
Ma1b Notes

1.1 08 Jan 2014 Lecture

Definition Let A be a set and ∗ be a binary operation on A; that in ∗, A × A → A, and a ∗ b denotes the image of
(a, b) ∈ A×A under ∗. Call a∗b the product of a and b. ∗ is associative if ∀a, b, c ∈ A, a∗ (b∗c) = (a∗b)∗c. ∗ is commutative
if ∀a, b ∈ A, a ∗ b = b ∗ a.

Definition Identity for ∗ is some e ∈ A such that ∀a ∈ A, a ∗ e = a = e ∗ a. Note that the identity multiplies to the left and
right to the same effect.

Lemma 1A A binary operation has at most one identity.

Proof of Lemma Let e, f be identities for ∗. Then f = e ∗ f = e, hence f = e, and there is only one identity.

Definition The inverse is an element b ∈ A for a such that a ∗ b = e = b ∗ a, if e is the identity for ∗.

Lemma 1B A function f : X → X has an inverse with respect to composition ◦ iff f is a one-one correspondence. A function
f is a one-one correspondence if ∀y ∈ X,∃ a unique x ∈ X with f(x) = y.

Proof of Lemma ⇐: Suppose f is a one-one correspondence. Define g : X → X mapping f(x) 7→ x. We claim that g is an
inverse for f . That is, f ◦ g = idx = g ◦ f . Note that (g ◦ f)(x) = g(f(x)) = x = idx(x), hence g ◦ f = idx. Same argument
applies for (f ◦ g).

Lemma 1C If ∗ is an associated binary operation then each a ∈ A has at most one inverse.

Proof of Lemma Suppose there are two inverses b, c for a. Then a ∗ b = e = c ∗ a by the definition of the inverse. Also,
c = c ∗ e = c ∗ (a ∗ b) = (c ∗ a) ∗ b = e ∗ b = b. Hence c = b, and the inverse is unique.

Definition Each vector space has an associated “coordinate field” (i.e. R or C in Ma1b, which we refer to as F). The vector
space also has an associated set called V . The members of V are called vectors, and the members of F are called scalars.
There is also scalar multiplication of F on V, which is a function F × V → V with (a, v) 7→ a · v. A vector space (or linear
space) over F consists of a set V together with binary operations + called addition and scalar multiplication · of F on V such
that the following axioms hold:

1. Commutativity: ∀x, y ∈ V, x+ y = y + x

2. Associativity: ∀x, y, z ∈ V, (x+ y) + z = x+ (y + x)

3. Existence of Identity/Zero vector O

4. Existence of Inverse: ∀v ∈ V,∃ − vs.t.v + (−v) = O

5. a · (b · v) = (ab) · v

6. a(u+ v) = au+ av

7. (a+ b)u = au+ bu

8. 1 · v = v

Note that Axiom 1 in Apostol (closure under addition) just says that addition is a binary operation in V, while Axiom 2
says the same for scalar multiplication.

1.2 09 Jan 2014 Recitation

Definition A field F is a set with two binary operations addition and multiplication such that it satisfies the following
axioms:

1. Associativity of addition: (a+ b) + c = a+ (b+ c)∀a, b, c ∈ F

2. Associativity of multiplication
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3. Commutativity of addition

4. Commutativity of multiplication

5. Existence of additive identity ∃O ∈ F, s.t.a+O = a = O + a∀a ∈ F

6. Existence of multiplicative identity ∃1 ∈ F, s.t.1 · a = a = a · 1∀a ∈ F

7. Existence of additive inverse ∀a ∈ F,∃b ∈ Fs.t.a+ b = 0

8. Existence of multiplicative inverse ∀a ∈ F,∃c ∈ Fs.t.a · c = 1 = c · a

9. Distributivity a · (b+ c) = a · b+ a · c

Examples of Fields: F = {0, 1, 2} with addition and multiplication mod 3. F = {0, 1, . . . , p− 1} with addition and multipli-
cation mod p, where p must be a prime.

Checking if a vector space U is a subspace of V:

1. U is non-empty

2. If u, v ∈ U, then u+ v ∈ U

3. If a ∈ F, u ∈ U, then a · u ∈ U

2 and 3 are equivalent to au+ bv ∈ U,∀a, b ∈ F, u, v ∈ U .

Any vector space V has at least 2 subspaces, namely: {0} and V.

1.3 10 Jan 2014 Lecture

Function spaces Let X be a set and definte FX to be the set of all functions from X → F . Define the addition and multi-
plication to be for f, g ∈ FX , x ∈ X, c ∈ F , then (f + g)(x) = f(x) + g(x), where the addition is in F . (c · f)(x) = c · f(x).
FX is a function space. The zero vector in FX is the zero-function O : X → F, x 7→ 0, x ∈ X. Subspaces of this function
space (with restriction that X is a closed interval on R): Space of all continuous functions on X, space of all differentiable
(or integrable) functions on X, m by n matrices over F .

Linear Span Let S ⊆ V . The linear span of S is L(S), the set of all finite linear combinations of members of S. A finite
linear combination of members of V : x1, x2, . . . xn ∈ V is a vector

∑
n aixi where ai ∈ F . By convention, let the linear span

of the empty set L(φ) = {0} just contain the zero vector. Call this the zero-subspace.

Lemma 1D Let S ⊆ V,L(S) is the smallest subspace of V containing S. That is, L(S) is a subspace of V containing S, and
if S ⊆ U ⊆ V , then L(S) ⊆ U , where U is a subspace.

Proof In HW2.

1.4 13 Jan 2014 Lecture

Definition A set of vectors in subset S ⊆ V is linearly dependent if ∃ a non-empty finite subset {s1, . . . sn} of S and
ai ∈ F, 1 ≤ i ≤ n, no all 0, such that O = a1s1 + . . . ansn. Call this a dependence relation on S.

Definition A set S is linearly independent if S is not dependent.

Example The empty set φ is independent, but the set containing the zero vector alone is dependent.

Lemma 1E Each subset of an independent set is independent

Proof Suppose we have an independent set S. We proceed by contradiction. Let T ⊆ S. If {t1, . . . tn} ⊆ T and ai ∈ F , not
all 0, with

∑
i aiti = 0. This is a contradiction since this will also be a dependence relation in S, which is an independent set.

Theorem 1F Let S be an independent set, and x ∈ V \S. Then S ∪ {x} is independent iff x 6∈ L(S).
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Proof It suffices to prove the contrapositive. S ∪ {x} is dependent iff x ∈ L(S). For the ⇒ case, assume x ∈ L(S). Then
x =

∑
i = aisi for some si ∈ S, ai ∈ F . Then 1 · x−

∑
i aisi = 0. But this is a dependence relation on S ∪ {x}.

Definition: Generation and Basis A subset S of V generates V if L(S) = V . A basis for V is an independent generating
set of V.

Lemma 1G Let X = {x1, . . . , xn} ⊆ V . Then the following are equivalent: (1) X is a basis of V, and (2) each vector can be
written uniquely as a linear combination of these vectors (up to reordering).

Proof (1) =⇒ (2): Assume X is a basis of V. Then V = L(X). For every vector v ∈ V,∃ at least 1 expression v =
∑
i aixi.

Suppose v =
∑
i bixi also. Taking the difference, we have

∑
i(ai − bi)xi = 0. But since X is independent, we require that

ai − bi = 0, which shows that the coefficients are unique.

1.5 15 Jan 2014 Lecture

Definition: Order Let X be a set. Define the order of X to be: |X| =

{
∞ if X is infinite

n if X is finite with exactly n elements
. The

empty set has order zero.

Lemma 1H Let Y be an independent subset of V and X a generating set for V with Y ⊆ X. Then ∃ a basis B with
Y ⊆ B ⊆ X.
Proof Proof when X is finite (infinite case requires the axiom of choice): We want to pick B so that (i)Y ⊆ B ⊆ X, (ii) B is
independent, and (iii)|B| to be maximal. This choice is possible because Y satisfies (i) and (ii), so there exists a B satisfying
(i) and (ii). Now |X| < ∞, so for all B that satisfies (i) and (ii) then |B| ≤ |X| < ∞. Now we want to show that B is a
basis for V. By (ii), B is independent, so it remains to show that V = L(B). Suppose X ⊆ L(B). Then V = L(X) ⊆ L(B),
latter by problem 2 on homework 2. Now since B is in V and V is a linear space, addition and multiplication of elements
of B is closed in V. Hence we have L(B) ⊆ V . Combining, V = L(B). Hence it is OK in this case. Now we assume
that X 6⊆ L(B) and we need to produce a contradiction. Then ∃x ∈ X\L(B). Let A = B ∪ {x}. As x 6∈ L(B) and as
B is independent, by Lemma 1F, A is independent. Also, B ⊆ X and x ∈ X then A ⊂ X =⇒ A is a set that satisfies
(i) and (ii). But |A| = |B|+1 > |B|, contradicting the requirement (iii) that |B| is maximal. Contradiction. Hence X ⊆ L(B).

Corollary 1I (1) V has a basis. (2) Each generating set in V contains a basis. (3) Each independent subset of V is contained
in a basis.

Proof (1) Apply Lemma 1H with Y being the empty set and X = V . The empty set is independent. Visibly, V = L(V ).
Then by Lemma 1H, there exists a basis B. (2) Let X generate V. Then apply Lemma 1H to this choice of X and Y being
the empty set. Then Lemma 1H says that there exist a basis B ⊆ X. (3) Let Y ⊆ V be independent. Apply Lemma 1H to
this Y and X = V to get basis B with Y ⊆ B.

Lemma 1J: Replacement Lemma Let X be a basis for V, Y ⊆ V independent and y ∈ Y \X. Then there exists x ∈ X\Y
such that (X\{x}) ∪ {y} is a basis for V.

Theorem 1.6 All bases for V has the same order.

Proof If all bases are infinite then all bases have order∞. So we can assume that V has a finite basis Y. (i) Pick Y if smallest
possible order (possible due to the finite size of Y). (ii) Pick basis X so that |X| 6= |Y | and |X ∩ Y | is maximal subject to
this constraint. We can assume the theorem fails, so there exists a basis X with |X| 6= |Y |. The maximal choice is possible as
|X∩Y | ≤ |Y | ≤ ∞. Suppose |Y | 6= |X|, then ∃x ∈ X\Y . Since X is a basis, it is independent. Since Y ⊆ X =⇒ Y ∪{x} ⊆ X.
By Lemma 1E, Y ∪ {x} is independent. On the other hand, Y is a basis =⇒ V = L(Y ) =⇒ x ∈ L(Y ) =⇒ Y ∪ {x}
is dependent. So Y 6⊆ X. Pick y ∈ Y \X. By Lemma 1J, ∃x ∈ X\Y such that B = (X\{x}) ∪ {y} is a basis for V.
|B ∩ Y | = |X ∩ Y |+ 1 > |X ∩ Y | so by (ii), |B| = |Y |. By construction, |B| = |X| =⇒ |X| = |B| = |Y | contrary to (ii).

Definition: Dimension The dimension of V is the order of a basis of V.

Theorem 1K Let dim(V ) = n < ∞ and X ⊆ V . Then the following are equivalent: (1) X is a basis, (2) X is independent
and |X| = n (3) X generates V and |X| = n. Hence if a set has the right order, then we only need to check that it is either
independent or generates V to conclude that it is a basis.
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Proof We need to show that each statement implies the other. It will suffice to show 1 =⇒ 2 and 3. and 2 =⇒ 1 and
3 =⇒ 1. 1 =⇒ 2 and 3 As X is a basis, by definition, X is independent and generates V. By definition of dimension,
|X| = dim(V ) = n. For 2 =⇒ 1, assume X is independent and of order n. By Cor 1I, x ⊆ B a basis of V. But
|B| = n = |X| < ∞ and X ⊆ B =⇒ B = X hence X is a basis. For 3 =⇒ 1, assume X generates V and has order n, by
Cor 1I, then there exists a basis B contained in X. Again, |B| = n = |X| =⇒ B = X.

1.6 Recitation 16 Jan 2014

Example Let V be a F-vector space of dim n. Prove that V ∼= Fn, or that V is isomorphic to Fn.

1.7 Lecture 17 Jan 2014

Definition: Linear Transformation/Map Let U and V be vector spaces over F. A linear transformation from U to V is
the function f : V → V which is linear. Linear: f preserves addition and scalar multiplication:

f(x+ y) = f(x) + f(y)

f(ax) = af(x),∀x, y ∈ U, a ∈ F.

Equivalently: f(ax+ by) = af(x) + bf(y).

Lemma 2A Let f : U → V be linear. Then the following are true:

1. f(O) = O

2. f(−u) = −f(u), u ∈ U

3. f(
∑
i aiui) =

∑
i aif(ui)

4. If W is a subspace of U, then f(W ) is a subspace of V.

5. For every subset S ⊆ U, f(L(S)) = L(f(S)).

Proof (1) f(O) = f(O +O) = f(O) + f(O) =⇒ f(O) = O

(2) By linearity of scalar multiplication

(3) By repeated application of linearity.

Theorem 2.12 Let X be a basis for U and fx : X → V a function. Then (1) ∃ a unique linear map f : U → V extending
fx. Extending: f(x) = fx(x), x ∈ X. Or you can say that the restriction of f onto vectors in X is fx. (2) f is defined by
f(
∑
i aixi) =

∑
i aif(xi), xi ∈ X.

Proof Since X is a basis for U, any vector in U can be written uniquely as a linear combination of the basis vectors in X:
u =

∑
i aixi (Lemma 1G). Define f : U → V, u 7→

∑
i aifx(xi). We check that f is linear. Let w =

∑
i bixi ∈ U . Then

f(cu+ dw) = f(c
∑
aixi + d

∑
bixi) = f(

∑
(cai + dbi)xi) =

∑
(cai + dbi)f(xi) = c

∑
aif(xi) + d

∑
bif(xi) = cf(u) + df(w).

We prove that this linear map is unique: Suppose g : U → V is another linear extension of fx. Then g(u) = g(
∑
aixi) =∑

aig(xi) =
∑
aifx(xi) = f(u).

Defintiion: Space of Linear Maps Define L(U, V ) to be the set of all linear maps f : U → V . Make L into a vector
space by defining vector addition and scalar multiplication: (f + g)(u) = f(u) + g(u), (af)(u) = af(u), f, g ∈ L(U, V ), u ∈
U, a ∈ F . Zero vector in L is a the zero-map: function that maps every element of U to the zero element of V. Every linear
transformation can be represented by a matrix. Assume that dim(U) is n, and dim(V)=m, n,m ∈ Z+. Pick an ordered basis
X = {x1, x2, . . . xn} for U and Y = {y1, y2, . . . ym} for V. Let f be a function in L(U, V ). Then we know that f(xi) ∈ V . But
every vector in V is a linear combination of the basis elements in V. Then there exists a unique choice of aij ∈ F such that we
can represent the value of f(xi) uniquely as a linear combination f(xi) =

∑m
j=1 aijyj . Then (aij) is the matrix representing

the linear combination f. Define the matrix of f with respect to the bases X and Y to be the m × n matrix (aij) ∈ Mm,n.
Write MX,Y (f) = (aij).
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Special case Consider L(V ) for L(V, V ), maps from V to V. Given some linear mapping f ∈ L(V ) and X an ordered basis
for V, write mX(f) for the matrix mX,X(f).

Example Consider the identity map idV ∈ L(V ). Then idV (xj) = xj =⇒ mX(idV ) = (δij), where δij is the Kronecker delta.

Isomorphism of vector spaces An isomorphism from U to V is a 1-1 correspondence f : U 7→ V which is linear. We say
that U is isomorphic to V if ∃ an isomorphism from U to V. Write U ∼= V to indicate that U is isomorphic to V.

1-1 correspondence ∀v ∈ V,∃!u ∈ U s.t. f(u) = v.

Theorem 2.15 Let U be n-dimensional with basis X and V be m-dimensional with basis Y. Then mX,Y : L(U, V ) 7→Mm,n,
and mX,Y is an isomorphism.

Proof Let M = mX,Y . Pick f, g ∈ L(X,Y ), c, d ∈ F . Set M(f) = (aij) and M(g) = (bij). We need to prove that
M is linear and a 1-1 correspondence. Check that M is linear by looking at a linear combination of the functions op-
erating on a basis vector xj : (cf + dg)(xj) = cf(xj) + dg(xj) = c

∑
i aijyi + d

∑
i bijyi =

∑
i(caij + dbij)yi. Then

M(cf + dg) = c(aij) + d(bij) = cM(f) + dM(g). 1-1 correspondence as an exercise.

Theorem 2.16 Let V be an n-dimensional F-space with basis X and f, g ∈ L(V ). Then (1) f ◦ g ∈ L(V ), (2) mX(f ◦ g) =
mX(f) ·mX(g), where we use matrix multiplication in Mn.

Proof (1) For u, v ∈ V, a, b ∈ F , (f ◦ g)(au + bv) = f(g(au + bv)) = f(ag(u) + bg(v)) = af(g(u)) + bf(g(v)) =
a(f ◦ g)(u) + b(f ◦ g)(v) hence (f ◦ g) is linear. (2) Let M = mX ,M(f) = (aij),M(g) = (bij), X be an ordered basis.
Then (f ◦ g)(xj) = f(g(xj)) = f(

∑
k bkjxk) =

∑
k bkjf(xk) =

∑
k bkj

∑
i aikxi =

∑
i (
∑
k aikbkj)xi =

∑
i cijxi where

cij =
∑
k aikbkj . Hence M(f ◦ g) = (cij) = M(f) ·M(g). We observe that M preserves multiplication.

Null space/kernel Let f : U 7→ V be linear. The nulll space of f is the set of all elements in the domain space which map
to zero {u ∈ U : f(u) = O}. Write N(f) for the null space of f.

Theorem 2.2 N(f) is a subspace of U.

Proof We check that N(f) is nonempty and is closed under addition and scalar multiplication. The zero vector is in N(f)
since linear maps always map the zero vector of the domain to the zero vector of the range. Hence N(f) is non-empty.
Let x, y ∈ N(f) and a, b ∈ F . Consider the linear combination f(ax + by) = af(x) + bf(y) = a · O + b · O = O. Hence
ax+ by ∈ N(f) also.

Theorem 2B Let X be a basis for U and f : U 7→ V be linear. Then the following are equivalent: (1) f is an isomorphism
(2) N(f) = 0 and f(x) is a basis for V. (3) N(f) = 0 and f(U) contains a basis for V.

Proof 1 =⇒ 2: Assume f is an isomorphism. Then f is a 1-1 correspondence. Let x ∈ N(f). We need to show that
x = O. We know that f(x) = O = f(O) because the zero vector always maps to the other zero vector. But since f is a 1-1
correspondence, the only vector x that can satisfy this is x = O. Hence N(f) = O. As f is a 1-1 correspondence, f(U) = V .
Then V = f(U) = f(L(X)) = L(f(X)) by Lemma 2A.5. Then f(X) generates V. Now we need to show that f(X) is
independent to show that it is a basis for V. Suppose b1, . . . bn ∈ F with O =

∑
i bif(xi) =⇒

∑
i bixi ∈ N(f). But xi is

independent since it is a basis. Hence bi = 0∀i =⇒ {f(xi)} is independent.

1.9 Recitation 23 Jan 2014

Sum of subspaces Let U and W be subspaces of a vector space V. We can define U+W to be the smallest subspace
containing U and W. But by HW2 Q2(b), we know that this will be the linear span of the intersection. U +W = L(U ∪W ).

Lemma Let S be a spanning set for U, T be a spanning set for W. Then S ∪ T span U+W.

Proof By HW2Q2(d), we have that U = L(S) ⊆ L(S ∪ T ) and W = L(T ) ⊆ L(S ∪ T ). Hence U ∪ W ⊆ L(S ∪ T ).
Now since L(S ∪ T ) is a subspace U ∪W ⊆ L(S ∪ T ) =⇒ L(U ∪W ) ⊆ L(S ∪ T ) =⇒ U + W ⊆ L(S ∪ T ). Clearly,
S ∪ T ⊆ U ∪W ⊆ U +W , so U+W is a subspace, by L(S ∪ T ) ⊆ U +W . Hence L(S ∪ T ) = U +W .
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Intersection/Sum Dimension Theorem dim(U +W ) + dim(U ∩W ) = dim(U) + dim(W ).

Proof We seek the basis for U + W in terms of U ∩W,U and W . Let B be a basis for U ∩W . Then by Corollary 1I,
we can extend this into a basis for U and another for W. Call B ∪ B1 a basis for U, and B ∪ B2 a basis for W. We claim
that B ∪ B1 ∪ B2 is a basis for U+W. To check that this is a basis, we need to show that this is independent and it spans
U+W. Now we know that, from Lemma, that the union of the two spanning sets span U+W. So we only need to check that
B ∪ B1 ∪ B2 is linearly independent. Consider a linear combination of the elements in this combined basis set which gives
zero:

∑
αi(B)i +

∑
βj(B1)j +

∑
γk(B2)k = 0. Rearranging,

∑
αi(B)i +

∑
βj(B1)j =

∑
−γk(B2)k. Call the LHS v. Then

since v is a linear combination of elements in B ∪B1, we know that v ∈ L(B ∪B1) = U . From the right hand side, we know
that v ∈ L(B2) ⊆ L(B∪B2) = W . Hence we know that v lies in the intersection v ∈ U ∩W . Hence we can write v as a linear
combination of elements in B, which is the basis for U ∩W . But this expression is unique, since B is a basis. Hence βj = 0
for all j, since

∑
αi(B)i is already a linear combination of elements in B. Hence we have that

∑
αi(B)i =

∑
−γk(B2)k = v.

Now we know that B ∪ B2 is a linear independent, since it is a basis for W. Hence we require αi, γk = 0 for all i,k. Hence
B ∪B1 ∪B2 is linearly independent, and is a basis for U+W. Now considering the dimensions, dim(U +W ) + dim(U ∩W ) =
|B ∪B1 ∪B2|+ |B| = 2|B|+ |B1|+ |B2| = (|B|+ |B1|) + (|B|+ |B2|) = |B ∪B1|+ |B ∪B2| = dim(U) + dim(W ).

1.10 Lecture 24 Jan 2014

Note Suppose f : A→ B is a 1-1 correspondence, and suppose X ⊆ A. Then (a) f : X → f(X) is also a 1-1 correspondence
and (b) |A| = |B|.

Remark 1 Suppose U ∼= V , then dim(U) = dim(V ).

Proof Let f : U → V be an isomorphism. Let X be a basis for U. By Lemma 2B, f(X) is a basis for V (i.e. dim(V ) = |f(X)|.
As f : U → V is a 1-1 correspondence, then f : X → f(X) is also a 1-1 correspondence. Hence we have that |X| = |f(X)|.
Now dim(U) = |X| = |f(X)| = dim(V ).

Theorem 2.3 Let f : U → V be linear and dim(U) <∞. Then dim(U) = dim(f(U)) + dim(N(f)), where N(f) is the null
space of f.

Proof By Lemma 2A.4, f(U) ≤ V (f(U) is a subspace of V). Also as f : U → V is linear, f : U → f(U) is linear. Hence
replace V by f(U), and WLOG we may assume that V=f(U). Let n=dim(U), m=dim(N(f)), and let Y be a basis for N(f).
Now Y is independent. Hence by Corollary 1I (every independent set is contained in some basis), there exists a basis X of U
with Y ⊆ X. Choose X so that Y is the first m elements of X. Let Z be the remaining elements in X not contained in Y, and
W=L(Z). Z generates W and is independent, hence Z is a basis for W. Hence dim(W ) = |Z| = n−m.

Define g : W → U to be the restriction of f to subspace W. As f is linear, its restriction g is also linear. Claim 1: V=g(W),
i.e. V is the image of W under g, so g(W) contains a basis of V. Proof of Claim 1: Let v ∈ V . As V = f(U),∃u ∈ U
with f(u) = v. Write u =

∑
aixi. As Y ⊆ N(f), f(x1) = 0,∀1 ≤ i ≤ m, by defintion of the null space. Hence,

v = f(u) = f(
∑
aixi) =

∑
aif(xi). We now separate the summation:

∑n
i=1 aif(xi) =

∑m
i=1 aif(0) +

∑n
i=m+1 aif(xi) =∑

i>m aif(xi) = f(
∑
i>m aixi) = g(

∑
i>m aixi) ∈ g(W ) since

∑
i>m aixi ∈W . Claim 2: N(g)=0.

As statements (1) and (3) of Theorem 2B are equivalent, we conclude that g : W → V is an isomorphism. Now
dim(V ) = dim(W ) = n−m = dim(U)− dim(N(f)).

Theorem 2C Let f : U → V be linear and assume dim(U) = dim(V ) = n <∞. Then the following are equivalent: (1) f is
an isomorphism (2) N(f)=0, (3) f(U) contains a basis of V.

Proof We observe that 1 =⇒ 3, since Theorem 2B states the necessary and sufficient conditions for an isomorphism.
(3) =⇒ (2) :. Assume that X is a basis for V contained in f(U). As X is a basis for V, V = L(X) ⊆ f(U) ⊆ V by HW2,
since f(U) ≤ V and L(X) is the smallest subspace of V containing X. Hence since f(U) is trapped between two Vs, we have
that V = f(U). Now by Theorem 2.3, dim(N(f)) = dim(U) − dim(f(U)) = n − n = 0. But the only subspace with zero
dimension is the null vector. Hence N(f) = 0, so (2) is true. Prove (2) =⇒ (1) as an exercise.

Corollary 2D Two finite dimensional vector spaces on F are isomorphic iff they have the same dimension.

Proof =⇒ : We know this to be true by Remark 1. ⇐: Assume dim(U) = dim(V ) = n. Let X = {x1, . . . xn} and
Y = {y1, . . . , yn} be bases for U and V respectively. Define the function fX : X → V ⊆ V by fX(xi) = yi. By Theorem 2.12,
there exists a unique linear map f : U → V extending fX . Then f(X) = Y is a basis for V. Hence by Theorem 2C(3), f is
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an isomorphism.

Corollary 2E Each n-dimensional F-space is isomorphic to Vn(F ), the vector space of ordered n-tuples.

Proof Now we know that dim(Vn) = n, so we can apply Corollary 2D.

Inverses of functions Let X and Y be two sets and f : X → Y . An inverse for f is a function g : Y → X which satisfies
g ◦ f = idX , and f ◦ g = idY . Equivalently, g(f(x)) = x∀x ∈ X and f(g(y)) = y∀y ∈ Y .

Caution when using Apostol Inverses: Ch2 Section 6 talks about left inverses and right inverses for f. But these inverses
are functions g : f(X)→ X rather than from Y to X.

Lemma 2F Let f : X → Y be a function. Then (1) f has an inverse iff f is a 1-1 correspondence, (2) If f has an inverse, that
inverse is unique, (3) If f has an inverse, then f−1 : Y → X is a 1-1 correspondence with (f−1)−1 = f .

Proof We proved (1) and (2) when X=Y, and the same proof works here. Now we prove (3): by definition of the inverse
function, f−1 ◦ f = idX and f ◦ f−1 = idY , but the same equations show that f is an inverse function for f−1. Now apply
(1) and (2).

1.11 Lecture 27 Jan 2014

Lemma 2G Let f : U → V be an isomorphism. Then (1) f has an inverse function f−1 : V → U . (2) f−1 is also an
isomorphism.

Proof As f is an isomorphism, f is 1-1, so by 2F, it has an inverse f−1. Also, by 2F, f−1 : V → U is a 1-1 correspondence.
To prove (2), it remains to show that the inverse function is linear.

Algebra of matrices and linear maps Let n be a positive integer. Recall Mn is the F-space of all n by n matrices with
entries in F. Also recall matrix multiplication is a binary operation on Mn which has an identity: I = diagonal(1, 1, 1, . . .)
such that I ·A = A · I = A∀A ∈Mn.

Theorem 2.17 Matrix multiplication is associative and distributive.

For the following statements, let dim(V ) = n, X = {x1, . . . xn} be a basis for V, L(V ) is the F-space of linear maps in V. By
Theorem 2.15, mX : L →Mn is an isomorphism. By Theorem 2.16 of f, g ∈ L(v), mX(f ◦ g) = mX(f) ·mX(g).

Theorem 2H Let m = mX : L → Mn and let f ∈ L and A = m(f). Then the following are true: (1) m(idV ) = I, (2) f
has an inverse iff A has an inverse. (3) If f has an inverse, then m(f−1) = A−1. (4) m−1(AB) = m−1(A)◦m−1(B)∀A,B ∈Mn.

Proof (1) Done in example 6. (2) and (3): Suppose f−1 exists. Then A ·m(f−1) = m(f) ·m(f−1). By theorem 2.16, this is
equal to m(f ◦ f−1) = m(idV ) = I. Similarly, m(f−1) · A = I. Hence m(f−1) is an inverse of matrix A, and is unique. Use
similar argument to part (4) to prove the other direction for (2). (4): By Theorem 2.15, m : L →Mn is a 1-1 correspondence
and by Theorem 2.16, it preserves multiplication. By Lemma 2F, m has an inverse function m−1 : Mn → L. Notice that
as m(f) = A, then m−1(A) = f . Let g = m−1(B). This means that m(g) = B. Then m(f ◦ g) = m(f) ·m(g) = A · B by
Theorem 2.16. Then m−1(AB) = m−1(m(f ◦ g)) = f ◦ g = m−1(A) ◦m−1(B).

Change of coordinates By 2.15, mX : L → Mn is an isomorphism. Consider what happens when we change coordinates
and choose a different basis Y. More precisely, if f ∈ L and Y is another basis for V, what is the relationship between mX(f)
and mY (f)?

Theorem 4.6 Let X = {x1, . . . xn} and Y = {y1, . . . , yn} be bases of V and f ∈ L(V ). Let g be the unique member
of L(V ) with g(xi) = yi∀1 ≤ i ≤ n. Then (1) g : V → V is an isomorphism, so B = mX(g) has an inverse B−1. (2)
mY (f) = B−1mX(f)B

Proof (1) Let m = mX . By Theorem 2.12, there exists a unique g ∈ L(V ) with g(X) = Y . As X is a basis and g(X) = Y
is also a basis, then g is an isomorphism by Theorem 2C. So g has an inverse g−1. Now by Lemma 2G, g−1 ∈ L is also
an isomorphism. Then by Theorem 2H, B = m(g) also has an inverse, hence (1) is true. For (2), let m(f) = (aij). Then
f(xj) =

∑
i aijxi. Let B = (bij) and B−1 = (cij). As B = m(g), we have B−1 = m(g−1), so g(xj) =

∑
i bijxi and

g−1(xk) =
∑
i cikxi. Thus xk = g(g−1(xk)) = g(

∑
i cikxi) =

∑
i cikg(xi) =

∑
i cikyi. f(yj) = f(g(xj)) = f(

∑
r brjxr) =
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∑
r brjf(xr) =

∑
r brj(

∑
k akrxk) =

∑
r,k,i bijakrcikyi =

∑
i dijyi where dij =

∑
r,k brjakrcik =

∑
k,r cikakrbrj = ith, jth

entry in B−1m(f)B. Hence mX(f) = (dij) = B−1m(f)B.

Definition: Similarity Two square matrices A,C ∈ Mn are similar if there exists an invertible matrix B ∈ Mn such that
C = B−1AB.

Theorem 4.8 Let A,C ∈Mn. Then the following are equivalent: (1) A and C are similar. (2) There exists bases X and Y
of V and f ∈ L such that mX(f) = A and mY (f) = C.

Proof (2) =⇒ (1). Assume (2) holds. Let g ∈ L with g(xi) = yi∀i. Then C = mY (f) = B−1mX(f)B = B−1AB.

1.12 Lecture 29 Jan 2014

Definition: Transpose Let A = (aij) ∈ Mm,n. The transpose of A is the matrix At ∈ Mn,m defined by At = (atij), where
atij = aji.

Notation Define Ai to be the ith row of A. Define A(j) to be the transpose of the jth column (so it becomes a row) of
A. The jth column is A(j)t. The column space of A is the subspace L(A(1), A(2), . . . , A(n)) of Vm (since each vector has m
components) spanned by the transpose of the columns of A. Define the rank of A to be the dimension of the column space.
Write this as rk(A).

Systems of Linear Equations A system of linear equations in n unknowns x1, x2, . . . xn is a system F = (Fi, 1 ≤ i ≤ m)
of m equations, where each equation Fi is

∑n
j=1 aijxj = bi, aij , bi ∈ F in the unknowns x1, . . . xn. A solution to F is

the vector v = (v1, . . . vn) ∈ Vn such that ∀i, 1 ≤ i ≤ m,
∑n
j=1 aijvj = bi in F. Write S(F) for the set of all solutions to

F . By HW1 Problem 2, S(F) is a subspace of Vn iff F is homogenous. Homogenous: bi = 0,∀i. If E is a homogenous
system, call S(E) the solution space of E. Note that in a homogenous system E the zero vector is a solution to E. Write
E(A) to be the homogenous system of A. Each Fi corresponds to the row vector Ai(F) ∈ Vn. Call A(F) the matrix of F .
Conversely, given matrix A ∈Mm,n, we can assign the homogenous system E(A) of m equations in n unknowns. Finally, we
can associate to A the linear map TA : Vn → Vm with x 7→ (Axt)t, noting that Vn and Vm are the vector spaces of row vectors.

Lemma 2K Let (F) :
∑n
j=1 aijxj = bi, 1 ≤ i ≤ m be a system of linear equations. Set vector b = (b1, . . . , bm) ∈ Vm. Let

A = A(F) = (aij) ∈ Mm,n, E = E(A) and S = S(E). Then the following are true: (1) v ∈ S(F) ⇐⇒ TA(v) = b. (2) The
image of TA is the column space of A. (3) N(TA) = S. (4) n = rk(A) + dim(S). (5) F has a solution iff b is contained in the
column space of A.

Proof (1) Let T = TA. Let v = (v1, . . . vn) ∈ Vn. By definition of T, the following statements are true: T (v) = (Avt)t = y =
(y1, . . . yn) where yi =

∑n
j=1 aijvj . In particular, T (v) = b iff ∀i, bi = yi =

∑n
j=1 aijvj which is exactly what it means for v to

be a solution v ∈ S(F). Hence (1) is true. (3) Similarly, v ∈ N(T ) iff T (v) = 0 iff ∀i, 0 = yi =
∑n
j=1 aijvj iff v ∈ S(E) = S.

(2): By definition of T, T (v) = (
∑
j a1jvj , . . . ,

∑
j amjvj) =

∑
j vj(a1j , . . . , amj) =

∑
j vjA

(j) ∈ L(A(1), . . . A(n)) = C,

where C is the column space of A. So T (Vn) ⊆ C. Take v = ek = kth coordinate vector. That is vj =

{
0 ifj 6= k

1 ifj = k
.

Then T (v) =
∑
j vjA

(j) = A(k) =⇒ T (v) = A(k) ∈ C, that is ∀k, T (ek) ∈ C =⇒ T (Vn) = T (L(B)), where

B = {e1, . . . en}. A(k) ∈ T (v) is a subspace of Vm =⇒ C = L(A(1), . . . A(n)) ∈ T (V ) =⇒ (2) holds by HW2. (5)
Note that F has solution iff T (Vn) = C by (1) and (2). (4): dim(T (Vn)) = dim(C) = rk(A) by definition of rk(A). Since
n = dim(Vn) = dim(T (Vn)) + dim(N(T )) by Theorem 2.3. Hence n = rk(A) + dim(S).

Corollary 2L Let E be a system of m homogenous equations in n unknowns with solution space S. Then dim(S) = n−rk(E),
where rk(E) = rk(A(E)).

Proof By Lemma 2K(4), n = rk(A(E)) + dim(S).

Corollary 2M Let n > m and E be homogenous, with m equations on n unknowns. Then E has a non-zero solution.

Proof Write r = rk(E) = dim(C). C ≤ Vm is the column space. Then r = dim(C) ≤ dim(Vm) = m. But we also have that
dim(S) = n− r ≥ n−m > 0 =⇒ dim(S) > 0. Hence S cannot just be the zero vector. Hence S has non-zero vectors.
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1.13 Recitation 30 Jan 2014

Isomorphism not unique Unless n=0. The isomorphism V ∼= Vn, where V is a vector space of dim n over F is not unique,
in order words, there exists f, g such that f : V → VN and g : V → Vn with f 6= g. To fix an isomorphism, we pick a
basis {e1, . . . en} of V and define f : V → Vn with ei 7→ (0, . . . 1, . . . , 0), where the 1 is in the ith position. If n > 0 and F
is infinite, there exists infinitely many bases for V. In other words, there exsits infinitely many different isomorphisms V ∼= Vn.

Remark We can replace Vn with the space of column vectors of length n. Call this space Cn.

Elementary Row Operations (1) Multiply a row by a non-linear scalar. (2) Add a multiple of one row to another. (3)
Swap 2 rows.

1.14 Lecture 31 Jan 2014

Definition: Coset Let V be a vector space over F. Let subspace U ≤ V . The coset of v ∈ V with respect to the subspace
U is {u+ v : u ∈ U} ⊆ V . Write U + v for this coset. Basically you are adding v to all the elements of U.

Remarks (1) Ths coset U+v is not usually a subspace. It is a subspace of V iff v ∈ U . (2) w ∈ U+v iff w−v ∈ U (obviously).

Theorem 2.19 Let (F) :
∑n
j=1 aijxj = bi be a system of linear equations with matrix A = (aij). Let S = S(E) be the

solution space of the homogeneous system E = E(A). Suppose t = (t1, . . . , tn) is a solution to F . Then S(F) = S+t is a coset.

Proof Let v = (v1, . . . , vn) ∈ Vn. We have to show that v ∈ S(F) iff v ∈ S + t. By Remark (2), this is the same thing as
showing v ∈ S(F) ⇐⇒ v − t ∈ S. But v − t ∈ S ⇐⇒ ∀i, 0 =

∑
j aij(vj − tj) =

∑
j aijvj −

∑
j aijtj . But t is a solution to

F . Hence we can write this as
∑
j aijvj − bi = 0 ⇐⇒

∑
j aijvj = bi ⇐⇒ v ∈ S(F).

Summary (a) If F has a solution t then S(F) = S + t is a coset. (b) dim(S) = n− rk(A) by Corollary 2L.

Theorem 2N Assume F is a system with n equations and n unknowns and assume A = A(F) is invertible. Then (1) F has
a unique solution S(F). (2) st = A−1bt, where b = (b1, . . . bn).

Proof Let v = (v1, . . . vn) ∈ Vn. By Lemma 2K.1, v ∈ S(F) ⇐⇒ b = TA(v) = (Avt)t. This equation holds iff bt = Avt.
Multiply this on the left by the inverse of A: A−1bt = A−1Avt = vt. This shows that A−1bt is a solution.

Definition: Augmented matrix Define the augumented matrix of a system of linear equations to be B(F) ∈ Mm,n+1,
where B is obtained by adjoining bt to A as the (n+ 1)st column of B.

Lemma 2P If F ′ is equivalent to F then S(F ′) = S(F), where F ′ is obtained from F through a sequence of elementary row
operations.

Proof It suffices to show that the elementary row operations do not affect the solution space of F . We just consider
the operation where one row is added to another. Let B′ = B(F ′). Then ∀j 6= k,B′j = Bj , while B′k = Bk + Bi. Let
s = (s1, . . . , sn) ∈ S(F). This is a solution to Fj = F ′j ,∀j 6= k. So to show s ∈ S(F ′) must show s is a solution to F ′k. We
write

∑
j a
′
kjsj =

∑
j(akj + aij)sj =

∑
j akjsj +

∑
j aijsj = bk + bi = b′k. Hence S(F) ⊆ S(F ′). A similar argument shows

that S(F ′) ⊆ S(F). Hence they are equivalent.

Definition: Upper triangular matrix A matrix C ∈ Mn is said to be upper triangular if ∀j < i, cij = 0. That is, all
entries below main diagonal are zero.

1.15 Lecture 03 Feb 2014

Midterm Review of Chapter 1 and 2 Stuff need to know: Chapter 1, Sections 1-9: Subspaces, Linear Independence,
Linear Span, Bases, Dimensions, HW2 Q2-3 (Properties of Linear Span), HW1 Q4 (Determinants and Inverse of 2x2 matrices).
Chapter 2, Sections 1-5 and 9-18: Linear Transformations/Maps, Matrices, Isomorphisms, Vector space of linear maps,
Vector Space of Matrices, Isomorphism of linear maps: If X and Y are bases in U and V respectively, we have the matrix
correspondence mX,Y : L → Mm,n is an isomorphism, Change of Coordinates (Theorem 4.6), Systems of Linear Equations,
Gauss Algorithm, Transposes. From Rec Session: Polynomials, Intersection/Sum Dimension Theorem,
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1.16 Lecture 05 Feb 2014

Lemma If C,D ∈Mn commute, then C commutes with all powers of D. I.e. CDk = DkC, ∀0 < k ∈ Z.

Proof We proceed by induction on k. k = 1 holds by hypothesis. Assume it holds for some k. Then we inspect
CDk+1 = C(DkD) = (CDk)D = (DkC)D = Dk(CD) = Dk(DC) = Dk+1C.

Lemma If A,B ∈Mn anticommute, then A2 commutes with B.

Proof A2B = A(AB) = A(−BA) = −A(BA) = −(AB)A = −(−BA)A = (BA)A = BA2.

Lemma If A and B are invertible, then so is AB.

Proof We prove that (AB)−1 = B−1A−1. We need to show that (AB)(B−1A−1) = I. Applying associativity, this is true.
We also need to show that (B−1A−1)(AB) = I, which is also true by associativity. Hence (AB) has an inverse.

Lemma If A3 = 0, then A− I is invertible.

Proof Claim: Let B = −(A2 + A+ I) then (A− I)−1 = B. Note that A3 − 1 = (A− I)(A2 + A+ I). But by assumption,
A3 = 0. Hence we have that −I = (A− I)(A2 +A+ I) and we have an expression for the inverse of A-I.

Incorrect lemmas If A and B are invertible, A+B may not be invertible (Counterexample: I and -I, and the zero matrix is
not invertible). If A, B and A+B are invertible, A-B may not be invertible. (Counterexample: I and I, and the zero matrix
is not invertible)

1.17 Recitation 06 Feb 2014

Definition A field F is algebraically closed if every polynomial in F [x] (that is, that has coefficients in F) has a root in F,
i.e. given any polynomial p(x) = anx

n + an−1x
n−1 + . . .+ a0 with ai ∈ F,∀i,∃r ∈ F such that p(r) = 0. Note that R is not

algebraically closed, since the equation x2 + 1 = 0 has no solution in R. But C is algebraically closed.

Problem If we are given a linear map f : V → V , does there exist a basis of V such that mY (f) is diagonal? Fix a basis for
V. By Theorem 4.8, there exists a basis Y for V such that mY (f) is diagonal iff mX(f) is similar to a diagonal matrix. This
means that there exists an invertible matrix B such that B−1mX(f)B is diagonal.

Example Show that the matrix A =

(
−
√

2 −
√

2√
2 −

√
2

)
. is similar to a diagonal matrix over C but not over R. Write out

a general matrix, then multiply out B−1AB, setting non-diagonal entries to zero. Notice that the diagonal entries may or
may not be zero. Zero matrix is not an invertible matrix.

Diagonalizable matrix Not every matrix is diagonalizable over C even though C is algebraically closed. Over an alge-
braically closed field F (e.g. C), any matrix is similar to one in Jordan canonical form (Jordon normal form). A matrix is
in Jordan canonical form if it has elements along the main diagonal, with possibly 1s above the main diagonal. All other
entries are zero. Each Jordan block must contain the same diagonal value.

Example The infinite dimensional polynomial ring does not obey dimW = dimV ⇐⇒ W = V if W ≤ V is a subspace.
Let {1, x, x2, . . .} be a basis for V. Then dimV = ∞. Then consider W = {p(x) : a0 = 0}, the subspace of all polynomials
with constant term equals zero. We claim that {x, x2, x3, . . .} is a basis for W. Now to prove that it is a basis, we just need
to check linear independence and generation. Now we know that the basis for W is a subset of the basis for V, which is
linearly independent. Hence W is a linearly independent set. It also clearly spans W. But since the basis is an infinite set,
we conclude that dimW =∞. In fact, W ∼= V , if we consider the linear map f : V →W , f(P (x)) 7→ xP (x). This is because
the bases for V and W have the same cardinality.

Example Let V be a finite dimensional vector space, W ≤ V a subspace. Let v ∈ V, v 6∈ W . Let f : V → V be a linear
map such that f(W ) ∈ W so f restricts to a linear map f |W : W → W ∈ V . Suppose f(v) 6∈ W and N(f(w)) = 0. Let
U = L(W ∪ {v}). Show that dim f(U) = dimW + 1.

Solution By the rank nullity theorem dimN(f |W ) + dim f(W ) = dimW . Hence 0 + dim f(W ) = dimW . Since f(v) is not
in W , f(W ) ≤W , so W is properly contained in f(U). so dim f(U) > dimW . On the other hand, any u ∈ U is a finite sum
u = a1w1 + . . .+akwk + bv, where wi is a basis for W. Since v is not in W, we can extend the basis of W by one by adding v.
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Hence U is spanned by the union of the basis for W and v. Hence dimU = dimW + 1. Now we have that dim f(U) ≤ dimU .
If ui is a basis for U, then f(U) = L(f(ui)). But we also know that dim f(U) > dimW . Combining these things, we get the
result.

1.18 Lecture 07 Feb 2014

Definition Define the determinant function det : Mn → F . Investigate permuations first:

Permuations Let I = {1, . . . , n}. A permutation of I is a one-one correspondence of the set to itself s : I → I. Write Sn for
the set of all permutations of I. Sn is the symmetric group on I. The number of permutations is |Sn| = n!.

Cycle Notation Each s ∈ Sn can be written in cycle notation: s = (a1, . . . , aα)(b1, . . . , bβ) . . . (z1, . . . , zζ). All the elements
are the elements of I in some order. This indicates: s(ai) = ai+1, 1 ≤ i < α, and s(aα) = a1 (cycles back). Same for b, . . . , z.
The term (a1, . . . , aα) is a cycle of s. This cycle has length α, since it has α elements involved in a cycle.

Example 1 Let n = 6. Let r = (2, 3, 5)(1, 6, 4) and t = (1)(2, 5)(3)(4)(6) be members of S6. Note that t fixes 1,3,4 and 6,
since it maps these elements back to itself and t interchanges 2 and 5.

Definition Define s to be even if s has an even number of cycles of even length. Define s to be odd if s has an odd number of
cycles of even length. In example 1, r is even (no cycles of even length) and t is odd (1 cycle of even length). A permutation
like t with 1 cycle of length 2 and n-2 cycles of length 1 is called a transposition. All transpositions are odd.

Convention Usually we suppress cycles of length 1. We don’t write down cycles of length 1. Hence t in Example 1 would
be t = (2, 5).

Definition The sign function sgn : Sn → {1,−1} by sgn(s) =

{
+1 if s is even

−1 if s is odd
.

Definition Let A = (aij) ∈ NMn. The determinant of A is det(A) =
∑
s∈Sn

sgn(s)a1,s(1) · · · an,s(n). Note that there are n!
terms in the summation.

Notation Given A = (aij) ∈ Mn and 1 ≤ i ≤ n, write Ai for the ith row. Write A(s) = sgn(s)a1,s(1) · · · an,s(n). Hence we
can write det(A) =

∑
s∈Sn

A(s). Given row vectors B1, . . . Bn ∈ Vn, write [B1, . . . , Bn] for the matrix where the ith row is Bi.

Example 2 Take n = 2. So S2 = {id, t} where id = (1)(2) and t = (1, 2) is a transposition. Let A =

(
a11 a22
a21 a22

)
∈ M2.

Then det(A) = A(id) +A(t) = sgn(id)(a1,id(1)a2,id(2)) + sgn(t)(a1,t(1)a2,t(2)) = a11a22 − a12a21.

Recall Let f, g : I → I. By Lemma 1B, f is a permutation iff f has an inverse function f−1 : I → I such that
f ◦ f−1 = f−1 ◦ f = id. Also, f−1 is also a permutation, and (f−1)−1 = f .

Remark 1 If f, g ∈ Sn then f ◦ g ∈ Sn.

Proof (f ◦ g)−1 = g−1 ◦ f−1.

Lemma 3A The sign function preserves multiplication: sgn(f ◦ g) = sgn(f)sgn(g).

Proof Ask jeff.

Lemma 3B If matrix A is triangular, then the determinant of A is a11a22 . . . ann the product of the entries along the diagonal.

Proof Claim A(s) = 0 unless s is the identity permutation. Consider s 6= id. Then ∃i ∈ I with s(i) < i. Hence as A is
triangular, this means that ai,s(i) = 0. This zero makes the whole product zero. Hence det(s) = a1,id(1) . . . an,id(n).

Lemma 3C det is homogenous in each row. That is, if the kth row of matrix A is multiplied by a scalar to get a new matrix
B, then detB = adetA.

Proof Let B = (bij) and A = (aij). Then bij =

{
aij if i 6= k

a · akj if i = k
. So B(s) = sgn(s)b1,s(1) · · · bk,s(k) · · · bn,s(n) = aA(s).

Hence det(B) =
∑
sB(s) = a

∑
sA(s) = a det(A).
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Lemma 3D det is additive. In each row, if ∃i ∈ I such that B = [A1, . . . Ai−1, Bi, Ai−1, An] and C = [A1, . . . , Ai−1, Ai +
Bi, Ai+1, . . . An] then det(C)=det(A)+det(B).

1.19 Midterm Review 07 Feb 2014

Practice Problem 1 Let V be the space of all real functions continuous on [−π, π]. Let S be the subset of V consisting of
f that satisfy the following properties:

∫ π
−π f(t)dt = 0,

∫ π
−π f(t) cos(t)dt = 0,

∫ π
−π f(t) sin(t)dt = 0. (a) Let T : V → V be lin-

ear with T (f)(x) 7→
∫ π
−π(1+cos(x−t))f(t)dt,∀f ∈ V . Prove that the image of T is finite dimensional. (b) Find the null space.

Solution 1 (a) Note that T (f)(x) =
∫ π
−π(1 + cosx cos t + sinx sin t)f(t)dt. We can split this into T (f)(x) =

∫ π
−π f(t)dt +

cosx
∫ π
−π cos tf(t)dt + sinx

∫ π
−π sin tf(t)dt = c1 + cosxc2 + sinxc3, since we realize that the constants c1, c2, c3 depend on f.

Hence we have that the image of T is spanned by the set {1, cosx, sinx}. We check linear independence: a1 + a2 cosx +
a3 sinx = 0,∀x. We check for x = 0, and get a1 = −a2. We can also check for x = π/2, and get a1 = −a3. Choose x = −π/2,
and get another equation. Solve to get a1 = a2 = a3 = 0. Hence the set spans the image and is linearly independent, hence
it is a basis for the image. Hence the dimension of the image is 3.

(b) The null space consists of elements which satisfy
∫ π
−π(1 + cos(x − t))f(t)dt = 0. By the expansion, for T (f)(x) = 0, we

require that c1 = c2 = c3 = 0 since the basis vectors are linearly independent. But it is precisely the elements of S that satisfy
this condition. Hence the null space is the subspace S. Note that by the null-rank theorem, dimV = dimN(T ) + dimT (V ).
But we know that dimT (V ) = 3, and the dimV =∞, since it is the space of all real functions. Hence dimN(T ) =∞.

Problem 2 Let T : V →W be a linear map and suppose N(T ) = 0. Prove that if {v1, . . . vk} is a linear independent set in
V, then {T (v1), . . . , T (vk)} is also linearly independent in W.

Solution Assume that we have a linear combination a1T (v1) + . . .+ akT (vk) = 0. We want to prove that a1 = · · · = ak = 0.
Since T is a linear map, we can re-write this as T (

∑
aivi) = 0. But we know that the null space is 0. Hence

∑
aivi = 0.

But vi are all independent, hence ai = 0,∀i. Note that only when N(T ) = 0 that the image of the basis vectors under T is
a basis for the image. This is because dimV = dimN(T ) + dimT (V ), and dimN(T ) = 0. Hence the linearly independent
vectors under T form a basis.

Problem 3 Let V be the space of polynomials of degree ≤ 3 in R[x]. Consider the differential operator D : V → V . Consider
a basis for V, B = {1, x, x2, x3}. Find mB(D). (b) Let t ∈ R and define gi(x) = (x + t)i−1. Let γ = {g1, g2, g3, g4} =
{1, x+ t, x2 + 2tx+ t2 = t3 + 3t2x+ 3tx2 + x3. Now we have a unique linear transofrmation mapping fi 7→ gi. The matrix
for that transformation is formed from the columns of the new basis vector coordinates in the old basis.

Solution 3 We just need to observe the effect of the operator on each of the basis vectors. D(1) = 0 = (0, 0, 0, 0)B , D(x) =
1 = (1, 0, 0, 0)B , D(x2) = 2x = (0, 2, 0, 0)B , D(x3) = 3x2 = (0, 0, 3, 0)B . We can merge these vectors (by combining the
columns) into the matrix.

Inverse of an upper triangular matrix Change the sign of entries where the sum of the row and column is odd.

1.20 Lecture 12 Feb 2014

Notation for Chapter 4 Let V be a vector space over F. Let L = L(V ) be the space of linear maps on V with multiplication
defined by composition. Let f ∈ L.

Definition: Eigenvalue An eigenvalue for f ∈ L is an element a ∈ F such that ∃ a non-zero vector v ∈ V such that
f(v) = a · v. Note that a can be zero, but the eigenvector cannot be zero.

Definition: Eigenspace The eigenspace for eigenvalue a ∈ F on V with respect to f consists of all the vectors E(a) = {u ∈
V : f(u) = a · v}. Thus, a is an eigenvalue for f iff E(a) 6= 0. That is, there is at least one vector that satisfies the eigenvalue
equation.

Definition: Eigenvectors The non-zero members of E(a) are called the eigenvectors for a.
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Example Consider the eigenspace for the eigenvalue zero. Then v ∈ E(0) ⇐⇒ f(v) = 0 · v = 0 ⇐⇒ v ∈ N(f). Then
E(0) = N(f). The eigenspace associated with the zero eigenvalue is the null space.

Example Consider the eigenspace for the eigenvalue 1 for the identity function in V . Then we require that ∀v ∈ V, f(v) =
1 · v = v =⇒ V = E(1) so 1 is the unique eigenvalue for the identity map.

Lemma 4A Let f ∈ L and a ∈ F . Then E(a) = N(a · idV − f).

Proof Let g = a · idv − f ∈ L i.e. as id and f are in L, the combination g of id and f are also in L. Let v ∈ V . Then
g(v) = (a ·id−f)(v) = a ·id(v)−f(v) = a ·v−f(v). So v ∈ N(g) ⇐⇒ 0 = g(v) = a ·v−f(v) ⇐⇒ f(v) = av ⇐⇒ v ∈ E(a).

Theorem 4.2 Let a1, . . . , am be distinct eigenvalues for f. Let vi be an eignevector for ai. Then the set of eigenvectors is
independent.

Proof See notes.

Polynomial function of matrices Let x be a symbol. A polynomial in x over F is a formal sum f(x) =
∑m
i=0 aix

i for
some m ∈ N and ai ∈ F. Formally, f is an infinite sequence indexed by the natural numbers such that ai = 0 for all but a
finite set of indices i ∈ N. Call ai the ith coefficient of f . Two polynomials are equal iff the coefficients are equal. The zero
polynomial is the polynomial such that all its coefficients are zero. Define the degree of the zero polynomial to be zero. If
f(x) 6= 0 then the degree of f is defined to be max{i : ai 6= 0}. Write F [x] for the set of all polynomials in x over F. We define
addition to be the addition of individual coefficients. We define multiplication to be the convolution

∑
aix

i
∑
bix

i =
∑
cix

i

where ci =
∑k
j=1 ajbk−j . Define multiplication by scalar to be the multiplication of each coefficient by that scalar. Now we

have the F [x] fulfills the axioms of a vector space over F. Let X = {xi, i ∈ N} be a basis for F [x].

1.21 Recitation 13 Feb 2014

Rewriting cycles We can write a cycle (a1, . . . , al) = (a1, al)(a1, al−1) . . . (a1, a2), when composition starts from the right.
Any s ∈ Sn can be writte as a composition of transpositions. The sign is 1 is it can be written as a composition of an even
number of transpositions. Sign is -1 if s can be written as a composition of an odd number of transpositions.

Cofactor Expansion Define the (i, j)th minor of n × n matrix A to be the matrix with the ith row and jth column
deleted. Call this Aij . Define the (i, j)th cofactor of A as (−1)i+j det(Aij). Then the determinant of A is det(A) =∑n
j=1 akj(−1)k+j det(Akj), or the sum of the cofactors along a row. Note that we can expand along a column too:

det(A) =
∑n
j=1 ajk(−1)k+j det(Ajk).

1.22 Recitation 20 Feb 2014

Lemma If λ is an eigenvalue for f : V → V , and if f is invertible, λ−1 is an eigenvalue of f−1 : V → V .

Proof λ is an eigenvalue iff ∃v ∈ V, v 6= 0s.t.f(v) = λv. Hence v = f−1(λv) and λ−1v = λ−1f−1(λv) = f−1(v). Hence λ−1

is an eigenvalue for f−1.

1.23 Lecture 21 Feb 2014

Eigenvalues of a triangular matrix Let A ∈ Mn be upper triangular. Now λI is also triangular. Hence B = λI − A is
also triangular. Now the characteristic polynomial is the determinant of B. But we know that the determinant of a triangular
matrix is just the product of the diagonal entries. Hence det(B) =

∏r
i=1(x− aii). Hence the eigenvalues are the entries of A

along the main diagonal. The multiplicity of each eigenvalue is the number of times it appears on the main diagonal.

1.24 Lecture 24 Feb 2014

Complex conjugation Define σ : C→ C, c 7→ c̄. Recall that it preserves addition and multiplicaiton: σ(c+d) = σ(c)+σ(d)
and σ(c · d) = σ(c) · σ(d).
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Definition: Inner Product An inner product on vector space V is a bilinear function B : V × V → F that satisfies three
axioms:

1. B is hermitian symmetric: ∀x, y ∈ V,B(y, x) = ¯B(x, y).

2. B is linear in its first variable: ∀x, y, z ∈ V,∀a, b ∈ F,B(ax+ by, z) = aB(x, z) + bB(y, z).

3. B is positive definite: ∀o 6= x ∈ V, o < B(x, x) ∈ R.

Write (x, y) for B(x, y).

Remark 1 For x ∈ V , define Bz : V → F with v 7→ B(v, z). Observe that Axiom 2 is equivalent to requiring that ∀z ∈ V ,
Bz is linear.

Remark 2 If F = R, then ā = a, and the Hermitian symmetry is just ordinary symmetry B(y, x) = B(x, y). Then along
with Axiom 2, we have that B is also linear in the 2nd variable. B(x, ay + bz) = B(ay + bz, x) = aB(y, x) + bB(z, x) =
aB(x, y) + b(x, z). Hence B is bilinear. However, if F = C, then B(z, ax + by) = B(ax+ by, z) = aB(x, z) + bB(y, z) =
ā · B(x, z) + b̄ · B(y, z) = āB(z, x) + b̄B(z, y). Hence in general, B preserves addition in the second variable B(z, x + y) =
B(z, x) +B(z, y) but it only preserves scalar multiplication up to a complex conjugation.

Example 1 Let V = Vn(F). The dot product on Vn is the map B(x, y) = x · y =
∑n
k=1 xkyk, with x = (x1, . . . , xn) and

y = (y1, . . . , yn).

Example 2 Let F = R and [c, d] a closed interval on the reals. Take V to be a function space, the space of all real valued

continuous functions on [c, d]. Define the inner product B(f, g) =
∫ d
c
f(x)g(x)dx.

Inner Product Space Let (, ) be an inner product on V. Call V together with an inner product an inner product space.
Recall that for z ∈ V , Bz : V → F with v 7→ (v, z) is linear. Hence by the characterization of linear functions, we have that
Bz maps the zero vector to the zero element o = Bz(o) = (o, z). Also, as the inner product is positive definite, (x, x) = 0 iff
x = 0. Also, if (u, v) = 0, then 0 = (u, v) = (v, u) = 0̄ = 0. Hence (u, v) = 0 iff (v, u) = 0.

Norm function For v ∈ V , define the norm of v to be ||v|| ≡
√

(v, v). In Euclidean space, ||v|| =
√∑n

k=1 vkvk =√∑n
k=1 |vk|2.

Theorem 1.9 For uv,∈ V, a ∈ F , (1) ||v|| ≥ 0 with equality iff v = 0. (2) ||aV || = |a| · ||v||. (3) Triangle inequality:
||u+ v|| ≤ ||u||+ ||v||.

Perpendicular For x ∈ V , define x⊥ = {v ∈ V : (v, x) = 0}. Read as x-perp. Say that v is orthogonal to x if v ∈ x⊥.

1.25 26 Feb 2014 Lecture

Theorem 1L Let u, v 6= 0 be vectors in the plane. Let θ be the angle between v and u. Then cos θ = u·v
||u||·||v|| .

Proof Write u,v in terms of Cartesian coordinates: u = ||u||(cosφ, sinφ), v = ||v||(cos(θ + φ), sin(θ + φ)), where φ is the
angle between u and the x-axis. We multiply as per the definition of the dot product to obtain the statement.

Remark 4 The dot product measures the ”angle” between vectors in a plane V2(R). u and v are orthogonal iff u ·v = 0 ⇐⇒
cos θ = 0 ⇐⇒ θ = π/2 or 3π/2, iff u and v are perpendicular.

Orthogonal set A subset S of V is orthogonal if for all distinct u, v ∈ S, (u, v) = 0.

Theorem 1.10 Let S be an orthogonal subset of nonzero vectors of V. Then the following are true: (1) S is independent,
(2) If |S| = dim(V ), then S is a basis for V.

Proof Let {s1, . . . , sn} ⊆ S. As S is orthogonal ∀i 6= j, (si, sj) = 0. Suppose aj ∈ F, 1 ≤ j ≤ n such that
∑n
j=1 ajsj = 0.

Then ∀k, (0, sk) = 0 = (
∑
j ajsj , sk) =

∑
j aj(sj , sk) by linearity in the first variable. But all the inner products are zero

except for (sk, sk). Then 0 = ak(sk, sk). But by hypothesis, sk 6= 0, then (sk, sk) 6= 0. Then ak = 0. Hence all the coeffi-
cients are zero, and the set S is independent. By Theorem 1K, if dimV = |S| 6=∞ and S ⊆ V is independent, then S is a basis.
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S-perp is a subspace Define S⊥ = {v ∈ V : (v, s) = 0∀s ∈ S}. So S⊥ = ∩s∈Ss⊥. S⊥ is a subsapce of S.

Proof Recall that the intersection of subspaces is a subspace. It suffices to show that x⊥ ≤ V for each x ∈ V . Recall that
Bx : V → F is linear with v 7→ (v, x). Observe that the null space N(Bx) = x⊥. But we know that the null space of a linear
map is a subspace, hence x⊥ is a subspace.

Direct Sum If U,W ≤ V then U +W = {u+w : u ∈ U,w ∈W} is a subspace of V. U +W =  L(U ∪W ). We say that V is
the direct sum of U and W if V = U +W and U ∩W = 0. Write V = U

⊕
W .

Theorem 1.15 Assume dimV = n ≤ ∞. Let U ≤ V . Then (1) U⊥ is a subspace of V and dim(U⊥) = n − dimU . (2)
V = U

⊕
U⊥ and (3) (U⊥)⊥ = U . (4) Each v ∈ V can be written uniquely in the form v = u+ w with u ∈ U and w ∈ U⊥.

Proof For (1) and (2), Let {x1, . . . , xm} be a basis for U. Define fi : V → F with v 7→ (v, xi) so fi = Bxi . Then fi is
linear and N(fi) = x⊥i . Notice that the dimension of the image is 1, since it is just the field F, so by Theorem 2,3 then
dim(x⊥i ) = dim(N(fi)) = dim(V )− dim(F ) = n− 1. Hence codim(x⊥i ) = 1. Now as U = L(x1, . . . , xn) as X is a basis for U,
then U⊥ = ∩mi=1x

⊥
i , left as Exercise.

Then by HW3Q2, codim(U⊥) ≤
∑m
i=1 codim(x⊥i ). But we know that codim(x⊥i ) = 1. Hence codim(U⊥) ≤ m. Hence

dim(U⊥) = n− codim(U⊥) ≥ n−m. Now suppose u ∈ U ∩U⊥. We know that ∀v ∈ U⊥,∀u ∈ U, (v, u) = 0. But this means
that (u, u) = 0. But by definition, the inner product of a vector with itself is positive definite. Hence U ∩U⊥ = 0. Now apply
the Intersection-Sum Dimension Theorem. Then dim(U +U⊥) = dim(U) + dim(U⊥)−dim(U ∩U⊥) ≥ m+ (n−m)− 0 = n.
But we know that the subspace of a vector space of dimension n is less or equal to n, with equality iff the subspace is
the vector space itself. Hence dim(U + U⊥) = n and U + U⊥ = V , so (2) holds. All inequalities are now equalities and
dim(U⊥) = n − m so (1) holds. To prove (3), we realize that each u ∈ U is orthogonal of U⊥ by definition of U⊥ so
U ⊆ (U⊥)⊥. By Part (1), dim((U⊥)⊥) = n− dim(U⊥) = n− (n−m) = m = dim(U). Hence U = (U⊥)⊥, so (3) holds. To
prove (4), ∀v ∈ V,∃u ∈ U,w ∈ U⊥ with v = u + w. To show that this is unique, we suppose v = u′ + w′ for some other
u′ ∈ U and w′ ∈ U⊥. Hence u + w = u′ + w′ and u − u′ = w′ − w. But since U and U⊥ are subspaces, u − u′ ∈ U and
w′ − w ∈ U⊥. But we know that U ∩ U⊥ = 0, hence the only element that is in both U and U⊥ is 0. Hence u− u′ = 0 and
w′ − w = 0 and u = u′ and w = w′, hence the statement is unique, and (4) is true.

Lemma 5A If U ≤ V , then the restriction of the inner product (, ) to U is an inner product space on U.

1.26 27 Feb 2014 Recitation

Positive definite A matrix A is positive definite if x∗Ax ≥ 0,∀x ∈ Cn and equality iff x = 0. We realize that
x∗Ax =

∑n
i=1

∑n
j=1 aij x̄ixj . If we define (x, y) = y∗Ax, then (, ) is an inner product on Cn. Realize that (y, x) = (y∗Ax) =

(y∗Ax)t = (y∗Ax)∗ = x∗A∗(y∗)∗ = x∗Ay = (x, y).

Orthogonal A matrix A ∈Mn(R) is orthogonal iff AAt = I. Write AAt = (bij) =
∑n
k=1 aikajk. For (bij) to be the identity,

we require that
∑n
k=1 a

2
ik = 1 and

∑n
k=1 aikajk = 0. Let rj be the jth row of A. Then we require that (rj , rj) = 1 and

(ri, rj) = 0 for all i,j. Hence A is orthogonal iff the rows of A form an orthonormal set (note that this has to be orthonormal
since the norm of each row is 1). Similarly, using ATA = I from the definition of the inverse, we see that the columns are
orthonormal too.

Unitary matrix A matrix A ∈ Mn(F ) is unitary iff AA∗ = I. Similarly, the rows of A form an orthonormal set and
the columns of A also form an orthonormal set. Note that the inner product used here is (x, y) =

∑
i xiȳi with complex

conjugation on the second variable coordinates.

1.27 28 Feb 2014 Lecture

Lemma 5B Let 0 6= x ∈ V . Then ∃y ∈ Fx a scalar multiple of x with (y, y) = 1.

Proof Since x 6= 0, by the positive definite axiom, we know that (x, x) > 0. Hence ∃0 6= a ∈ R with a2 = (x, x). Then we
can form y = a−1x such that (y, y) = (a−1x, a−1x) = a−1a−1(x, x) by linearity, no need for complex conjugate since a is real.
But is equal to (x, x)/(x, x) = 1.

Orthonormal basis An orthonormal basis over V is a basis X such that ∀x, y ∈ X, (x, y) = δx,y.
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Theorem 1.14 If 0 < dim(V ) <∞, then V has an orthonormal basis.

Proof Let 0 6= x ∈ V . Let n be the dimension of the space V. By Lemma 5B, ∃x1 ∈ Fx, (x1, x1) = 1. If n = 1, then
we are done, since {x1} is an orthonormal basis. So we may take n=1, and proceeding by induction, we assume that the
theorem holds for spaces of dimension n − 1. Let U be the one-dimensional vector space generated by x1. Write W = U⊥.
By Theorem 1.15, dimW = n − 1. By Lemma 5A, the inner product is also an inner product in W. So by the induction
assumption, ∃ an orthonormal basis {x2, . . . , xn} for W. Let X = {x1, x2, . . . , xn}. We observe that X is an orthonormal
basis for V.

Maps between inner product spaces Let V ′ be an F-space with inner product (, )′. A linear map f : V → V ′ is unitary
if f preserves the inner product. This means that ∀x, y ∈ V, (x, y) = (f(x), f(y))′.

Isometry An isometry if V, (, ) with V ′, (, )′ is a vector space isomorphism f : V → V ′ which is unitary. Note that if
f : V → V ′ is an isomorphism, then f−1 : V ′ → V is also an isometry. Note that to prove this, we just need to check that
f−1 preserves inner products, since f is an isomorphism, so we know that the inverse exists and the inverse is an isomorphism
also. We say that V and V ′ are isometric if ∃ an isometry between them. Geometrically, unitary maps preserve distance and
angle.

Example of isometry Consider V = R2 under the dot product. Define f : V → V by f(v1, v2) = (v2,−v1). This is
effectively a rotation through −π/2.

Theorem 5.17 Let f : V → V ′ be an isomorphism. Let X be a basis for V. Then f is an isometry iff ∀x, y ∈ X, (x, y) =
(f(x), f(y))′.

Proof Forward direction is trivial. For the reverse direction, we let u, v ∈ V . Then (u, v) = (
∑
i aixi,

∑
j bjxj) =∑

i,j aib̄j(xi, xj) =
∑
i,j aib̄j(f(xi), f(xj)) by assumption. This is equal to (

∑
i aif(xi),

∑
j bjf(xj))

′ = (f(u), f(v))′.

Theorem 5C If dimV = n <∞, then V is isometric to Vn under the dot product. That is, V is an n-dimensional Euclidean
space over F.

Proof By Theorem 1.14, V has an orthonormal basis X. We also know that the set of coordinate vectors B is orthonormal.
Hence we just need to find a linear map to map basis X to B. By Theorem 2.12, there exists a linear map f : V → Vn
such that f(xi) = ei,∀i. By Theorem 2C, f : V → Vn is an isomorphism. It remains to show that f is unitary. But
(xi, xj) = δij = ei · ej = f(xi) · f(xj). So by Theorem 5.17, f is unitary.

Theorem 5.15 If dimV <∞, then each unitary map f : V → V is an isometry.

Proof We must show that f is an isomorphism. By Theorem 2C, we just need to check that its null space is zero. Let
x ∈ N(f) .Then f(x) = 0, so 0 = (0, 0) = (f(x), f(x)) = (x, x) =⇒ x = 0 =⇒ N(f) = 0.

Theorem 5.16 Assume dimV = n < ∞, and F = C. Let f ∈ L(V ) be unitary. Then (1) there exists an orthonormal ba-
sis X of eigenvectors for f, (2) |a| = 1 for all eigenvalues a of f, (3) mX(f) is diag(a1, a2, . . . an), where ai are the eigenvalues of f.

1.28 03 March 2014 Lecture

Theorem 5.16 Assume dimV = n <∞ and F = C. Let f ∈ L(V ) be unitary. Then (1) there exists an orthonormal basis
X of eigenvectors for f. (2) |a| = 1,∀ eigenvalues a of f (3) mX(f) = diag(a1, . . . , an), where ai are the eigenvalues of f.

Proof Let p(x) = charf (x). Then p(x) = (x− a1) . . . (x− an). As F = C, by Theorem 4.5, a1, . . . , an are the eigenvalues of
f. So there exists an eigenvector x1 for a1. By Theorem 5B, there exists x′1 ∈ Fx1 such that (x′1, x

′
1) = 1. Now as x′1 is also

an eigenvector for a1, we replace x1 by x′1, and we have (x1, x1) = 1. By Theorem 5.15, any unitary map f is an isomorphism
of V with V. Hence, the null space of f is zero. But the null space of f is the zero eigenspace. Hence we conclude that the
zero eigenspace only includes the zero vector, hence there are no non-zero eigenvectors for the zero eigenvalue. Hence zero is
not an eigenvalue, and all eigenvalues are non-zero. Now let U be the space of all scalar multiples of x1 and let W = U⊥.
Then by Theorem 1.15, V = U

⊕
W . Also dim(W ) = n− dim(U) = n− 1. We claim that f(W ) ⊆ W . To prove the claim,

we let w ∈ W and we require f(w) ∈ W . Now we let (x1, w) = 0 = (f(x1), f(w)) since f is unitary, so it preserves the inner
product. This is equal to (a1x1, f(w)) = a1(x1, f(w)). Now we know that a1 6= 0, hence (x1, f(w)) = 0, and f(w) ∈ x⊥1 = W .
Now by Theorem 5A, W (with (, )) is an inner product space. We perform induction over the dimension n. We note that
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the statement is true for n = 1. Let it be true for n − 1 dimensional spaces. By the claim, and noting that f is unitary
on V, f ∈ L(W ) and f is unitary on W. Hence there exists an orthonormal basis {x2, . . . , xn−1} of eigenvectors for f on W.
Now let X be the set of eigenvectors with x1 included. Hence X is orthonormal. Now since the set is orthogonal, it is also
independent, and since it is of the right order n, it is a basis for V. This proves (1).

To prove (2), we examine the inner product of an eigenvector with the orthonormal eigenvector basis (xi, xi) = 1 =
(f(xi), f(xi)) = (aixi, aixi) = aiāi(xi, xi) = |ai|2 = 1. Hence |ai| = 1.

To prove (3), as X is a basis of eigenvectors for linear map f, by Lemma 4B, the matrix of f with respect to X is diagonal,
with the diagonal entries being the eigenvalues of f.

Unitary Matrix Let A = (aij) ∈Mn(F). A is unitary if AA∗ = I.

Remark 5 A is unitary iff A is invertible and A∗ = A−1. Hence A∗ is also unitary, and A is unitary iff A∗A = I.

Proof If A is unitary, then by definition AA∗ = 1. We know that det(I) = 1. Hence det(A) det(A∗) = 1. Hence the determi-
nant of A is non-zero, hence it has an inverse by Lemma 3H. Also, A−1 = A−1I = A−1AA∗ = (A−1A)A∗ = IA∗ = A∗. For the
other direction, if A is invertible with A−1 = A∗, then AA∗ = AA−1 = I = A−1A = A∗A. Hence if A is unitary and A∗A = I.

Remark 6 (AB)∗ = B∗A∗ and (AB)t = BtAt.

Proof Let A = (aij) and B = (bij), AB = (cij). Then At = (aji), B
t = (bji). Let BtAt = (dij). dij =

∑
k bkiajk =∑

k ajkbki = cji. Hence the statement is true.

Remark 7 A matrix (aij) is real if all its entries are real. If A is real then A∗ = At. Hence when A is real, A is unitary iff
AAt = I.

Lemma 5D Let X = {x1, . . . , xn} be a basis for V. Define the matrix of (, ) with respect to the basis to be B = (bij) ∈Mn(F)
such that bij = (xi, xj). Let f ∈ L(V ) and A = mX(f). Then f is a unitary linear map iff Bt = A∗BtA.

Proof By Theorem 5.17, a map f is unitary iff (xi, xj) = (f(xi), f(xj)),∀i, j. We note that this is bij . Let A = (aij). Then
(f(xi), f(xj)) = (

∑
k akixk,

∑
l aljxl) =

∑
k,l akiālj(xk, xl) =

∑
k,l akiāljbkl =

∑
kl a

t
ikbklālj = i, jth entry in AtBĀ. Hence, f

is unitary iff B = AtBĀ. Taking the transpose of the equation, Bt = (AtBĀ)t = ĀtBtA = A∗BtA. Hence the statement is
true.

Theorem 5.18 Let X be an orthonormal basis of V and f ∈ L(V ). Then f is unitary iff mX(f) is unitary.

Proof As X is orthonormal, the matrix B of (, ) with respect to X is I. B = (bij) = ((xi, xj)) = (δij) = I. Now let A = mX(f).
By Lemma 5D, f is unitary iff Bt = A∗BtA. But since B is the identity, we require that I = A∗A, which is equivalent to
saying that A is unitary.
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Theorem 5.19 If A is unitary, then (1) A is similar over C to a diagonal matrix (2) the eigenvalues of A have modulus 1.

Proof Let X be an orthonormal basis of V, dimV = n. Then A = mX(f) for some f ∈ L(V ). As A is unitary, f is also
unitary by Theorem 5.18. By Theorem 5.16, the unitary map has a basis Y of eigenvectors. Then mY (f) is diagonal, with
the entries along the main diagonal equal to the eigenvalues of f. Also, by Theorem 5.16, these eigenvalues have absolute
value 1. Now by Theorem 4.8, mY (f) is similar to A = mX(f) over C. Hence these exists some invertible matrix C ∈Mn(C)
such that C−1AC = mY (f). Also, mY (f) has the same eigenvalues as mX(f).

Hermitian Map f ∈ L(V ) is Hermitian if ∀x, y ∈ V , (f(x), y) = (x, f(y)).

Hermitian Matrix A ∈Mn is Hermitian if A = A∗, A is self-adjoint. Hence A is Hermitian iff aij = āji,∀i, j.

Symmetric matrix We say A ∈Mn is symmetric iff aij = aji,∀i, j. A is symmetric around the diagonal.

Notice Recall A is real if all its entries are real. If A is real, then ∀i, j, āij = aij . Hence a real matrix A is hermitian iff A is
symmetric.
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Theorem 5.4 Let dimV = n < ∞ and assume f ∈ L(V ) is hermitian. Then, (1) there exists an orthonormal basis X of
eigenvectors for f, (2) the eigenvalues of f are real, (3) mX(f) is diagonal.

Proof Refer to proof of Theorem 5.16(1) for proof of (1) and (3). To prove (2), let a be an eigenvalue of F. Then there
exists an associated eigenvector x for a. By Lemma 5B, we can pick x such that (x, x) = 1. Write a = a(x, x) = (ax, x) =
(f(x), x) = (x, f(x)) = (x, ax) = ā(x, x) = ā. Hence a = ā, hence a has to be real.

Theorem 5.6 Let X = {x1, . . . , xn} be an orthonormal basis for V. Let f ∈ L(V ) and A = mX(f). Then f is hermitian iff
mX(f) is hermitian.

Proof We note that f is hermitian iff ∀i, j, (xi, f(xj)) = (f(xi), xj). LHS = (xi, f(xj)) = (xi,
∑
k akjxk) =

∑
k akj(xi, xk) =∑

k akjδik = aij . Similarly, (f(xi), xj) = aji). Hence f is hermitian iff ∀i, jaij = aji, hence A is hermitian. Hence f is
hermitian iff A is hermitian.

Theorem 5.7 Let A ∈ Mn(F) be hermitian. Then (1) A is similar over F to a diagonal matrix, and (2) the eigenvalues of
A are real.

Proof Pick an orthonormal basis X for V. Then A = mX(f) for some f ∈ L(V ). As A is unitary, f is also unitary by
Theorem 5.6. Hence by Theorem 5.4(3), there exists a basis Y for V such that mY (f) is diagonal, with eigenvalues along the
main diagonal. Also, by Theorem 5.4(2), the eigenvalues of f are real. Now by Theorem 4.8, mY (f) is similar to mX(f) over
F. Hence there exists some invertible matrix C ∈Mn(F) such that C−1AC = mY (f). Hence (1) holds. Also, mY (f) has the
same eigenvalues as mX(f), hence the eigenvalues of mX(f) are real also. Hence (2) holds.

Corollary Let A be a real symmetric matrix. Then (1) A is similar over R to a diagonal matrix (2) the eigenvalues of A are
real.

Proof Since A ∈ Mn(R), hence we may take F = R. Since A is real symmetric, A is also hermitian. Hence we appeal to
Theorem 5.7 to conclude that (1) A is similar to a diagonal matrix and (2) the eigenvalues of A are real.

Cayley-Hamilton Theorem Theorem 7.8 in the text. Let A ∈Mn(C) and p(x) = charA(x) Then p(A) = 0. Recall that a
matrix polynomial q(A) =

∑m
i=0 ciA

i where A0 = I and Ai is the ith power of A.
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Direct Sums of Matrices Let 0 < n ∈ Z. Let C ∈Mn and let 0 < m < n. Let A ∈Mm and B ∈Mn−m. Write C = A
⊕
B,

the direct sum of A and B. This indicates that C has the form:

(
A 0
0 B

)
. Recall that det(C) = det(A) det(B). More

generally, suppose A1, A2, . . . Ar are square matrices with Ai ∈Mni . Let n = n1 + n2 + . . .+ nr. Write C = A1

⊕
. . .
⊕
Ar

if C has the matrices Ai along the main diagonal (all other entries zero). Note that C ∈Mn. This is called a block diagonal
decomposition.

Jordan Block Define Nn ∈ Mn by Nn =


0 1 · · · 0

0 0 1
...

...
...

. . .
...

0 0 · · · 0

. Then Nn = (bij) where bij =

{
0 if j 6= i+ 1

1 if j = i+ 1
. Then Nn

has 1s on the super diagonal and zeroes elsewhere. A matrix A ∈ Mn is a Jordan block if size n if A = aI + Nn for some
a ∈ F. Then A has values of a along the main diagonal and 1s along the super diagonal. In particular, A is triangular.

Jordan Form A matrix A ∈Mn is in Jordan form if for some positive integer r and for 1 ≤ i ≤ r, there exists positive integers
n1, . . . , nr such that n = n1+. . .+nr and there exists Jordan blocks A1, . . . Ar with Ai of size ni such that A = A1

⊕
. . .
⊕
Ar.

Jordan Form Theorem Each matrix A ∈Mn(C is similar over the complex numbers to a unique (up to ordering of Jordan
blocks) matrix in Jordan form.

Example Take n = 2. A ∈M2 is in Jordan form iff either (1) A is the direct sum of two Jordan blocks of size 1, (2) A is a Jor-

dan block of size 2. In case 1, Ai = aiI for some scalar ai ∈ C. Hence A = A1

⊕
A2 = diag(a1, a2). In case 2, A =

(
a 1
0 a

)
.
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Remark Let dimV = n over the complex numbers. Also let f ∈ L(V ) and X a basis for V. Let A = mX(f). By the Jordan
Form theorem, there exists some matrix A′ in Jordan form similar to A, so there exists some basis X ′ with mX′(f) = A′.
Suppose A = A′. Say A = A1

⊕
. . .
⊕
Ar with Ai = aiI +Nni

. Then (1) matrix A is upper triangular, hence its eigenvalues
are the entries along the diagonal, hence are a1, . . . ar. Define J(ai) = {j : ai = aj}. Then (2) the multiplicity of ai as an
eigenvalue of f is

∑
j∈J(ai) nj . Also, (3) for a ∈ {a1, . . . , ar}, dim(E(a)) = |J(a)|. Also, (4) A is similar to a diagonal ma-

trix iff all the Jordan blocks of A are of size 1. If any block is of size greater than 1, then A is not similar to a diagonal matrix.

Proof For (1) and (2), as A is the direct sum of upper triangular matrices, it is also upper triangular. We know that in a
triangular matrix, the eigenvalues are the entries along the diagonal. (3) as an exercise (4) Assume A is in Jordan Form.
Then A is diagonal iff each Jordan block is diagonal. But each Jordan block is diagonal only when it is of size 1. Suppose A is
similar to a diagonal matrix D. Then D is in Jordan form, since D has n Jordan blocks of size 1. But we know that A is simi-
lar to a unique matrix in Jordan form, so D is the unique (subject to re-ordering of Jordan blocks) Jordan form of A. So A = D.

Example Let V be the space of real polynomials of degree less than n for some n. Then Y = {1, x, x2, . . . xn−1} is a

standard basis for V. Let f ′(x) =
∑n−1
i=0 iaix

i−1 ∈ V . Define δ : V → V with f 7→ f ′. This is a linear map. Define
xi = xi/i! where 0! ≡ 1. Then X = {xi : 0 ≤ i < n} is also a basis for V. Then δ(x0) = 0, and for some i > 0, then
δ(xi) = (xi/i!)′ = ixi−1/i! = xi−1/(i− 1)! = xi−1. Then δ maps each basis vector to the previous basis vector in the ordered
basis X. Then mX(δ) = Nn, with 1s along the super diagonal and zeroes elsewhere. Then mX(δ) is a Jordan block of size n.

19


