a in 3-space, and let S(t) denote the
boundary of V (t). Let F be a vector field that is continuously differentiable on V (t). Then if |V (t)| denotes the volume of
V (t), and if n denotes the unit outer normal of S, we have ∇ · F (a) = limt→ 0

1
|V (t)|

∫∫
S(t)

F · ndS.

Curl Alternative Definition (Equation 12.61) ∇×F (a) = limt→0
1

|V (t)|
∫∫
S(t)

n×FdS, where V (t) is a solid sphere

of radius t > 0 centered at a point a in 3-space and S(t) is the boundary of V (t). n is the unit outer normal of S.

Curl Alternative Definition (Equation 12.62) n · (∇×F (a) = limt→0
1
|S(t)|

∮
C(t)

F ·dα. where α is the function that

traces out C(t) in a direction that appears to be counterclockwise when viewed from the tip of n.
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