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Chapter 1

Definitions

1. Analytic Function: A function f is analytic in an open set if it has a derivative at each point in that set. Also call
f regular or holomorphic. f is analytic at a point z0 if it is analytic in a neighbourhood of z0.

2. Entire Function: An entire function is a function that is analytic at each point in the entire finite plane. Every
polynomial is an entire function.

3. Singular Point: If a function f fails to be analytic at a point z0 but is analytic at some point in every neighbourhood
of z0, then z0 is a singular point or singularity of f .

4. Isolated singular point: A singular point z0 is isolated if there is a deleted neighbourhood 0 < |z − z0| < ε of z0

throughout which f is analytic.

5. Harmonic conjugate: If u and v are harmonic in D and their first-order partial derivatives satisfy the Cauchy-
Riemann equations throughout D, then v is a harmonic conjugate of u.

6. Domain vs Region A domain is an open set (all points interior points) that is connected. A region is a domain
together with some (or none or all) of its boundary points.

7. Accumulation point A point z0 ∈ S is an accumulation point of set S if each deleted neighbourhood of z0 contains
at least one point of S. If a set S is closed, then it contains each of its accumulation points.

8. Multi-valued logarithm function: logz = ln|z|+ i arg(z), where arg(z) is the multi-valued argument function.

9. Branch: A branch of a multiple-valued function f is any single-valued function F that is analytic in some domain at
each point z of which the value F (z) is one of the values f(z).

10. Branch cut: A branch cut is a portion of a line or curve that is introduced in order to define a branch F of a
multiple-valued function f . Points on the branch cut for F are singular points of F and any point that is common to
all branch cuts of f is called a branch point.

11. Principal value: The principal value of the multivalued function f(z) can be found using eLog(f(z)) where Log is the
single-valued logarithm function.

12. Absolute convergence: A series of complex numbers zn = xn + iyn, n = 1, 2, . . . converges absolutely if the series of
real numbers

∑∞
n=1 |zn| converges. Note that absolute convergence of a series of complex numbers implies convergence

of that series.

13. Circle of convergence: The largest circle centred at z0 such that the series
∑∞
n=0 an(z − z0)n converges for every

point inside is the circle of convergence of the series. The series cannot converge at any point z2 outside the circle of
convergence.

14. Uniform Convergence: (Stronger condition than pointwise convergence) A sequence of functions {fn} converges
uniformly to a limiting function f if the speed of convergence of fn(x) to f(x) does not depend on x. More rigorously,
if for all ε > 0 there exists a natural number Nε such that |fn(z) − f(z)| < ε whenever N > Nε and Nε depends only
on the value of ε and is independent of the point z taken in a specified region within the circle of convergence, then the
convergence is said to be uniform in the region.

15. Analytic Continuation: Consider two domains D1 and D2 with non-empty intersection D1 ∩ D2. Let a function
f1 be analytic in D1. If a function f2 is analytic in D2 and has f2(z) = f1(z) for z ∈ D1 ∩D2 then f2 is an analytic
continuation of f1 into the second domain D2.
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16. Residue: Let C be a positively oriented simple closed curve around the isolated singular point z0 and lying in the
punctured disk 0 < |z − z0| < R2, where R2 represents the radius of convergence of the function f around z0. Then
the complex number 1

2πi

∫
C
f(z)dz is called the residue of f at the isolated singular point z0. Note that the residue is

the coefficient of 1
z−z0 in the Laurent series. If you can somehow figure out the Laurent series of the function around

z0 without explicit integration, you immediately know the residue.

17. Pole: If the principal part (negative powers of z−z0) of f at isolated singular point z0 contains at least one non-zero term
but with a finite number of terms such that there exists a positive integer m with bm 6= 0 and bm+1 = bm+2 = · · · = 0,
then the isolated singular point z0 is called a pole of order m. A pole of order 1 is called a simple pole.

18. Removable singular point: If the principal part of f at isolated singular point z0 are all zero, then z0 is known as a
removable singular point. The residue at a removable singular point is always zero (of course, since the residue is the
coefficient of the n = −1 term). The removable singular point can be removed by redefining f to have the value a0,
the first term in the Laurent series.

19. Essential singular point: If the principal part of f at isolated singular point z0 contains an infinite number of
non-zero terms, z0 is said to be an essential singular point of f .

20. Zeros of order m: Consider a function f that is analytic at z0. If f(z0) = 0 and there is a positive integer m such
that f (m)(z0) 6= 0 and each derivative of lower order at z0 vanishes, then f is said to have a zero of order m at z0.
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Chapter 2

Theorems

1. Necessary Conditions for Differentiability: Suppose that f(z) = u(x, y) + iv(x, y) and that f ′(z) exists at
z0 = x0 + iy0. Then the first order partial derivatives of u and v exist there and satisfy the Cauchy-Riemann
Equations ux = vy, uy = −vx. Write f ′(z0) = ux + ivx.

2. Sufficient Conditions for Differentiability: Suppose f(z) = u(x, y) + iv(x, y) is defined in the ε-neighbourhood
of z0 = x0 + iy0. Suppose that the first-order partial derivatives of u and v exist everywhere in that neighbourhood
and that they are continuous at (x0, y0). Then if the partial derivatives satisfy the Cauchy-Riemann Equations
ux = vx, uy = −vy at z0, then the derivative f ′(z0) exists.

3. Sufficient condition for Differentiability (Polar Coordinates): Given f(z) = u(r, θ) + iv(r, θ) that is defined in
some ε-neighbourhood of a non-zero point z0 = r0 exp(iθ0). Suppose that the first order partial derivatives of u and v
exist everywhere in that neighbourhood and are continuous at (r0, θ0). Then if the partial derivatives satisfy the Polar
Form of the Cauchy-Riemann Equations ur = 1

rvθ,
1
ruθ = −vr at (r0, θ0), then the derivative f ′(z0) exists. Write

f ′(z0) = e−iθ(ur + ivr).

4. Reflection Principle: Suppose that a function f is analytic in some domain D which contains a segment of the x-axis
and is symmetric to that axis. Then f(z) = f(z̄) for each point z ∈ D iff f(x) is real for each point x on the segment.

5. Harmonic Function: A real-valued function H : R2 → R is harmonic in a given domain of the xy plane if it has
continuous partial derivatives of the first and second order throughout that domain that satisfies the partial differential
equation Hxx(x, y) +Hyy(x, y) = 0, known as Laplace’s equation.

6. Analyticity implies components are harmonic: If f(z) = u(x, y) + iv(x, y) is analytic in D, then its component
functions u and v are harmonic in D.

7. Antiderivatives: Suppose a function f is continuous on a domain D. Then the following are equivalent: (a) f has an
antiderivative F in D, (b) the integrals of f(z) along contours lying entirely in D and extending from any fixed point
z1 to any fixed point z2 all have the same value; (c) the integrals of f(z) around closed contours lying entirely in D all
have value zero.

8. Cauchy-Goursat Theorem: If a function f is analytic at all points interior to and on a simple closed contour C,
then

∫
C
f(z)dz = 0.

9. Cauchy-Goursat for simply connected domain: If a function f is analytic throughout a simply connected domain
D, then

∫
C
f(z)dz = 0 for every closed contour C lying in D. Note that C can intersect itself a finite number of times

since we can divide C into a finite number of simple closed contours.

10. Cauchy-Goursat for multiply connected domain: Let C and Ck, k = 1, 2, . . . , n be simple closed curves in D.
Let C be positively oriented. Let Ck be negatively oriented, pairwise disjoint, and interior to C. Then if f is analytic
throughout the interior of C that is exterior to all Ck, then

∫
C
f(z)dz +

∑n
k=1

∫
Ck
f(z)dz = 0.

11. Cauchy Integral Formula: Let f be analytic everywhere within and on a simple closed positively oriented curve C.

If z0 is interior to C, then f(z0) = 1
2πi

∫
C
f(z)dz
z−z0 . The values of f interior to C are completely determined by the values

of f on C.

12. Analytic functions and higher-order derivatives: If a function f is analytic at a point, then its derivatives of
all orders are also analytic functions at that point. Also, its component functions u and v have continuous partial
derivatives of all orders at that point.

13. Higher-order derivatives of analytic functions: f (n)(z0) = n!
2πi

∫
C

f(z)dz
(z−z0)n+1 , n = 0, 1, 2, . . ..
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14. Sufficient condition for analyticity using closed integrals: If a function f is continuous throughout a domain
D, and if

∫
C
f(z)dz = 0 for every closed contour C lying in D, then f is analytic throughout D.

15. Cauchy’s inequality: Let z0 be a fixed complex number. If a function f is analytic within and on a circle |z−z0| = R,
taken in the positive orientation and denoted by C, and MR is the maximum value of |f(z)| on C, then

∣∣f (n)(z0)
∣∣ ≤

n!MR

Rn , n = 1, 2, . . ..

16. Liouville’s Theorem: If f is entire and bounded in the complex plane, then f(z) is constant throughout the plane.
The only entire function that is bounded in the complex plane is a constant. This follows from Cauchy’s inequality
when n = 1 and observing that the inequality must hold for arbitrarily large values of R.

17. Fundamental Theorem of Algebra: Any polynomial P (z) = a0 + a1z + . . .+ anz
n, an 6= 0 of degree n ≥ 1 has at

least one zero. That is, ∃ at least one point z0 such that P (z0) = 0.

18. Maximum Modulus Principle: If a function f is analytic and not constant in a given domain D, then |f(z)| has
no maximum value in D. That is, there is no point z0 in the domain such that |f(z)| ≤ |f(z0)| for all points z ∈ D.

19. Corollary of the Maximum Modulus Principle: Suppose that a function f is continuous in a closed bounded
region R and that it is analytic and not constant in the interior of R. Then the maximum value of |f(z)| in R, which
is always reached, occurs somewhere on the boundary of R and never in the interior.

20. Summation of series: Suppose that zn = xn+iyn, n = 1, 2, . . . and S = X+iY . Then
∑∞
n=1 zn = S iff

∑∞
n=1 xn = X

and
∑∞
n=1 yn = Y .

21. Taylor Series: Suppose a function f is analytic throughout an open disk |z − z0| < R0. Then at each point z in that

disk, f(z) has the series representation f(z) =
∑∞
n=0 an(z − z0)n where an = f(n)(z0)

n! .

22. Laurent’s Theorem and Series: Suppose that a function f is analytic throughout an annular domain R1 < |z−z0| <
R2 and let C denote any positively oriented simple closed contour around z0 and lying in that annular domain.
Then at each point z in the domain, f(z) has the series representation f(z) =

∑∞
n=0 an(z − z0)n +

∑∞
n=1

bn
(z−z0)n

where an = 1
2πi

∫
C

f(z)dz
(z−z0)n+1 , n = 0, 1, 2, . . . and bn = 1

2πi

∫
C

f(z)dz
(z−z0)−n+1 , n = 1, 2, . . .. The series in the second term

involving negative powers of z − z0 is called the principal part of f at z0. Alternatively, write the expansion as

f(z) =
∑∞
n=−∞ cn(z − z0)n with cn = 1

2πi

∫
C

f(z)dz
(z−z0)n+1 , n = 0,±1,±2, . . .. Note that when f is analytic, then all the

bn = 0 and the expansion becomes the Taylor series.

23. Determining absolute convergence: If a power series
∑∞
n=0 an(z − z0)n converges when z = z1, z1 6= z0, then it is

absolutely convergent at each point z in the open disk |z − z0| < R1 with R1 = |z1 − z0|.

24. Uniform convergence within circle of convergence: If z1 is a point inside the circle of convergence |z − z0| = R
of a power series

∑∞
n=0 an(z − z0)n, then that series is uniformly convergent in the closed disk |z − z0| ≤ R1 where

R1 = |z1 − z0|.

25. Corollary of uniform convergence theorem: A power series
∑∞
n=0 an(z − z0)n represents a continuous function

S(z) at each point inside its circle of convergence |z − z0| = R. Also, if the power series
∑∞
n=1

bn
(z−z0)n converges at a

point z1 6= z0 then it must converge absolutely to a continuous function in the domain exterior to the circle |z−z0| = R1

where R1 = |z1 − z0|. Also, if a Laurent series representation f(z) =
∑∞
n=0 an(z − z0)n +

∑∞
n=1

bn
(z−z0)n is valid in an

annulus R1 < |z− z0| < R2 then both of the series converge uniformly in any closed annulus which is concentric to and
interior to that region of validity.

26. Integration of power series: Let C denote any contour interior to the circle of convergence of the power series
S(z) =

∑∞
n=0 an(z− z0)n and let g(z) be any function continuous on C. The series formed by multiplying each term of

the power series by g(z) can be integrated term by term over C; that is
∫
C
g(z)S(z)dz =

∑∞
n=0 an

∫
C
g(z)(z − z0)ndz.

Note that if g(z) = 1 over the domain then
∫
C
S(z)dz = 0 for every closed contour C.

27. Series sum is analytic in circle of convergence: The power series S(z) =
∑∞
n=0 an(z − z0)n is analytic at each

point z interior to the circle of convergence of that series.

28. Differentiation of power series: The power series S(z) =
∑∞
n=0 an(z − z0)n can be differentiated term by term in

the interior of its circle of convergence to obtain S′(z) =
∑∞
n=1 nan(z − z0)n−1.

29. Uniqueness of Taylor series representations: If a series
∑∞
n=0 an(z − z0)n converges to f(z) at all points interior

to some circle |z − z0| = R then it is the Taylor series expansion for f in powers of z − z0.
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30. Uniqueness of Laurent series representations: If a series
∑∞
n=−∞ cn(z−z0)n =

∑∞
n=0 an(z−z0)n+

∑∞
n=1

bn
(z−z0)n

converges to f(z) at all points in some annular domain about z0, then it is the Laurent series expansion for f in powers
of z − z0 for that domain.

31. Cauchy’s Residue Theorem: Let C be a positively oriented simple closed curve. If a function f is analytic inside
and on C except for a finite number of singular points zk, k = 1, 2, . . . inside C then

∫
C
f(z)dz = 2πi

∑n
k=1 Resz=zkf(z).

32. Alternative method to calculate the Residue Theorem: If a function f is analytic everywhere in the finite plane
except for a finite number of singular points interior to a positively oriented simple closed curve C, then

∫
C
f(z)dz =

2πiResz=0

[
1
z2 f

(
1
z

)]
. Instead of calculating the residues are multiple locations, we only need to calculate one residue

of a related function.

33. Theorem regarding poles and the original function: An isolated singular point z0 of a function f is a pole of

order m if and only iff f(z) can be written in the form f(z) = φ(z)
(z−z0)m where φ(z) is analytic and non-zero at z0.

Moreover, Resz=z0f(z) = φ(z0) if m = 1 and Resz=z0f(z) = φ(m−1)(z0)
(m−1)! if m ≥ 2.

34. Lemma regarding zeros of order m: A function f that is analytic at a point z0 has a zero of order m there iff
there is a function g which is analytic and non-zero at z0 such that f(z) = (z − z0)mg(z).

35. Zeros can generate poles: Let functions p and q be analytic at z0 with p(z0) 6= 0. Then if q has a zero of order m
at z0, then the quotient p(z)/q(z) has a pole of order m there.

36. Finding residues of simple poles: Let two functions p and q be analytic at point z0. If p(z0) 6= 0, q(z0) = 0, q′(z0) 6=
0, then z0 is a simple pole of the quotient p(z)/q(z) and Resz=z0

p(z)
q(z) = p(z0)

q′(z0) .

37. Zero over a domain: If a function f is analytic throughout a domain D and f(z) = 0 at each point z of a domain
or arc contained in D, then f(z) = 0 in D.

38. Unique determination of analytic function: A function that is analytic in a domain D is uniquely determined
over D by its values over a domain, or along an arc, contained in D.

39. Riemann’s theorem: Suppose that a function f is analytic and bounded in some deleted neighbourhood 0 < |z−z0| <
ε of a point z0. If f is not analytic at z0, then it has a removable singularity there.

40. Casorati-Weierstrass Theorem: Suppose that z0 is an essential singularity of a function f , and let w0 be any
complex number. Then, for any ε > 0, the inequality |f(z) − w0| < ε is satisfied at some point z in each deleted
neighbourhood 0 < |z − z0| < δ of z0.

6



Chapter 3

Syllabus-specific Notes

3.1 Part 1

1. Introduction to complex numbers

• Definition of sum (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2).

• Definition of product: (x1, y1)(x2, y2) = (x1x2 − y1y2, y1x2 + x1y2).

• Algebraic properties: Commutative (z1 + z2 = z2 + z1, z1z2 = z2z1), Associative ((z1 + z2) + z3 = z1 + (z2 + z3),
(z1z2)z3 = z1(z2z3)).

• Multiplicative inverse of z = (x, y) is z−1 =
(

x
x2+y2 ,

−y
x2+y2

)
for z 6= 0.

• Binomial formula: (z1 + z2)n =
∑n
k=0

(
n
k

)
zn−k1 zk2 ,

(
n
k

)
= n!

k!(n−k)! .

• Triangle inequality |z1 + z2| ≤ |z1|+ |z2|.
• Modified triangular inequality: |z1 ± z2| ≥ ||z1| − |z2||. Proof: Write |z1| = |(z1 + z2) + (−z2)| ≤ |z1 + z2|+ | − z2|

so |z1 + z2| ≥ |z1| − |z2| when |z1| ≥ |z2|. If |z1| < |z2|, interchange z1 and z2 to get |z1 + z2| ≥ −(|z1| − |z2|).
• Conjugate of sum is sum of conjugates z1 + z2 = z1 + z2.

• Conjugate of product is product of conjugates z1z2 = z1 · z2.

• Parabola: Consider a line (directrix) and a point (focus). The parabola is the locus of points equidistant to the
directrix and the focus.

• Hyperbola: A hyperbola is the locus of points whose absolute value of the difference of distances to two foci is a

constant (2a). 2a is also the distance between its vertices. The canonical equation is x2

a2 −
y2

b2 = 1.

• Partial fraction decomposition: Consider a denominator with (z − a1)m1(z − a2)m2 · · · , where aj are complex
numbers and mj are multiplicities. Then the partial fraction decomposition has denominators (z − a1)m1 , (z −
a1)m1−1, · · · , (z − a1), (z − a2)m2 , · · · (z − a2).

• Homework 1 Identity: if |α| < 1 and |β| < 1, then
∣∣∣ α−β1−αβ̄

∣∣∣ < 1.

2. Polar form

• Principal value Arg is the unique value Θ such that −π < Θ ≤ π. arg z = Argz + 2nπ.

• Inversion of reiθ is 1
r e
−iθ.

• Argument of product: arg(z1z2) = arg z1 + arg z2 + 2πk, k ∈ Z. Note that this may not work when you use Arg.

3. Euler’s formula eiθ = cos θ + i sin θ.

4. Complex exponential The transformation w = ez maps the rectangular region a ≤ x ≤ b, c ≤ y ≤ d onto the region
ea ≤ ρ ≤ eb, c ≤ φ ≤ d. The mapping is one-to-one if d− c < 2π.

5. Trigonometric functions

sin π
6 = 1

2 , sin
π
4 =

√
2

2 , sin
π
3 =

√
3

2 , sin
π
2 = 1.

cos π6 =
√

3
2 , cos π4 =

√
2

2 , cos π3 = 1
2 , cos π2 = 0.

tan π
6 = 1√

3
, tan π

4 = 1, tan π
3 =
√

3, tan π
2 =∞.

More definitions and identities:
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• sin z = eiz−e−iz
2i

• cos z = eiz+e−iz

2

• 2 sin z1 cos z2 = sin(z1 + z2) + sin(z1 − z2)

• sin(z + π/2) = cos z

• sin(z − π/2) = − cos z

• sin(iy) = i sinh y, sin z = −i sinh(iz), sinh z = −i sin(iz)

• cos(iz) = cosh z, cosh(iz) = cos z

• sin z = sinx cosh y + i cosx sinh y

• cos z = cosx cosh y − i sinx sinh y

• | sin z|2 = sin2 x+ sinh2 y, | cos z|2 = cos2 x+ sinh2 y

• sin z = 0 ⇐⇒ z = nπ, n ∈ Z
• cos z = 0 ⇐⇒ z = π/2 + nπ, n ∈ Z
• d

dz tan z = sec2 z, ddz cot z = − csc2 z, ddz sec z = sec z tan z, ddz csc z = − csc z cot z

• cosh2 y − sinh2 y = 1

• sinh(z1 + z2) = sinh z1 cosh z2 + cosh z1 sinh z2, cosh(z1 + z2) = cosh z1 cosh z2 + sinh z1 sinh z2

• sinh z = sinhx cos y + i coshx sin y, cosh z = coshx cos y + i sinhx sin y

• | sinh z|2 = sinh2 x+ sin2 y, | cosh z|2 = sinh2 x+ cos2 y

• d
dz tanh z = sech2z, ddz coth z = −csch2z, ddz sechz = −sechz tanh z, ddz cschz = −cschz coth z

• Quadrant-specific argument (multiple conditions hold for overlapping areas):

Arg(z) =


−Tan−1(x/y)− π/2, y < 0

Tan−1(y/x), x > 0

−Tan−1(x/y) + π/2 , y > 0

where Tan−1t has a unique solution on the interval (−π/2, π/2).

6. deMoivre’s formula (cosθ + i sin θ)n = cosnθ + i sinnθ.

7. Integer powers and roots nth roots n
√
r0 exp

[
i
(
θ0
n + 2kπ

n

)]
, k = 0, 1, . . . , n− 1. Roots of unity ωkn = exp

(
i 2kπ
n

)
, k =

0, 1, . . . , n− 1.

8. Complex logarithm log z = ln r+i(θ+2nπ), n ∈ Z = ln |z|+i arg z. Identities: log(z1z2) = log z1 +log z2, arg(z1z2) =
arg z1 + arg z2. This does not work for the principal branch.

9. Multiple-valuedness

10. Periodicity ez is periodic with pure imaginary period 2πi.

11. Complex exponents When z 6= 0 and c ∈ C, then zc ≡ ec log z. We also have d
dz z

c = czc−1, |z| > 0, α < arg z < α+2π.

We also define cz = ez log c, ddz c
z = cz log c.

12. Inverse trigonometric functions

• sin−1 z = −i log[iz + (1− z2)1/2]

• cos−1 z = −i log[z + i(1− z2)1/2], branch points at ±1

• tan−1 z = i
2 log i+z

i−z = 1
2i log 1+iz

1−iz , branch points at ±i.

• d
dz sin−1 z = 1

(1−z2)1/2
, depends on what branch square root is defined on. Branch points at ±1.

• d
dz cos−1 z = −1

(1−z2)1/2
, depends on what branch square root is defined on. Branch points at ±1

• d
dz tan−1 z = 1

1+z2 , branch points at ±i

• sinh−1 z = log[z + (z2 + 1)1/2], branch points at ±i
• cosh−1 z = log[z + (z2 − 1)1/2]

• tanh−1 z = 1
2 log 1+z

1−z , branch points at ±1.

• coth−1 z = 1
2 log z+1

z−1
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• csch−1z = log
(

1
z + ( 1

z2 + 1)1/2
)

• sech−1z = log
(

1
z + ( 1

z2 − 1)1/2
)

13. One-to-one mappings A function is one-to-one on a set S if the equation f(z1) = f(z2) implies that z1 = z2.

14. Riemann surfaces

15. Point at infinity: Theorems involving limits:

• limz→z0 f(z) =∞ ⇐⇒ limz→z0
1

f(z) = 0

• limz→∞ f(z) = w0 ⇐⇒ limz→0 f
(

1
z

)
= w0

• limz→∞ f(z) =∞ ⇐⇒ limz→0
1

f(1/z) = 0

16. Stereographic projection

• If Z = (x1, x2, x3) is the projection on the Riemann sphere of the point z = x + iy in the complex plane, then

x1 = 2<(z)
|z|2+1 , x2 = 2=(z)

|z|2+1 , x3 = |z|2−1
|z|2+1 . This is because we can parametric the line through (0, 0, 1), the North

Pole, and (x, y, 0) on the complex plane using (x1, x2, x3) = (tx, ty, 1− t), t ∈ (−∞,∞). Then we need to satisfy
x2

1 + x2
2 + x2

3 = 1. Find that t = 2
1+|z|2 to satisfy the condition.

• Given (x1, x2, x3) on the Riemann sphere, the complex plane values are x = x1

1−x3
, y = x2

1−x3
.

• Lines and circles on the xy complex plane map to circles on the Riemann sphere. General equation for circle
or line: A(x2 + y2) + Cx + Dy + E = 0. A = 0 for a line. To prove this, substitute the previous expressions
for x and y using Riemann sphere coordinates into the general equation for a circle or line, then show that
Cx1 + Dx2 + (A − E)x3 + A + E = 0, which is the equation of a plane. The intersection of a plane and the
Riemann sphere is clearly a circle.

17. Branch points and branch cuts A branch of a multi-valued function f is any single-valued function F that is
analytic in some domain at each point z of which the value F (z) is one of the values f(z). A branch cut is a portion
of a line or curve that is introduced in order to define branch F of a multivalued function f . Points on the branch cut
for F are singular points of F . Points that are common to all branch cuts of f are called branch points.

18. Branch point at infinity

19. Regions of the complex plane

• An open set that is connected is a domain.

• Any neighbourhood is a domain.

• A domain together with some or none or all of its boundary points is a region.

• A set S is bounded if every point of S lies inside some circle |z| = R.

• A simply connected domain is such that every simple closed contour within it encloses only points of the domain.

20. Limits and continuity Let a function f be defined at all points z in some deleted neighbourhood of z0 the limit of
f(z) as z approaches z0 can be written as limz→z0 f(z) = w0. This means that ∀ε > 0,∃δ > 0 such that |f(z)−w0| < ε
whenever 0 < |z − z0| < δ. When a limit of a function exists, it is unique.

• Complex limit is the sum of real limits: limz→z0 f(z) = w0 ⇐⇒ lim(x,y)→(x0,y0) u(x, y) = u0, lim(x,y)→(x0,y0) v(x, y) =
v0 for f(z) = u(x, y) + iv(x, y), w0 = u0 + iv0.

• Sum and product of limits: Suppose that limz→z0 f(z) = w0, limz→z0 F (z) = W0. Then limz→z0 [f(z) + F (z)] =

w0 +W0, limz→z0 [f(z)F (z)] = w0W0, limz→z0
f(z)
F (z) = w0

W0
,W0 6= 0

A function f is continuous at a pont z0 if:

• limz→z0 f(z) exists

• f(z0) exists

• limz→z0 f(z) = f(z0)

More theorems:

• If two functions are continuous at a point, their sum and product are also continuous at that point, and their
quotient is continuous at any point where the denominator is not zero.

• A composition of continuous functions is itself continuous.
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• If a function f(z) is continuous and non-zero at a point z0, then f(z) 6= 0 throughout some neighbourhood of that
point.

• A function f(z) = u(x, y) + iv(x, y) is continuous at a point (x0, y0) iff its component functions are continuous
there.

21. Complex derivative Let f be a function whose domain of definition contains a neighbourhood of a point z0. The

derivative is f ′(z0) = limz→z0
f(z)−f(z)
z−z0 , for all arg z provided it exists. A function is differentiable at z0 when its

derivative at z0 exists.

• The existence of a derivative of a function at a point implies the continuity of the function at that point.

• d
dz log z = 1

z , |z| > 0, α < arg z < α+ 2π, d
dzLogz = 1

z , |z|,−π < Argz < π.

22. Analyticity

• A function f is analytic in an open set if it has a derivative at each point in that set. Note that if we should speak
of a function f that is analytic in a set S which is not open, then we are speaking that f is analytic in an open set
containing S.

• f is analytic at a point of it is analytic throughout some neighbourhood of z0. (This means that f(z) = |z|2 is not
analytic at any point because its derivative only exists at z = 0).

• An entire function is analytic at each point in the entire finite plane.

• A singular point is a point z0 such that f fails to be analytic at but with f analytic at some point in every
neighbourhood of z0.

• A function that is analytic in a domain D is uniquely determined over D by its values in a domain, or along a line
segment, contained in D.

23. Cauchy-Riemann equations

• Suppose that f(z) = u(x, y) + iv(x, y) and that f ′(z) exists at a point z0 = x0 + iy0. Then the first order partial
derivatives of u and v must exist at (x0, y0) and satisfy ux = vy, uy = −vx. Then we can write f ′(z0) = ux + ivx.
These conditions are sufficient of the partial derivatives are continuous at (x0, y0).

• In polar coordinates, write z = reiθ = x + iy so that we can write rur = vθ, uθ = −rvr for the CR equations in
polar coordinates. Write f ′(z0) = e−iθ(ur + ivr).

24. Complex integration Existence of integral: Functions must be piecewise continuous - continuous everywhere except
for a finite number of points with one-sided limits.

• Fundamental Theorem of Calculus: Suppose the functions w(t) = u(t) + iv(t) and W (t) = U(t) + iV (t) are
continuous on the interval a ≤ t ≤ b. If W ′(t) = w(t) when a ≤ t ≤ b, then U ′(t) = u(t) and V ′(t) = v(t). Also,∫ b
a
w(t)dw = U(b)− U(a) + iV (b)− iV (a).

• Integral bounds:
∣∣∣∫ ba w(t)dt

∣∣∣ ≤ ∫ ba |w(t)|dt.

• A partition Pn of smooth curve γ is a finite number of points z0, z1, . . . , zn on γ such that z0 = γ(a), zn = γ(b).

• The Riemann sum for the function f corresponding to partition Pn is given by S(Pn) =
∑n
k=1 f(ck)(zk − zk−1),

where ck lies on the arc from zk−1 to zk.

• f is integrable along smooth curve γ if there exists a complex number L that is the limit of every sequence of
Riemann sums {S(Pj)} corresponding to any sequence of partitions of γ satisfying limn→∞ µ(Pn) = 0, where
µ(Pn) is the mesh of the partition, the largest of the lengths between consecutive points along the partition.

• If f is continuous on the directed smooth curve γ, then f is integrable.

25. Parameterization A parametrisation of a smooth arc in the complex plane is the complex-valued function that takes
real input z(t), a ≤ t ≤ b that has a continuous derivative with respect to t on [a, b], with z′(t) 6= 0 on [a, b], and that
is one-to-one on [a, b].

• If f is continuous on the directed smooth curve γ and if z = z1(t), t ∈ [a, b] and z = z2(t), t ∈ [c, d] are two

admissible parametrizations with the same orientation, then
∫ b
a
f(z1(t))z′1(t)dt =

∫ d
c
f(z2(t))z′2(t)dt.

• The parametrisation of a line passing through two points is clearly z = (1− t)z1 + tz2, t ∈ [0, 1].

26. Contours
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• Arc: a set of points z = (x, y) in the complex plane such that x = x(t), y = y(t), a ≤ t ≤ b where x(t) and y(t)
are continuous functions of the real parameter t. This is a continuous mapping of the interval a ≤ t ≤ b onto the
z-plane.

• Simple/Jordan arc: Does not cross itself: z(t1) 6= z(t2) when t1 6= t2.

• Closed: z(b) = z(a).

• Change of variables: Let t = φ(τ), α ≤ τ ≤ β where φ is a real-valued function mapping α ≤ τ ≤ β onto the
interval a ≤ t ≤ b. Assume that φ′(τ) > 0,∀τ . Then z = Z(τ), α ≤ τ ≤ β, where Z(τ) = z(φ(τ)).

• Contour: Piecewise smooth arc. Consist of a finite number of smooth arcs joined end to end.

• Define a positive orientation to be such that the interior lies to the left when the curve is traced.

• The length of a contour parametrised by z(t) = x(t) + iy(t), a ≤ t ≤ b is given by
∫ b
a
ds
dt dt =

∫ b
a

√(
dx
dt

)2
+
(
dy
dt

)2

dt.

27. Fundamental theorem for contour integration

• Contour integration:
∫
C
f(z)dz =

∫ b
a
f [z(t)]z′(t)dt for f(z) piecewise continuous on C, a contour parametrized

by z(t), a ≤ t ≤ b. This value is invariant under a change in representation.

• Fundamental Theorem: Suppose a function f(z) is continuous in domain D and has an antiderivative F (z)
throughout D (i.e. F ′(z) = f(z), z ∈ D). The for any contour Γ lying in D, with initial point zI and terminal
point zT , we have

∫
Γ
f(z)dz = F (zT ) − F (zI). Note that the conditions of theorem imply that F (z) is analytic

(since it has a derivative f(z)) and hence is continuous on D.

• Upper bound:
∣∣∫
C
f(z)dz

∣∣ ≤ M
∫ b
a
|z′(t)|dt where |f(z)| ≤ M . The RHS integral is the length of the contour.

Hence we write
∣∣∫
C
f(z)dz

∣∣ ≤ML

• Upper bound using moduli: If w(t) is a piecewise continuous complex-valued function defined on an interval

a ≤ t ≤ b, then
∣∣∣∫ ba w(t)dt

∣∣∣ ≤ ∫ ba |w(t)|dt.

• Using bounds: Bound the numerator from above using the triangle inequality |a + b| ≤ |a| + |b|. Bound the
denominator from below using the modified triangle inequality |a+ b| ≥ ||a| − |b||

28. Equivalence between existence of antiderivatives, Vanishing of closed contour integrals and independence
of path

• Theorem: Existence of antiderivative. Suppose a function f(z) is continuous in a domain D. The following are
equivalent:

– f(z) has an antiderivative F (z) throughout D.

– The integrals of f(z) along contours lying entirely in D and extending from any fixed point z1 to any fixed point
z2 all have the same value:

∫ z2
z1
f(z)dz = F (z)|z2z1 = F (z2)−F (z1). The contour integrals are path-independent.

– The integrals of f(z) around closed contours lying entirely in D all have value zero.

29. Cauchy-Goursat theorem/Cauchy’s Integral Theorem

• Green’s Theorem: Suppose we have two real-valued functions P (x, y) and Q(x, y), which have continuous first-
order partial derivatives throughout the closed region R made of all the points interior and on the simple closed
contour C. Then

∫
C
Pdx+Qdy =

∫∫
R

(Qx − Py)dA.

• Statement of Theorem: If a function f is analytic at all points interior to and on a simple closed contour C, then∮
C
f(z)dz = 0.

30. Extensions to self-intersecting contours and multiply-connected domains Suppose that C is a simple closed
contour, described counterclockwise. Let Ck, k = 1, 2, . . . , n be simple closed contours interior to C, all described in
the clockwise direction and mutually disjoint. If f is analytic on all of these contours and throughout the multiply
connected domain consisting of points interior to C and exterior to each Ck, then

∫
C
f(z)dz +

∑n
k=1

∫
Ck
f(z)dz = 0.

Directions have been chosen such that the multiply connected domain lies to the left of the path.

31. Deformation of contours (Principle of deformation of paths)

• Let C1 and C2 denote positively-oriented simple closed contours, C1 interior to C2. If a function f is analytic in
the closed region consisting of those contours and all points between then, then

∫
C1
f(z)dz =

∫
C2
f(z)dz.

• A loop Γ0 is said to be continuously deformable to the loop Γ1 in the domain D if there exists a function z(s, t)
continuous on the unit square 0 ≤ s ≤ 1, 0 ≤ t ≤ t that satisfies the following conditions:

– For each fixed s ∈ [0, 1], the function z(s, t) parametrises a loop lying in D.
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– The function z(0, t) parametrises the loop Γ0.

– The function z(1, t) parametrises the loop Γ1.

• Deformation Invariance Theorem: Let f be an analytic function in the domain D containing the loops Γ0,Γ1. If
these loops can be continuously deformed into one another in D, then

∫
Γ0
f(z)dz =

∫
Γ1
f(z)dz.

32. Cauchy integral formula Let f be analytic everywhere inside and on a simple closed contour C, taken in the positive

sense. If z0 is any point interior to C, then f(z0) = 1
2πi

∫
C
f(z)dz
z−z0 .

• Gauss Mean Value Theorem: When a function is analytic within and on a given circle (parametrised by z =

z0 + ρeiθ), its value at the centre is the arithmetic mean of its values on the circle: f(z0) = 1
2π

∫ 2π

0
f(z0 + ρeiθ)dθ.

33. Derivatives of analytic functions Let f be analytic inside and on a simple closed contour C, taken in the positive

sense. If z0 is any point interior to C, then f (n)(z0) = n!
2πi

∫
C

f(z)dz
(z−z0)n+1 , n = 0, 1, 2, . . ..

Consequences:

• If a function f is analytic at a given point, then its derivatives of all orders exist and are analytic there too.

• If a function f(z) = u(x, y) + iv(x, y) is analytic at a point z = (x, y), then the component functions u, v have
continuous partial derivatives of all orders at that point.

• Let f be continuous on domain D. If
∫
C
f(z)dz = 0 for every closed contour C on D, then f is analytic throughout

D.

34. Generalized Cauchy integral formula

35. Morera’s theorem If f(z) is continuous in a region R and satisfies
∮
C
f(z)dz = 0 for all closed contours in R, then

f(z) is analytic in R. Note that the region is not required to be simply connected.

36. Cauchy’s inequality Suppose a function f is analytic inside and on a positively oriented circle CR, centred at z0 and
with radius R. If MR denotes the maximum value of |f(z)| on CR, then |f (n)(z0)| ≤ n!MR

Rn , n = 1, 2, . . ..

• Maximum modulus principle: Suppose that |f(z)| ≤ |f(z0)| at each point z in some neighbourhood |z− z0| < ε in
which f is analytic. Then f(z) has the constant value f(z0) throughout that neighbourhood.

• Alternative statement of Maximum Modulus Principle: If f is analytic and not constant in a given domain D,
then |f(z)| has no maximum value in D. That is, there is no point z0 in the domain such that |f(z)| ≤ |f(z0)| for
all z ∈ D. The maximum value of |f(z)| occurs somewhere on the boundary and never in the interior.

37. Liouville’s theorem

• Statement: If a function f is entire and bounded in the complex plane, then f(z) is constant throughout the plane.

• Consequence: Fundamental Theorem of Algebra: Any polynomial P (z) = a0 + a1z + . . .+ anz
n, an 6= 0 of degree

n ≥ 1 has at least one zero.

• If a function is analytic everywhere in the extended complex plane except for a pole at z0, write f(z) =∑−1
n=−m an(z− z0)n +

∑∞
n=0 an(z− z0)n where the first term is the principal part. Then the second term must be

bounded and analytic everywhere since the Laurent series converges for all z 6= z0. Hence the second term must
be a constant.

• If a function has exactly one pole at infinity of order m, then write f(1/w) =
∑−1
n=−m anw

n +
∑∞
n=0 anw

n. Since
f(z) is bounded near z = 0, f(1/w) is bounded for large |w|. Hence the second term forms an analytic function
that is bounded everywhere, and hence is a constant. Hence f(z) = a−mz

m + a−m+1z
m−1 + . . .+ a−1z + a0 is a

polynomial.

38. Harmonic functions

• A harmonic function is a real-valued function of two variables with continuous first and second partial derivatives
that satisfies Hxx +Hyy = 0. In the polar form r2urr + rur + uθθ = 0.

• If φ is harmonic in a simply connected domain D and φ(z) achieves its maximum or minimum value at some point
z0 ∈ D, then φ is constant in D.

• A harmonic function in a bounded simply connected domain attains its maximum and minimum on the boundary.

• Let φ1, φ2 be harmonic in a bounded domain D. Suppose that φ1 = φ2 on the boundary of D. Then φ1 = φ2.

39. Harmonic conjugates
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• If a function f(z) = u(x, y) + iv(x, y) is analytic in D then u and v are harmonic in D.

• f is analytic in D iff v is a harmonic conjugate of u.

• When trying to simplify a function of x and y into z = x + iy alone, make the substitutions x = (z + z̄)/2, y =
(z − z̄)/2i and solve for z. The analytic function should not contain |z| or z̄.

• The level curves of harmonic functions and their harmonic conjugates intersect at right angles. Note that the
gradient vectors of the level curves (normal to the level curves) ∇u · ∇v = uxvx + uyvy vanishes by CR equations,
hence they are orthogonal.

• Existence of harmonic conjugate: If a harmonic function u(x, y) is defined on a simply-connected domain D
it always has a harmonic conjugate v(x, y) in D.

40. Potential flow applications

• Let the vector V = p+ iq denote the velocity of a particle of a fluid at point (x, y).

• The circulation of the fluid along any contour C is defined as
∫
C
VT (x, y)dσ, where VT (x, y) is the tangential

component of the velocity vector along C.

• The mean speed is the ratio of the circulation along C to the length of C.

• Using Green’s Theorem, we can write
∫
C
VT (x, y)dσ =

∫∫
R

[qx(x, y)− py(x, y)]dA

• The rotation of the fluid is defined by ω(x, y) = 1
2 [qx(x, y) − py(x, y)]. If ω(x, y) = 0 at each point in a simply

connected domain, the flow is called irrotational in that domain.

• Incompressible, viscosity-free fluids obey Bernoulli’s equation: P
ρ + 1

2 |V |
2 = c, where c is a constant and P (x, y)

is the fluid pressure.

• For an irrotational flow in a simply connected domain, py = qx, and hence φ(x, y) =
∫ (x,y)

(x0,y0)
p(s, t)ds + q(s, t)dt

is independent of path. Call φ(x, y) the velocity potential, and note that φx = p, φy = q. The velocity potential
must satisfy Laplace’s equation in an incompressible fluid, and hence is a harmonic function.

• The velocity vector can be written as V = ∇φ = φx(x, y) + iφy(x, y).

• Let ψ(x, y) denote the harmonic conjugate of φ(x, y). The velocity vector is tangent to the curves ψ(x, y) = c, and
these are called the streamlines of the flow. ψ is called the stream function.

• The analytic function F (z) = φ(x, y) + iψ(x, y) is called the complex potential of the flow. The velocity can be
written as V = F ′(z) because F ′(z) = φ(x, y)− iφy(x, y) by the CR equations.

• Since ψ(x, y) =
∫ (x,y)

(x0,y0)
−q(s, t)ds + p(s, t)dt by virtue of its being the harmonic conjugate of φ, we can write

ψ(x, y) =
∫
C
VN (s, t)dσ, where VN (x, y) is the normal component of the velocity vector. Hence it is the time rate

of flow of the fluid across C.

3.2 Part 2

1. Uniform convergence

• Convergence of an infinite series: An infinite series
∑∞
n=1 zn converges to the sum S if the sequence of partial sums

SN =
∑N
n=1 zn converges to S.

• The necessary condition for the convergence of a series is limn→∞ zn = 0. The terms of a convergent series of
complex numbers are hence bounded.

• Absolutely convergence of a series of complex numbers implies convergence of that series.

• Define the remainder ρN = S − SN . A series converges to a number S if and only if ρN → 0.

• Absolute convergence inside disk of convergence: If a power series
∑∞
n=0 an(z−z0)n converges when z = z1, z1 6= z0,

then it is absolutely convergent at each point z in the open disk |z − z0| < R1, R1 = |z1 − z0|.
• Uniform convergence: SN (z) converges uniformly to S(z) if for all ε > 0, there is a positive integer Nε such that
|S(z)− SN (z)| < ε whenever N > Nε where Nε depends only on the value of ε and is independent of the point z
taken within the circle of convergence.

2. Taylor series

• Suppose a function f is analytic throughout a disk |z − z0| < R0. Then f(z) has the power series representation

f(z) =
∑∞
n=0 an(z−z0)n, where an = f(n)(z0)

n! . The Taylor series converges uniformly to f(z) in any closed subdisk
|z − z0| ≤ R′ < R.
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• Useful Taylor series:

– ez =
∑∞
n=0

zn

n!

– sin z =
∑∞
n=0(−1)n z2n+1

(2n+1)! , |z| <∞

– cos z =
∑∞
n=0(−1)n z2n

(2n)! , |z| <∞

– sinh z =
∑∞
n=0

z2n+1

(2n+1)! , |z| < ∞. Substitute z → iz in sine expansion, then multiply by −i since sinh z =

−i sin(iz).

– cosh z =
∑∞
n=0

z2n

(2n)! , |z| <∞. Obtain from cosh z = cos(iz).

– 1
1−z =

∑∞
n=0 z

n, |z| < 1.

– 1
z =

∑∞
n=0(−1)n(z − 1)n, |z − 1| < 1.

– 1
z−s =

∑N−1
n=0

1
s−n

1
zn+1 + 1

zN
sN

z−s , note finite number of terms.

– ln(1 + z) =
∑∞
n=1

(−1)n+1zn

n .

– tan−1(z) =
∑∞
n=1

(−1)n+1z2n−1

2n−1 .

3. Uniqueness of analytic functions

4. Power series

• Geometric sum:
∑n
k=0 ar

k = a 1−rn+1

1−r .

5. Weierstrass M-test

• Motivation: Test for uniform convergence of an infinite series of functions.

• Suppose that {fn} is a sequence of real or complex-valued functions defined on a set A, and that there is a sequence
of positive numbers {Mn} satisfying:

∀n ≥ 1,∀x ∈ A : |fn(x)| ≤Mn,

∞∑
n=1

Mn <∞

Then the series
∑∞
n=1 fn(x) converges uniformly on A.

6. Circle of convergence

• Limsup: The limsup of a sequence of real numbers {xn}∞n=1 is the smallest real number l with the property that
for all ε > 0 there are only a finite number of values of n such that xn exceeds l + ε. If no such number satisfies
this property, set lim supxn =∞. If all real numbers have this property, set lim supxn = −∞.

• The radius of convergence R of a sequence of coefficients {aj} is:

R =
1

lim sup n
√
|an|

• If z1 is a point inside the circle of convergence |z − z0| = R of a power series
∑∞
n=0 an(z − z0)n, then that series

must be uniformly convergent in the closed disk |z − z0| ≤ R1, where R1 = |z1 − z0|.
• A power series

∑∞
n=0 an(z−z0)n represents a continuous function S(z) inside its circle of convergence |z−z0| = R.

• Power series with negative powers: Write w = 1
z−z0 . Then if the power series

∑∞
n=1

bn
(z−z0)n converges at a point

z1 6= z0, the series
∑∞
n=1 bnwn =

∑∞
n=1

bn
(z−z0)n converges absolutely to a continuous function when |w| < 1

|z1−z0| ,

which is the domain exterior to the circle |z − z0| = R1 = |z1 − z0|.

• Integral Test for convergence For f(x) ≥ 0 for x ≥ a, let I = limM→∞
∫M
a
f(x)dx. Divergence and convergence

of the infinite power series
∑∞
n=a f(n) follows that of I.

7. Ratio test

8. Integration of power series

• Let g(z) be any function continuous on C, a contour interior to the circle of convergence of S(z) =
∑∞
n=0 an(z−z0)n.

Then the series multiplied by g(z) can be integrated term-by-term over C:∫
C

g(z)S(z)dz =

∞∑
n=0

an

∫
C

g(z)(z − z0)ndz
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9. Analyticity of power series

• The sum S(z) =
∑∞
n=0 an(z − z0)n is analytic at each point z interior to the circle of convergence of that series.

10. Differentiation of power series

• The power series S(z) =
∑∞
n=0 an(z − z0)n can be differentiated term-by-term at each point interior to its circle

of convergence. That is,

S′(z) =

∞∑
n=0

an
d

dz
(z − z0)n

11. Uniqueness of power series

• If a series
∑∞
n=0 an(z−z0)n converges to f(z) at all points interior to some circle |z−z0| = R, then it is the Taylor

series expansion for f in powers of z − z0.

• To prove the above, write g(z) = 1
2πi

1
(z−z0)n+1 and evaluate

∫
C
g(z)f(z)dz term-by-term. Prove and use the identity∫

C
(z−z0)n−1dz =

{
0, n = ±1,±2, . . .

2πi, n = 0
when C is a circle surrounding z0. Then show that

∑∞
m=0 am

∫
C
g(z)(z−

z0)mdz = an = f(n)(z0)
n! .

• If a series:

∞∑
n=−∞

cn(z − z0)n =

∞∑
n=0

an(z − z0)n +

∞∑
n=1

bn
(z − z0)n

converges to f(z) at all points in some annular domain about z0, then it is the Laurent series expansion for f in
powers of z − z0 for that domain.

12. Arithmetic operations on power series

• Suppose each of the power series
∑∞
n=0 an(z−z0)n and

∑∞
n=0 bn(z−z0)n converge within some circle |z−z0| = R.

The product of those sums has a Taylor series expansion f(z)g(z) =
∑∞
n=0 cn(z−z0)n where cn =

∑n
k=0 akbn−k =∑n

k=0
f(k)(z0)

k!
g(n−k)(z0)

(n−k)! . This is called the Cauchy product of the two series.

• Leibniz’s Formula for nth derivative of fg:

(fg)(j) =

j∑
k=0

j!
f (j−k)

(j − k)!

g(k)

k!
=

j∑
k=0

(
j

k

)
f (j−k)g(k)

13. Laurent series

• Suppose a function f is analytic throughout an annular domain R1 < |z − z0| < R2, and let C be any positively
oriented simple closed contour around z0 and lying in the annular domain. Then each point in the domain has
the series representation:

f(z) =

∞∑
n=0

an(z − z0)n +

∞∑
n=1

bn
(z − z0)n

an =
1

2πi

∫
C

f(z)dz

(z − z0)n+1

bn =
1

2πi

∫
C

f(z)dz

(z − z0)−n+1

• Alternatively write the series as:

f(z) =

∞∑
n=−∞

cn(z − z0)n

c=
1

2πi

∫
C

f(z)dz

(z − z0)n+1
, n = 0,±1,±2, . . .
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• If f is actually analytic throughout |z − z0| < R2 instead of just the annular domain, then all bn = 0 because
1

2πi

∫
C

f(z)dz
(z−z0)n+1 = f(n)(z0)

n! , n = 0, 1, 2, . . . so the expansion is just the Taylor series.

• Examples:

– e1/z =
∑∞
n=0

1
n!zn , 0 < |z| <∞.

14. Zeros of analytic functions

• Suppose a function f is analytic at z0. All the derivatives of f exist there. If f(z0) = 0 and there is a positive
integer m such that f(z0) = f ′(z0) = · · · = f (m−1)(z0) = 0, f (m)(z0) 6= 0, then f has a zero of order m at z0.

• Let f be analytic at z0. Then f has a zero of order m at z0 iff there is a function g which is analytic and non-zero
at z0 such that f(z) = (z − z0)mg(z).

• Neighbourhood of zeroes: If f is analytic at z0 and f(z0) = 0 but f(z) is not identically equal to zero (check
that not all the derivatives of f at z0 vanish) in any neighbourhood of z0, then f(z) 6= 0 throughout some deleted
neighbourhood 0 < |z − z0| < ε of z0.

• Zero along a line or domain: Given a function f and point z0, suppose that f is analytic throughout a neighbour-
hood N0 of z0 and that f(z) = 0 at each point of a domain D or line segment L containing z0. Then f(z) ≡ 0
throughout N0.

15. Isolated singularities

• Isolated singularity: A singular point z0 is isolated if there is a deleted ε neighbourhood 0 < |z − z0| < ε of z0

throughout which f is analytic.

• Non-isolated singularity: A point where the function is not analytic in the deleted neighbourhood of that point.
Examples: Branch point.

• The zeros of polynomials in the denominator always result in isolated singular points because the zeros of a
polynomial are finite in number (Fundamental Theorem of Algebra)

• Isolated singular point at infinity: If there is a positive number R1 such that f is analytic for R1 < |z| < ∞ and
f is singular at infinity then f has an isolated singular point at infinity.

16. Removable singularities The following statements are equivalent:

• z0 is a isolated removable singularity.

• |f(z)| is bounded and analytic in some deleted neighbourhood 0 < |z − z0| < ε of z0 but not at z0.

• f(z) has a finite limit as z → z0 - L’hopital’s rule may be useful here.

• f(z) can be redefined at z0 so that it is analytic at z0. Write f(z) =
∑∞
n=0 an(z − z0)n, then define f(z0) = a0 so

that the series represents an analytic function interior to its circle of convergence.

• Every coefficient of the principal part of f is zero at z0.

• Riemann’s theorem: Suppose a function f is bounded and analytic in some deleted neighbourhood 0 < |z−z0| < ε
of z0. If f is not analytic at z0, then it has a removable singularity there.

17. Poles The following statements are equivalent:

• f(z) has a pole at z0.

• |f(z)| → ∞ as z → z0.

• f(z) = g(z)
(z−z0)n , n ∈ Z, n ≥ 0 and g(z) is analytic at z0, with g(z0) 6= 0.

• There exists a positive integer m ≥ 1 such that bm 6= 0, bm+1 = bm+2 = · · · = 0. Then we write the Laurent series:

f(z) =

∞∑
n=0

an(z − z0)n +
b1

z − z0
+

b2
(z − z0)2

+ · · ·+ bm
(z − z0)m

within its circle of convergence.

• Zeros and Poles: Suppose that two functions p and q are analytic at z0, p(z0) 6= 0 and q has a zero of order m at
z0. Then p(z)/q(z) has a pole of order m at z0.

18. Essential singularities The following are equivalent:

• z0 is an isolated essential singularity.
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• |f(z)| is neither bounded nor goes to infinity for z → z0.

• f(z) assumes every complex number except possibly one exception infinitely many times for every neighbourhood
of z0.

• An infinite number of the coefficients bn in the principal part of f at z0 are non-zero.

• Casorati-Weierstrass theorem: Suppose that z0 is an essential singularity of f , and let ω0 be any complex number.
Then, for all ε > 0, the inequality |f(z) − ω0| < ε is satisfied at some point z in each deleted neighbourhood
0 < |z − z0| < δ of z0

19. Picard’s theorem In each neighbourhood of an essential singular point, a function assumes every finite value, except
possibly one, an infinite number of times.

20. Non-isolated essential singularities

• z0 is an non-isolated essential singularity if many isolated singularities cluster around z0 so there does not exist a
deleted neighbourhood in which f(z) is analytic. (Not the same behaviour as isolated essential singularity)

21. Residues and calculating residues

•
∫
C
f(z)dz = 2πiResz=z0f(z) where C is any positively oriented simple closed contour around z0 that lies in the

punctured disk 0 < |z − z0| < R2 where f is analytic at each point z in the punctured disk.

• Residue at infinity: Let f be analytic throughout the finite plane except for a finite number of singular points
interior to a positively oriented simple closed contour C. Let R1 be a positive number large enough such that
C lies inside the circle |z| = R1. then f is analytic throughout R1 < |z| < ∞ and the point at infinity is an
isolated singular point of f . The residue at infinity is defined to be

∫
C0
f(z)dz = 2πiResz=∞f(z) where C0 is the

negatively oriented circle |z| = R0 > R1. Hence
∫
C
f(z)dz = −2πiResz=∞f(z).

• Finding residue at infinity:

Resz=∞f(z) = −Resz=0

[
1

z2
f(

1

z
)

]
this follows from the change of variables ζ = 1

z :

∫
|ζ|=1/R

f

(
1

ζ

)
dζ

ζ2
=

∫
|z|=R

f(z)dz

• Application of residue at infinity: If a function f is analytic everywhere in the finite plane except for a finite
number of singular points interior to a positively oriented simple closed contour C, then:

∫
C

f(z)dz = 2πiResz=0

[
1

z2
f

(
1

z

)]
• Residues at poles: Let z0 be an isolated singular point of f . Then z0 is a pole of order m if f(z) can be

written as f(z) = φ(z)
(z−z0)m where φ(z) is analytic and non-zero at z0. If m = 1, then Resz=z0f(z) = φ(z0) and

Resz=z0f(z) = φ(m−1)(z0)
(m−1)! when m = 2, 3, . . ..

• Let two functions p and q be analytic at z0 If p(z0) 6= 0, q(z0) = 0, q′(z0) 6= 0, then z0 is a simple pole of p(z)/q(z)

and Resz=z0
p(z)
q(z) = p(z0)

q′(z0) .

• Residues of 1
zn+1 , n ∈ Z, n 6= 1. We note that the singularities are at the nth roots of −1, ck. Note further that the

singularities are simple poles because the numerator is 1 6= 0 and the derivative of the denominator nzn−1 does
not vanish at each singularity. Then the residue at ck is given by 1

n(ck)n−1 = ck
n(ck)n = −ck

n because (ck)n = −1

since it is an nth root of −1.

22. Cauchy’s residue theorem

• Let C be a simple closed contour described positively. If a function f is analytic inside an on C except for a finite
number of singular points zk, k = 1, 2, . . . , n inside C then

∫
C
f(z)dz = 2πi

∑n
k=1 Resz=zkf(z)

23. Real trigonometric integrals

• Given
∫ 2π

0
F (sin θ, cos θ)dθ, define z = eiθ, dθ = dz

iz , sin θ = z−1/z
2i , cos θ = z+1/z

2 .
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• Identities:

(a) sin(x+ π/2) = cosx

(b) sin(x− π/2) = − cosx

(c) sin(x± π) = − sinx

(d) cos(x+ π/2) = − sinx

(e) cos(x− π/2) = sinx

(f) cos(x± π) = − cosx

(g) tan(x+ π) = tanx

(h) tan(x± π/2) = − cotx

(i) cos 3x = 4 cos3 x− 3 cosx

(j) sin 3x = 3 sinx− 4 sin3 x

(k) sin a sin b = 1
2 (cos(a− b)− cos(a+ b))

(l) cos a cos b = 1
2 (cos(a− b) + cos(a+ b))

(m) sin a+ sin b = 2 sin a+b
2 cos a−b2

(n) cos a+ cos b = 2 cos a−b2 cos a+b
2

24. Improper integrals

• The improper integral of a continuous function f(x) over the semi-infinite interval 0 ≤ x < ∞ is defined by:∫∞
0
f(x)dx = limR→∞

∫ R
0
f(x)dx.

25. Cauchy principal value

• The Cauchy principal value of of
∫∞
−∞ f(x)dx is limR→∞

∫ R
−R f(x)dx.

• It is not always true that the infinite integral converges when its Cauchy principal value exists.

• Assume that f(x),−∞ < x <∞ is an even function, and assume that the Cauchy principal value for the integral
from −∞ to ∞ exists. Then

∫∞
−∞ f(x)dx = P

∫∞
−∞ f(x)dx and

∫∞
0
f(x)dx = 1

2P
∫∞
−∞ f(x)dx.

• Let f(z) = p(z)
q(z) have a finite number of singularities, none of which lie in the real axis. Define the curve to be from

z = −R to z = R, and back to z = −R through a semicircle of radius R. Then if limR→∞
∫
CR

f(z)dz = 0, where

CR is the semi-circular part (prove this by examining the bounds on integrals) then it follows that P
∫∞
−∞ f(z)dz =

2πi
∑n
k=1 Resz=zkf(z) where zk are the singularities contained in the curve. If f(x) is even, use the identity above

to write
∫∞
−∞ f(x)dx = 2πi

∑n
k=1 Resz=zkf(z) and

∫∞
0
f(x)dx = πi

∑n
k=1 Resz=zkf(z).

26. Jordan’s lemma

• Suppose that a function f(z) is analytic at all points in the upper half plane y ≥ 0 that are exterior to a circle
|z| = R0, CR denotes a semicircle z = Reiθ, θ ∈ [0, π] where R > R0, and for all points z on CR there is a positive
constant MR such that |f(z)| ≤ MR and limR→∞MR = 0. Statement: Then for every positive constant a,
limR→∞

∫
CR

f(z)eiazdz = 0.

• Alternative statement: If a > 0 and P/Q is the quotient of two polynomials such that the degree of Q is greater

or equal to the degree of P plus one, then limR→∞
∫
CR

eiaz P (z)
Q(z)dz = 0 where CR is the upper half-circle or radius

R. If a < 0, then use the lower half-plane.

27. Indented contours

• Half-poles: Suppose that f(z) has a simple pole at a point z = x0 on the real axis, with a Laurent series
representation in the punctured disk 0 < |z − x0| < R2 and with residue B0, Cρ denotes the upper clockwise half
circle |z − x0| = ρ where ρ < R2. Then limρ→0

∫
Cρ
f(z)dz = −πiB0.

• Incomplete pole contour If f has a simple pole at z = z0 and Tr is the circular arc z = z0 + reiθ, θ1 ≤ θ ≤ θ2,
then limr→0

∫
Tr
f(z)dz = i(θ2 − θ1)Res(f ; z0).

28. Integrals involving branch points

• Note that the values of the function across the branch cut can be related by examining the angles just above and
below the cut.

• Example: Beta function B(p, q) =
∫ 1

0
tp−1(1 − t)q−1dt, p > 0, q > 0. Make the substitution t = 1

x+1 and use the

integral
∫∞

0
x−a

x+1dx = π
sin aπ , 0 < a < 1 to write B(p, 1− p) = π

sin pπ .
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• Function is not even! If there is no way to relate an integral from 0 to∞ to an integral over the whole real line,

for example I =
∫∞

0
dx

(x+1)(x2+2x+2) , the use the log function. Investigate
∫∞

0
Log(z)dz

(z+1)(z2+2z+2) . Define the branch cut

on the positive real axis, then integrate along the branch cut (looping at infinity and around the branch point).
Note that the integral above the branch cut has Log(x) in the numerator but the integral below the branch cut
has Log(x) + 2πi in the numerator. In this way, the integral is performed on the positive real axis only.

29. Meromorphic functions

• A function f is meromorphic in a domain D if it is analytic throughout D except for poles.

30. Argument principle and Winding Number

• Let C be a positively-oriented simple closed contour, and suppose that a function f(z) is meromorphic on the
domain interior to C, f(z) is analytic and non-zero on C and counting multiplicities (nth order is counted n times),
Z is the number of zeros and P is the number of poles of f(z) inside C. Let w = f(z) be the image Γ of curve C
under f . Then Γ traces a closed contour that does not pass through the origin in the w-plane. Let w0 = f(z0) with
argument φ0. Let φ1 be the argument of w when it returns to w0. The change in argument ∆C arg f(z) = φ1−φ0

will be an integral multiple of 2π, and call 1
2π∆C arg f(z) the winding number of Γ with respect to the origin

w = 0. Statement: Then 1
2π∆C arg f(z) = Z − P .

• Rouche’s Theorem: Let C be a simple closed contour, and suppose that f(z) and g(z) are analytic inside and
on C. Let |f(z)| > |g(z)| for all points on C. Then f(z) and f(z) + g(z) will have the same number of zeros,
counting multiplicities, inside C. The orientation of C does not matter.

• Argument Principle: Short Version: If f is analytic and non-zero at each point of a simple closed positively

oriented contour C and is meromorphic inside C, then 1
2πi

∫
C
f ′(z)
f(z) dz = N0(f)−Np(f), where the first term is the

number of zeros and the second term is the number of poles of f inside C including multiplicity.

31. Analytic continuation Consider two domains D1 and D2 with non-empty intersection D1 ∩D2. If f1 is analytic in
D1 and f2 = f1 for each z ∈ D1 ∩D2 then f2 is the unique analytic continuation of f1 into the domain D2.

32. Monodromy theorem

• Let f(z) be analytic in domain D and suppose that γ and γ′ are two directed smooth curves connecting the point
z1 in D to some point z∗. Suppose that there is some domain D′ such that the loop Γ = {γ,−γ′} lies in D′ and
can be continuously deformed to a point in D′ and f(z) can be analytically continued along any smooth curve in
D′. Then the value at z∗ of the analytic continuation of f along γ agrees with the value of its continuation along
γ′.

33. Mappings

• The linear transformation w = Az +B is an expansion by |A|, rotation by argA, then a translation by B.

• The transformation w = 1/z is an inversion with respect to the unit circle composed with a reflection in the real
axis (complex conjugate). 1

z = z̄
|z|2 .

– w = 1/z transforms circles and lines into circles and lines. Consider the arbitrary circle or line A(x2 + y2) +
Bx+ Cy +D = 0, where A 6= 0 for a circle and A = 0 for a line. This can be rewritten as:(

x+
B

2A

)2

+

(
y +

C

2A

)2

=

(√
B2 + C2 − 4AD

2A

)2

– Writing w = u+ iv, we have that u = x
x2+y2 , v = −y

x2+y2 , x = u
u2+v2 , y = −v

u2+v2 , and hence the general equation
must satisfy:

D(u2 + v2) +Bu− Cv +A = 0

– A circle (A 6= 0) not passing through the origin (D 6= 0) in the z-plane is transformed into a circle not passing
through the origin in the w-plane.

– A circle (A 6= 0) through the origin (D = 0) in the z-plane is transformed into a line that does not pass
through the origin in the w-plane.

– A line (A = 0) not passing through the origin (D 6= 0) in the z plane is transformed into a circle through the
origin in the w-plane.

– A line (A = 0) passing through the origin (D = 0) in the z-plane is transformed into a line through the origin
in the w-plane.
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• Linear fractional transformations: The transformation T (z) = az+b
cz+d , ad− bc 6= 0 is a Mobius transformation. The

restriction ensures that T is not a constant transformation. We can write it as w = T (z), Azw +Bz +Cw +D =
0, AD − BC 6= 0 and hence any equation of the latter type can be put into the linear fractional transformation
form. Enlarge the domain of the transformation to the extended z plane by defining T (∞) = a

c and T (−dc ) = ∞
if c 6= 0. Then the linear fractional transformation is a one-to-one mapping of the extended z plane onto the
extended w plane.

• Inverse linear fractional transformation. Define T−1(w) = −dw+b
cw−a = z, ad − bc 6= 0 and on the extended w-plane

to be T−1(∞) = −d
c , T

−1(ac ) =∞ if c 6= 0.

• T−1(w) = z ⇐⇒ T (z) = w.

• Implicit form for linear fractional transformation. Consider a linear fractional transformation that maps distinct
points z1, z2, z3 to w1, w2, w3. Then:

(w − w1)(w2 − w3)

(w − w3)(w2 − w1)
=

(z − z1)(z2 − z3)

(z − z3)(z2 − z1)

If any of the numbers are infinity, replace that number with its reciprocal and take limits as it goes to zero.
This implicit form works with three distinct sets of points (z, w) because three distinct non-linear points uniquely
defined a circle, and three collinear points clearly define a line.

• Cross Ratio The cross ratio of the 4 points (z, z1, z2, z3) is:

(z, z1, z2, z3) ≡ (z − z1)(z2 − z3)

(z − z3)(z2 − z1)

and hence the implicit form can be written as (w,w1, w2, w3) = (z, z1, z2, z3).

• The composition of two Mobius transformations is also a Mobius transformation.

• Rotation about a point: w = eiθz + (1 − eiθ)z0 is a mapping that rotates a domain about an angle θ about the
point z0.

• Linear Fractional Transformation of the upper half plane: A transformation of the form w = eiα
(
z−z0
z−z̄0

)
,=(z0) > 0

where α ∈ R maps the upper half plane =(z) > 0 onto the open disk |w| < 1 and the boundary of the half plane
=(z) = 0 is mapped onto the boundary |w| = 1 of the disk. Implication works in reverse too.

• Mappings by sin z of horizontal lines: Write w = sin z = (sinx cosh y) + i(cosx sinh y) = u + iv. Then the

vertical x = c1 is transformed into the right-hand branch of the hyperbola u2

sin2 c1
− v2

cos2 c1
= 1 using the identity

cosh2 y − sinh2 y = 1. This hyperbola has foci at w = ±1.

• Mappings by sin z of vertical lines: Given the horizontal line y = c2 > 0 for −π ≤ x ≤ π, we have the ellipse
u2

cosh2 c2
+ v2

sinh2 c2
= 1 with foci at w = ±1.

• Mappings of cosine: Note that sin(z + π/2) = cos z. Hence first translate by π/2 to the right, then apply the sine
transformation.

• Mappings of integer roots: Write z1/n = n
√
r exp i(θ+2πk)

n , where k = 0, 1, 2, . . . , n − 1 indicates the branch. Let
the transformation be applied to the domain r > 0,−π < θ < π. The image of the mapping is the domain

w = ρeiφ, ρ > 0, (2k−1)π
n < φ < (2k+1)π

n .

• Mapping of unit disk onto itself The only analytic mappings of the unit disk onto itself are of the form
f(z) = eiθ z−αᾱz−1 , |α| < 1.

34. Conformal Mapping

• Let an image Γ of curve C under transformation f(z) be parametrized by w = f [z(t)], a ≤ t ≤ b. Let f be analytic
at z(t0). Then argw′(t0) = arg f ′[z(t0)] + arg z′(t0). Call θ0 = arg z′(t0) the argument of the tangent vector of
C at z(t0) and φ0 = argw′(t0), the tangent vector of Γ at f [z(t0)], ψ0 = arg f ′[z(t0)]. Then φ0 = ψ0 + θ0. Call
ψ0 = arg f ′[z(t0)] = φ0 − θ0 the angle of rotation.

• A mapping is conformal at a point z0 if f is analytic there and f ′(z0) 6= 0. Note that this implies that the
derivative exists and is continuous in a neighbourhood, and that there is a neighbourhood of z0 throughout which
f ′(z) 6= 0. Geometrically, if we have two curves through a point z(t0) with tangent vectors θ1 and θ2, and the
image curves have tangent vectors φ1 and φ2, then we have that φ2−φ1 = θ2− θ1 (both the magnitude and sense
are preserved).

• Define the angle between vectors ~v1 and ~v2 to be the angle through which ~v1 must be rotated counterclockwise in
order to lie along ~v2.
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• A transformation which is conformal at each point in domain D is a conformal mapping. A mapping is conformal
in D if f is analytic in D and its derivative f ′ has no zeros there.

• A mapping that preserves the magnitude of the angle between two smooth arcs but not necessarily the sense is
called an isogonal mapping.

• Symmetric with respect to circle Two points z1 and z2 are symmetric with respect to a circle if every straight
line or circle passing through z1 and z2 intersects the circle orthogonally.

• Symmetry Principle Let Cz be a line or circle in the z-plane, and let w = f(z) be any Mobius transformation.
Then two points z1 and z2 are symmetric with respect to Cz iff they images w1 = f(z1), w2 = f(z2) are symmetric
with respect to the image of Cz under f .

• Finding symmetric point Given a circle C with centre a and radius R, the point symmetric to a given point α
is

α∗ =
R2

ᾱ− ā
+ a

35. Angle preservation

36. Local scaling

• if z0 is a critical point of a transformation w = f(z) then there is an integer m ≥ 2 such that the angle between
any two smooth arcs passing through z0 is multiplied by m under that transformation. m is the smallest positive
integer such that f (m)(z0) 6= 0.

• Scale factor: |f ′(z0)|.

37. Critical points

• Suppose f is not a constant function and is analytic at a point z0. If f ′(z0) = 0 then z0 is a critical point of the
transformation w = f(z).

38. Open mapping property

• A function is an open mapping if the image of every open set in its domain is itself open.

• If f is nonconstant and analytic in a domain D, then its range f(D) : {w : w = f(z), z ∈ D} is an open set.

• Riemann Mapping Theorem Let D be any simply connected domain in the plane other than the entire plane
itself. Then there is a one-to-one analytic function that maps D onto the open unit disk. Moreover, one can
prescribe an arbitrary point of D and a direction through that point which are to be mapped to the origin and
the direction of the positively real axis respectively. Under such restrictions the mapping is unique.

39. Inverse mappings

• Local one-to-one If f is analytic at z0 and f ′(z0) 6= 0, then there is an open disk D centered at z0 such that f

is one-to-one on D. It suffices to show that |f(z1)− f(z2)| ≥
∣∣∣ f ′(z0)

2

∣∣∣ |z2 − z1|.

• A transformation w = f(z) that is conformal at a point z0 has a local inverse there. That is, if w0 = f(z0) then
there exists a unique transformation z = g(w), defined and analytic in the neighbourhood N of w0 such that
g(w0) = z0 and f [g(w)] = w for all points w in N. The derivative of g(w) is: g′(w) = 1

f ′(z) .

• The inverse transformation z = g(w) is itself conformal at w0.

• Write f(z) = u(x, y) + iv(x, y) at a point z0 where f is analytic. The determinant det

∣∣∣∣ ux uy
vx vy

∣∣∣∣ is the Jacobian

of the transformation, and can be written as J = (ux)2 + (vx)2 = |f ′(z)|2 by the CR equations.

• Sufficient conditions for the existence of the local inverse: Suppose f(z) = u(x, y) + iv(x, y) is such
that u and v and their first order partial derivatives are continuous at z0. Suppose that the Jacobian at z0

is non-zero. Then a unique continuous local inverse x = x(u, v), y = y(u, v) exists on a neighbourhood N of
(u0, v0) = (u(x0, y0), v(x0, y0)) and maps that point to (x0, y0).

• The components of the local inverse have continuous first-order partial derivatives satisfying:

xu =
1

J
vy

xv =
−1

J
uy

yu =
−1

J
vx

yv =
1

J
ux
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40. Solving the Laplace equation by conformal mapping of harmonic functions

• Suppose that an analytic function w = f(z) = u(x, y) + iv(x, y) maps a domain Dz in the z-plane onto a domain
Dw in the w-plane. Let h(u, v) be a harmonic function defined on Dw. Then H(x, y) = h[u(x, y), v(x, y)] is
harmonic in Dz.

• Transformation of boundary conditions Suppose that a transformation w = f(z) = u(x, y) + iv(x, y) is
conformal at each point of a smooth arc C and Γ is the image of C under f . Let h(u, v) be a function that satisfies
either: h = h0 ∈ R or dh

dn = 0 (directional derivative of h normal to Γ) for all points on Γ. Statement: Then

H(x, y) = h[u(x, y) + iv(x, y)] satisfies the corresponding condition H = h0 or dH
dN = 0 at all points on C.

• Under a conformal transformation, the ratio of a directional derivative of H along a smooth arc C in the z-plane
to the directional derivative of h along image curve Γ at the corresponding point in the w-plane is |f ′(z)|.
• Common Harmonic Functions with Boundary Conditions:

– Washer: ALog|z − z0|+B is a washer centered at z0 that can be fitted to two boundaries at two radii.

– Wedge: AArg(z − z0) +B is a wedge that can be fitted to two rays passing through z0. Note that this works
for the left/right side of the half-plane. If more conditions are required along the ray, add more wedges.

– Wall: Basically a wedge made with two antiparallel rays.

41. Inverse Laplace Transforms

• Let a complex function F (s) be analytic throughout the finite s-plane except for a finite number of isolated
singularities. Let LR denote a vertical line segment from γ − iR to γ + iR such that γ is large enough to
ensure that the singularities of F lie to the left of that segment. Define f(t) = 1

2πi limR→∞
∫
LR

estF (s)ds =
1

2πiP
∫ γ+i∞
γ−i∞ estF (s)ds, t > 0 provided the limit exists. Then f(t) is the inverse Laplace transform of F (s).

• Compute the ILT by using the residue theorem to write
∫
LR

estF (s)ds = 2πi
∑N
n=1 Ress=sn [estF (s)]−

∫
CR

estF (s)ds
where CR is the semicircle to the left of the segment of radius R centered at z = γ that is large enough to enclose all
the isolated singularities. Then if limR→∞

∫
CR

estF (s)ds = 0, then we have that f(t) =
∑N
n=1 Ress=sn [estF (s)], t >

0.

Stopped before Applications of Conformal Mapping page 365 chapter 10 (Brown)
Stopped before Schwarz-Christoffer transformation (chapter 7.5, page 407) Saff/Snider
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