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Chapter 1

Week 1

1.1 Monday, 29 Sept 2014

Intro Dale Pullin, x6081, Gugg 306F, dpullin@caltech.edu

TA: TBA

No recitation this week!

Review of complex numbers: Let a, b ∈ R. Write α = a+ ib or (a, b).

Properties of i: i2 = −1, i3 = −i, i4 = 1 and so on.

Laws obeyed by complex numbers: Commutative, Associative, Distributive.

Features of complex numbers: Complete (Fundamental Theorem of algebra), Efficient method of calculating integrals,
physically relevant (QM)

Complex conjugate Is its own inverse, distributive, and αβ = ᾱβ̄.

Modulus: |α| ≡
√
a2 + b2, |αβ| = |α||β|. Triangular inequality: |α+ β| ≤ |α|+ |β|.

1.2 Wednesday, 1 Oct 2014

Square Root Consider w = ζ + iη, z = x+ iy, with w = z1/2. Then η = y
2ζ , ζ = ±

√
1
2 (x+

√
x2 + y2). Difficult and cannot

be extrapolated to higher roots.

Argument function Angle of the ”vector” in the Argand diagram made with the positive x-axis, measured anti-clockwise.

Modulus-Argument Form: x+ it = r(cos θ + i sin θ).

Multivaluedness: arg is a multivalued function. To make θ unique, we pick θ = Tan−1(x, y), which will satisfy the follow-
ing properties: 1. tan[Tan−1(x, y)] = y

x , and 2. −π < Tan−1(x, y) ≤ π, and 3. sin[Tan−1(x, y)] = y√
x2+y2

, cos[Tan−1(x, y)] =

x√
x2+y2

. Call θ = Arg(z), the principal branch of the multivalued function θ = arg z. It has a discontinuity along the negative

real axis.

Multiplication in polar form Let z1 = r1(cos θ1 + i sin θ1), z2 = r2(cos θ2 + i sin θ2). Then z1z2 = r1r2(cos(θ1 + θ2) +
i sin(θ1 +θ2)). Hence |z1z2| = |z1||z2| and arg(z1z2) = arg(z1)+arg(z2)+2kπ, k ∈ Z. Note that Arg(z1z2) 6= Arg z1 +Arg z2.
Arg(z1z2) = Arg z1 + Arg z2 + 2k′π for a particular k′.

de Moirve’s theorem zn = rn(cos(nθ) + i sin(nθ)). In particular, for n = 1, z0 = 1. It can also be shown that
1
z = 1

r (cos θ − i sin θ) and that arg
(

1
z

)
= − arg(z) + 2kπ, arg(−z) = (arg z − π) + 2kπ. Also works for n < 0, n ∈ Z.
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Integer Roots Let n ∈ Z+. Let w = z1/n such that wn = z. Let w = ρ(cosφ + i sinφ). Then wn = ρn(cos(nφ) +

i sin(nφ)) = z = r(cos θ + i sin θ). Hence ρ = n
√
r. Note that φ = θ

n ,
θ+2π
n , . . . , θ+2π(n−1)

n = θ+2kπ
n , k = 0, 1, . . . , n− 1.

Terminology A curve C or ∂D is a set of points defined by continuous functions x(t), y(t) on a ≤ t ≤ b. An open set
is a set of points R̂ of the plane such that every point is an interior point. We say that the point z0 is in R̂ if there exists an
ε such that z ∈ R̂ whenever |z − z0| ≤ ε. An open connected set is a set of points such that any two points in the set can
be connected by a polygonal path. A domain is an open connected set. A domain is bounded if there exists M such that
|z| < M for each point in the domain. A region is a domain together with some or none of the boundary points. A closed
region contains all its boundary points. A bounded/finite region is such that there exists M such that |z| ≤M for all z
in the region. A compact region is a closed, bounded region.

Theorem Let u(x, y) be real valued in a domain D. If ∂u
∂x = 0, ∂u∂y = 0 at all points in D, then u is constant in D.

Key Hole Domain/Region Excludes the origin and the negative real axis. Interior to a circle.

1.3 Friday, 03 Oct 2014

Mappings and Functions If ∀z ∈ {D,R} there exists a rule which assigns a complex number w to z then w = f(z) on
{D,R} (where D=Domain, R=Region). Write w = u + iv and z = x + iy. Then we have the functions u(x, y) and v(x, y).
Then the domain D or region R maps to an image in the uv plane D or R. Say that f(z) maps {D,R} in the z-plane to
{D,R} in the uv-plane.

1-1 mapping Call a function/mapping one-one on some domain D iff: f(z1) = f(z2) =⇒ z1 = z2

Point at infinity Consider w = f(z) = z
1−z . Manipulate z1

1−z1 = z2
1−z2 to obtain z1 = z2 except at z1 = 1 = z2. In the

complex plane, surround the point z = 1 with a circle of radius ε. Then we have the curve z = 1+εeiφ = 1+ε(cosφ+i sinφ) to

describe the circle. The image of the circle under the function w is 1+εeiφ

−εeiφ . After some manipulation, w+1 = −1
ε [cosφ−i sinφ].

Hence as ε→∞, the distance of w to the origin becomes infinite. Consider w(ε→∞) the point at infinity.

Bilinear or Mobius Mapping w = z
1−z is a special case of the Bilinear or Mobius mapping. The general form is

w = az+b
cz+d , with inverse z = dW−b

−cw+a .

Conformal Map Angle-preserving mapping except at singular points. Angle refers to the angle between two straight
lines.

Notation Write f(z) = u(x, y) + iv(x, y). The conjugate is f(z) = u(x, y)− iv(x, y). This is different from the function
of the conjugate variable z̄, which is f(z̄) = u(x,−y) + iv(x,−y). Extending this further, f(z̄) = u(x,−y)− iv(x,−y) = f̄(z)
and call this the conjugate function. For example, let f = αzn, so f(z) = ᾱ(z̄)n and f̄(z) = ᾱzn. Note that if f(z) is analytic,
then f̄(z) is also analytic, while f(z̄) and f(z) may not be analytic.

Elementary Functions of a complex variable We have already seen algebraic functions, such as polynomials, rational
functions, rational fractional powers.

Exponentials We define the exponential in such a way that it behaves in the same manner as the real counterpart
ex: ez1ez2 = ez1+z2 , enz = (ez)n. Define ez = ex(cos y + i sin y) and z = reiθ. Some properties: d

dz e
z = ez. Note that

ez/n 6= (ez)1/n. Instead, ez/n = ex/n
[
cos
(
y
n + 2πk

n

)
+ i sin

(
y
n + 2πk

n

)]
for k = 0, 1, . . . , n − 1. We say that there are n

branches of the multivalued function (ez)1/n.

Branch We say that a function F (z) is a branch of the multivalued function f(z) in D if F (z) is continuous, single-valued,
and for each z ∈ D,F (z) is one of the values of f(z). For example, let f(z) = (ez)1/5. There are 5 branches in this function.
We can define a branch to be F (z) =

[
(ez)1/5

]∣∣
k=3

by choosing the value of k.

Equality We say that two multivalued complex functions f1(z) and f2(z) are equal if there exists branches which are
equal. For example, if f1(z) = ez/5 and f2(z) = [(ez)1/5]k = 0, then there are branches that are equal, so f1(z) = f2(z).

Complete Equality We say that two multivalued complex functions f1(z) and f2(z) are completely equal when every
branch of one function is equal to some branch of the other function.
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Chapter 2

Week 2

2.1 Monday 6 Oct 2014

Complex exponential Recall that ez = 0 has no finite roots, ez = 1 =⇒

{
ex = 1 =⇒ x = 0

y = 2kπ, k ∈ Z
. Also, ez1 =

ez2 =⇒ z1 = z2 + 2πik, k ∈ Z, hence the exponential mapping is not one-to-one. Let w = ez be a mapping. Write
w = u+ iv = ex+iy = ex(cos y + i sin y) so u(x, y) = ex cos y and v(x, y) = ex sin y.

Complex exponential as a mapping Consider a line in the x− y plane z = x+ ic where −∞ < x <∞,−π < c < π.
Then w = ez = ex[cos c+ i sin c] is just a radial line that goes from the origin to infinity in the uv plane. If we let c = π− iε,
where ε << 1, then w = ex(−1 + iε + O(ε2)) is the line just above the negative real axis in the uv plane. Similarly, if
c = −π + iε, then w = ex(−1− iε) is a line just below the negative real axis in the uv plane.

Cuts Consider D0 ≡ {−π < y < π}. Then ez maps D0 to D, where D is the whole w plane excluding u < 0, v = 0. We
note that we cannot cross the cut in the negative real axis in D. Under these conditions, w = ez maps D0 → D in a 1-1
manner, and is continuous. Then D is the image of D0 under the mapping w = ez. We note that we could also have taken
the strip D1 ≡ {π < y < 3π}, which also maps to D. There are an infinite number of strips that maps to D. We can say
w = ez is single-valued, but the inverse is not single-valued.

Trigonometric functions Recall that ez = ex(cos y + i sin y). Along the imaginary axis, z = iy, x = 0, so eiy =

cos y + i sin y and e−iy = cos y − i sin y. Rearranging, cos y = eiy+e−iy

2 and sin y = eiy−e−iy
2i . We define cos(z) and sin(z)

accordingly. We can also write e±iz = e∓y(cosx ± i sinx) = cos z ± i sin z. Also cos(z1 + z2) = cos z1 cos z2 − sin z1 sin z2

and sin(z1 + z2) = sin z1 cos z2 + sin z2 cos z1 as expected for the real case. Further properties: cos(z) = cos(−z) and
sin(−z) = − sin(z), cos(0) = 1, sin(0) = 0, cos2 z + sin2 z = 1.

Hyperbolic trigonometric functions cosh z ≡ ez+e−z

2 , sinh z ≡ ez−e−z
2 . It also can be shown that cos(iz) =

cosh(z), sin(iz) = i sinh(z) and | cos z| =
√

cos2 x+ sinh2 y, and that cos(z) = cos(x + iy) = cosx cosh y − i sinx sinh y.
As y → ±∞, | cos z| → ∞. Similarly, sin z = sin(x + iy) = sinx cosh y + i cosx sinh y. When y → ±∞, | sin z| → ∞.
Also note that cosh z = cosh(x + iy) = coshx cos y + i sinhx sin y. When y → ±∞, cosh z becomes oscillatory. Also,
sinh z = sinhx cos y + i coshx sin y.

Zeroes of trigo functions sin z = 0 =⇒ x = nπ (so that sinx = 0) and sinh y = 0 (since sinx = 0 so cosx 6= 0) so
y = 0. So the only roots of sin z = 0 is z = nπ, all lying on the real axis. Similarly, if sinh z = 0 then z = nπi.

Complex logarithm Consider w = log z (note small l). Recall the definition of lnx = eln x = x, with ln(∞) =∞, ln(1) =
0, ln(0) = −∞, ln(e) = 1. Also note that limx→∞ [x−p lnx]→ 0 for all p > 0 so it goes to infinity slower than any polynomial.
We are going to require that log(x+ i0) = lnx. Define w = log z as the root of ew = z. We now can use the previous results
about the exponential mapping by exchanging w and z. Hence w = log(z) exists for 0 < |z| <∞ since ew maps the w plane
for −π < v < π into the whole z plane. But there exist infinitely many values of w corresponding to each value of z. Hence
there are infinitely many regions of the w plane that map to the same region in the z-plane. Hence w = log z is multivalued.
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2.2 Wednesday 8 Oct 2014

Multivalued Complex Logarithm Recall that W = log z is multivalued. Write W = u + iv, z = x + iy. Hence
ew = eueiv = z = reiθ. Hence we have that eu = r, so u = ln r, the natural log. Also, eiv = eiθ so v = θ + 2πk, k ∈ Z. Hence
W = log z = ln r+ i(θ+ 2πk), k ∈ Z = ln |z|+ i arg(z) since we have defined arg(z) = θ+ 2πk to be the multivalued argument
function.

Aside Recall that z = reiθ = |z|ei arg(z) so we can write f = f(z) = |f |ei arg(f) and log f(z) = ln |f | + i arg f(z). Hence
log f(z) is multivalued or single-valued depending on if arg f is multivalued or single-valued.

Example 1 Take f = ez = ex(cos y + i sin y). Hence |f | = ex and arg(f) = y + 2πk. Also, log ez = x + i(y + 2πk) =
(x+ iy) + 2πik = z + 2πik.

Example 2 Take f(z) = elog z = eln |z|+i arg(z) = rei(θ+2πk) = reiθ = z. Hence this function is single-valued.

Multiplication and Logarithms Recall that ln(x1x2) = lnx1 + lnx2 and ln(1/x) = − lnx, since x ≡ eln x and
eaeb ≡ ea+b. Now consider log(z1z2) = ln |z1z2| + i arg(z1z2) = ln |z1||z2| + i (arg z1 + arg z2 + 2πk) = ln |z1| + ln |z2| +
i arg z1 + i arg z2 + 2πik = log z1 + log z2 + 2πik.

Special values of the logarithm Consider log(1) = ln(1) + i arg(1) = 2πik. Also log(i) = ln |i| + i arg i = iπ2 + 2πik
and log(−1) = iπ + 2πik. Can also be shown that log(1/z) = − log(z) + 2πik.

Principal branch of the logarithm Define Log(z) ≡ ln |z|+ iArg(z) = ln r + iθ,−π < θ ≤ π. We introduce a branch
cut along the negative real axis. Hence we have that Logz1 = Logz2 =⇒ z1 = z2 because it is single-valued. Note, however,
that Log(z1z2) 6= Log(z1) + Log(z2) because Arg(z1z2) 6= Arg(z1) + Arg(z2). Logz is continuous and single valued only in
the cut z-plane. Define Log(−1 + 0i) = iπ where 0i means just above the negative real axis and define Log(−1− 0i) = −iπ
where −0i means just below the negative real axis.

nth branch Define the nth branch of the log: Lognz = ln |z|+ iArgz + 2πni, with −∞ < n <∞. n = 0 is the principal
branch. It is continuous and single-valued in C\(−∞, 0] (this means a cut along the negative real axis from minus infinity
to zero). Consider Log0(−r + i0) = ln r + iπ. But note that Log1(−r − i0) = ln r − iπ + 2πi = ln r + iπ. Hence Log0 joins
Log1 along the negative real axis. This is true for the nth and the (n+ 1)th branch. We can make all of the branches “fit”
by defining log z on a domain in the cut z-plane for Lognz by taking it to be the nth copy of the z-plane. This forms the
Riemann surface or log z:

log z is continuous and single-valued on the Riemann surface.
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Branch points The point z = 0 is a special point for log z. For any curve that does not enclose the origin, the change
in the argument (Arg) is zero. However, if the curve goes around the origin, then there is a finite change in the Argument.
Call z = 0 a branch point. Then 6 ∃ closed curve around z = 0 on the Riemann surface of log z.

Definition: Branch Point A branch point is a point in the z-plane, say z0 such that [f(z)]c 6= 0, z0 ∈ C, ∀c surrounding
z0.

Examples: Branch Point z = 0 is a branch point for log z and z = 1 is a branch point of log(z − 1) and so on.

Branch point at infinity z = ∞ may be a branch point of f(z), for example when you define z = 1/ζ, then consider
g(ζ) = f(1/ζ) near ζ = 0. If ζ = 0 is a branch point of g(ζ) then z =∞ is the branch point of f(z).

Branches, Cuts, Branch Points and Single-Valued Branches w = f(z) is single-valued for z ∈ D if ∀c ∈ D, [w]c =
0, [f(z)]c = 0, where the square brackets refer to the change in the value of w on a curve around c. If not single-valued, then
there exists a c for which [w]c 6= 0, [f(z)]c 6= 0. Generally, if f(z) = |f |ei arg f then f(z) is single-valued if |f | is single-valued
and [arg f ]c = 0,∀c ∈ D. The definition or specification of a branch of multivalued function f(z) requires careful definition
of D.

2.3 Wednesday 8 Oct 2014 Recitation

TA details Ben Wu, bhwu@caltech.edu

Property of ellipses Sum of distances to foci equals major axis.

2.4 Friday 10 Oct 2014

Behaviour at infinity Let z = 1
ζ , g(ζ) = f(1/ζ), and examine g(ζ) near ζ = 0. If ζ = 0 is a branch point of g(ζ) =⇒ z =∞

is a branch point of f(z).

Example of branch point at infinity Consider w = log z = log(1/ζ) = − log ζ. We note that the branch point of log ζ
is at ζ = 0. Hence z =∞ is a branch point of log(z). Hence log z has two branch points: z = 0 and z =∞.

Example 2 Define w = (z2 − 1)1/2. We note that there are branch points at z = ±1. Now define z = 1/ζ. Then

w = ( 1
ζ2 − 1)1/2 = (1−ζ2)1/2

ζ ≈ 1
ζ near ζ = 0. But there is no branch point at ζ = 0, but just a pole. Hence w has no branch

point at infinity.

Branches of log We note that we can define a valid branch of log as long as we do not include the branch points at z = 0
and z =∞. Note that if we want to go near the branch point we need to introduce cuts to prevent a curve from going around
the branch point. (i) Note further that cuts can be of any shape and don’t need to be straight lines. (ii) Note also that cuts
usually join two branch points of a function. In the log case, the cut connects the origin and infinity. However, there are
exceptions. (iii) Branch points are common to all possible cuts. (iv) Branch points generally arise from log z, log f(z), zα, α
not an integer.

Example: Fractional Power Let w = z1/2. Check if z = 0 is a branch point. Take w(rei0) = r1/2[cos kπ + i sin kπ].
Check also w(re2πi) = r1/2[cos(kπ + π) + i sin(kπ + π)] 6= w(rei0). Hence the function does not come back to the same
point when θ is varied from 0 to 2π on a circle of radius r, hence z = 0 is a branch point. Now put ζ = 1/z = ρeiψ.
Note that w(ρei0) = 1

ρ1/2 6= w(ρe2πi) = − 1
ρ1/2 . Hence ζ = 0 is a branch point and hence z = ∞ is a branch point.

Note that for any curve that goes around the branch point z = 0 will have [w(1)] = −2r1/2 and [w(2)] = 2r1/2 where
w(i) refers to the ith branch with k = i. Note that since w is the square root, there are two distinct branches. In
fact, for w = z1/n, there will be n distinct branches. Note further that the two branches are connected to each other:
w(1)(1) = 1, w(1)(e2πi) = −1, w(2)(1) = −1, w(2)(e2πi) = 1.
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Multivalued functions may not have branch points For example w = log ez = z + 2πik does not have branch
points. The Riemann surface is just a stack of discs.

Complex powers We first define the power zα = eα log z to be a multivalued function. The principal branch of this is
going to be zα = eαLogz. By the definition of the log, we have that zα = elog(zα). Hence we have that α log z = log zα. For
(zα)β = eβ log zα = eβα log z = zαβ . Now consider zαzβ = eα log zeβ log z = eα log z+β log z = e(α+β) log z = zα+β . Furthermore,
(z1z2)α = eα log(z1z2) = eα(log z1+log z2+2πki) = zα1 z

α
2 e

2πkia.

Multivalued functions involving branch points Take w = (z2−1)1/2 = (z+1)1/2(z−1)1/2. which has branch points
at z = ±1 and no branch point at infinity. Let z − 1 = r1e

iθ1 so (z − 1)1/2 =
√
r1e

i(θ1+2k1π)/2 and z + 1 = r2e
iθ2 so that

(z+ 1)1/2 =
√
r2e

i(θ2+2k2π)/2. Hence w =
√
r1r2e

i(θ1+θ2)/2+ikπ, where k = k1 + k2. Hence this function has two branches, for
k = 0 and k = 1. We can now define the branches. Define 0 ≤ θ1 < 2π and −π < θ2 < π for the branch with k = 0. Along
the real axis to the left of z = 1, θ1 = π, θ2 = 0, and w = i

√
1− x2. Above the real axis to the right of z = 1, w =

√
x2 − 1

and slightly below the real axis, w = −
√
x2 − 1. Hence w is discontinuous along the real axis to the right of z = 1. Hence

we introduce a cut from z = 1 to infinity. Similarly, we introduce a cut from z = −1 to infinity. Note, however, that w is
continuous along the y − axis. Hence we have a Riemann surface that is double-sheeted.
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Chapter 3

Week 3

3.1 Monday 13 Oct 2014

Example Recall that if w = (z2 − 1)1/2 =
√
r1r2e

i(θ1+θ2)/2+ikπ, k = 0, 1. We can consider the angle a point in the domain
makes with the two branch points ±1 in two ways: (I): 0 ≤ θ1 < 2π,−π < θ2 ≤ π and (II): −π < θ1 ≤ π,−π < θ2 ≤ π. In
(I), the function is continuous between −1 and 1 on the real axis, but discontinuous across the rest of the real axis. However,
in (II), the function is discontinuous between -1 and 1 in the real axis but continuous across the rest of the real axis. Think
of (I) as having the branch cut starting from -1, going to minus infinity, then to plus infinity, then decreasing to 1. Then
branch cut for (II) is just between −1 to 1 across the origin. Hence we see that how the angles are defined will be related to
how the branch cuts are conducted.

Making a single-valued branch for log[f(z)] Suppose we have f(z) on some domain D in xy-space. Suppose that
f(z) is single-valued in D and we want to construct the single-valued branch of w = log f(z) which we call D′ in uv-
space. Suppose that D is simply connected. Hence [f(z)]c = 0,∀c ∈ D, the change in f(z) on a curve around point c is
zero. Further suppose that f(z) 6= 0,∀z ∈ D, such that O′ in uv-space is not in D′. There is hence no branch point associ-
ated with w. Also assume that f(z) 6=∞ in D. If all these conditions hold, then generally log[f(z)] will be single-valued in D.

Exceptions to making single-valued branches for log[f(z)] Recall the general rules: (1). Branch points are gener-
ally associated with log[f(z)], log z and zα, with α 6∈ Z. (2) One can construct a single-valued branch of log[f(z)] provided
the following conditions hold: (i) f(z) has no zeroes on its domain and no singularities on its domain, (f(z) 6= 0,∞) and (ii)
either D is simply connected or D is not simply connected but log[f(z)] does not have a branch point at z →∞.

Hint for next week’s homework Consider the function w = sin−1 z. So z = sinw = eiw−e−iw
2i . Making the substitution

ζ = eiw, the equation is a quadratic in ζ which can be solved for ζ and we can get w = −i log[iz+ (1− z2)1/2]. Then we have
the function f(z) = iz+ (1− z2)1/2 which has branch points where (1− z2)1/2 has branch points. Pick the branch associated
with the branch cut going from -1 through infinity to 1. This is a simply connected domain.

Another example Write w(z) = q∞(ζe−iα + a2

4ζe−iα ) + γ
4πi log ζ where ζ = 1

2 (z2 + (z2 − a2)1/2)1/2. This represents the

complex potential w(z) = φ+ iψ for flow with velocity q∞ with some angle of incidence α on a flat foil going from position
−a to a. We make the choice of circulation γ = −2q∞πa sinα which streamlines the flow which has smooth separation of
the trailing edge. This doesn’t work, for some complex reason.

Limit Suppose we have some function f(z) and we want the limit as z → z0. Then limz→z0 = w0 iff for all ε > 0 there
exists a δ > 0 such that |f(z)−w0| < ε whenever |z − z0| < δ. For the limit to exist, the neighbourhood of w0 must contain
all of the nearby values of f(z) in some full neighbourhood of z0 (implies for all arg(z− z0)). You need to get the same value
of the limit regardless of which direction you approach z0 from. In general, delta is going to be a function of ε and z0.

Limit at infinity Let w = f(z) with w0 = α. Then limz→∞ f(z) = α means that ∀ε > 0,∃δ > 0 such that
|z| > 1/δ =⇒ |f(z) − α| < ε for all arg(z). This means that no matter how you go off to infinity, you must get the
same limit value.

Example without limit at infinity Take f = ez. As z → −∞, ez → 0 but as z → ∞, ez → ∞. Hence ez does not
approach a constant and hence does not have a limit at infinity.

Properties of limits (i) limz→z0 [f(z)+g(z)] = α+β if limz→z0 f(z) = α and limz→z0 g(z) = β, (ii) limz→z0 f(z)g(z) = αβ
(ii) limz→z0 f(z)/g(z) = α/β.
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Exceptions to limits Functions may not be defined at z = z0. For example, consider the function f(z) = sin z
z , z 6= 0.

In this case, f(0) is defined by its limit so f(0) = 1.

Continuity f(z) is continuous in the region R if for all z0 ∈ R if limz→z0 is defined and equal to f(z0). If f is continuous,
then |f |, f̄ , Re(f), Im(f) are all continuous. However, the converse is not true. Counterexample: f(z) = 1 if z is rational,
f(z) = −1 for z irrational. Then |f | = 1 is continuous but f is not continuous.

3.2 Wednesday 15 Oct 2014

Point at infinity Put ζ = 1
z then z = ∞ corresponds to ζ = 0. The ε neighbourhood of z = ∞ corresponds to the ε

neighbourhood of ζ = 0, and continuity of f(z) at z =∞ corresponds to continuity of f(1/ζ) at ζ = 0.

Examples Consider ez. Consider z = 1
ζ . Note that e1/ζ is not continuous at ζ = 0.

Differentiability A function f defined on D is said to be differentiable at z = z0 in D if limz→z0,∀ arg(z−z0)
f(z)−f(z0)

z−z0
exists. Define this to be f ′(z0). If w = f(z), then call this dW

dz

∣∣
z=z0

. We note that we can write any f(z) = f(z)−f(z0)
z−z0 (z −

z0) − f(z0). Then if the limit of the fraction exists as z → z0, then the function f(z) → f(z0) and hence f is continu-
ous. Hence f(z) is differentiable implies f(z) is also continuous. Note that we can write z − z0 ≡ h = |h|eiφ, so we write

f ′(z) = limh→0
f(z+h)−f(z)

h . Since the limit is independent of the direction, this limit must apply for all φ. If the limit exists
for all z ∈ R, then we say that f ′(z) exists in R, so f(z) is differentiable everywhere in R.

Examples Consider w = zn, n > −0. Then (z+h)n−zn
h = zn+hnzn−1+...−zn

h which equals nzn−1 when h→ 0.

Chain rule Consider F (g(z)). Then dF
dz = dF

dg
dg
dz .

Example 1 Calculate the derivative of f(z) = z̄. Then f(z+h)−f(z)
h = z̄+h̄−z̄

h = h̄
h . But since h = |h|eiφ so this is equal to

e−2iφ. But this is not independent of the direction of approach φ. For instance, if φ = 0, then the limit becomes e0 = 1. But
if φ = π/2, then the limit is e−iπ = −1. But we have that the limit must exist for all directions of approach for the function
to be differentiable. Hence f(z) is not differentiable, even though its real and imaginary parts are differentiable everywhere.

Example 2 Consider ez. Then limh→0
ez+h−ez

h = eh−1
h ez. Put h = a + ib, and note that ea = 1 + a + O(a2) while

eib = cos b+ i sin b = (1− b2

2 + . . .)(b+O(b3)). Then we have that eh − 1 = eaeib − 1 = (1 + a+O(a2))(1 + ib+O(b2))− 1 =

a+ ib+O(a2, b2) = h+O(h2) so limh→0
eh−1
h = 1, which is independent of direction.

Test for differentiability: Cauchy-Riemann Equations Write f(z) = u(x, y) + iv(x, y). Take h to be real. Then

f(z+h) = u(x+h, y) + iv(x+h, y). Then take f(z+h)−f(z)
h = u(x+h,y)−u(x,y)

h + i v(x+h,y)−v(x,y)
h . We want the limit as h→ 0.

But this is the ordinary limit of functions u and v. Hence we have that the limit as h→ 0 is just ∂u
∂x + i ∂v∂x . Now we consider

h = ik and approach along the imaginary direction. Then we have that f(z+ik)−f(z)
ik = 1

i
∂u
∂y + i

i
∂v
∂y = −i∂u∂y + ∂v

∂y . Now we
have that the limit must be independent of direction. Hence these two expressions must be equal. Hence we obtain that
∂u
∂x = ∂v

∂y and ∂u
∂y = − ∂v

∂x . We should actually do it for any direction, but this gives the right answer anyway. Write these
Cauchy-Riemann equations as ux = vy, uy = −vx.

Facts about the C-R Equations (1) The C-R equations are necessary for differentiable functions. (2) The C-R
equations are NOT SUFFICIENT for differentiable functions. To make the C-R equations sufficient, we require that (2a)
ux, uy, vx, vy are continuous at the point you are interested in and (2b) the C-R equations must be satisfied in an ε neigh-
bourhood of that point.

Summary of differentiability w = f(z) is differentiable (i.e. dW
dz exists) iff ux = vy, uy = −vx. Then write

dW
dz = f ′(z) = ux + ivx = ux − iuy and so on.

Analyticity A function f(z) is said to be analytic at a point z0 if it is differentiable in some ε neighbourhood of z0. Note
that (1) f(z) is analytic in the region R if it is analytic at every point. (2) On domains (which we recall cannot contain its
boundary points), differentiability and analyticity are the same. But not so for regions.

Singularity If f(z) is not analytic at z = z0, then we say that z0 is a singularity of f(z). For example, at branch points,
the function is not analytic.
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3.3 Recitation Wednesday 15 Oct 2014

Riemann Sphere Stereographic projection of the complex plane onto a sphere. South pole is zero, north pole is infinity.
Equator is complex numbers with magnitude 1. Lower hemisphere is complex numbers of magnitude less than 1. Upper
hemisphere has complex numbers greater than magnitude 1. Nothing inside the sphere! Only on the surface.

3.4 Friday 17 Oct 2014

Orthogonality of level sets Letf(z) = u(x, y) + iv(x, y). Also let u(x, y) = c, c constant. Then we can write the level sets
of u(x, y) and we can form the gradient ∇u(x, y) = uxî + uy ĵ. We know that the gradient is always orthogonal to the level

sets. Similarly, for v(x, y) = c′, c’ constant, we can construct the gradient ∇v(x, y) = vxî+vy ĵ which will be orthogonal to the
level sets of v(x, y). Take some point at the intersection of one level set of u and another of v. Then the dot product of their
gradients is uxvx + uyvy. But if f(z) satisfies the CR equations, we know that this is going to be equal to vyvx − vxvy = 0.
Hence we have that the gradients must be orthogonal to each other, and hence the level sets of u and v are always orthogonal
to each other. Hence the families of of contours/level sets u(x, y) = constant and v(x, y) = constant are orthogonal sets.

Constant components implies constant function If f(z) has constant u, constant v or constant u2 + v2, then f(z)
is a constant. If u is a constant, we have that Re(f) = constant, so ux = 0 = vy by the CR equations so v = g(x) for
some function g. But we also have that uy = 0 = −vx so g(x) =constant. Hence v is also a constant. Taken together, f(z)
is a constant. Repeat same argument if v is constant. Now if |f |2 is a constant, we have that u2 + v2 =constant. Hence,
differentiating with respect to x, we have that uux+vvx = 0, and differentiating with respect to y, we have that uuy+vvy = 0.

But with the CR equations, we have that uux− vuy = 0 and uuy + vux = 0. In matrix form,

(
u −v
v u

)(
ux
uy

)
= 0. So if

u2 − v2 6= 0 then the matrix is invertible and this requires that ux = uy = 0. Hence invoke the same argument to claim that
f(z) is constant.

Entire function An entire function is analytic in the whole of the finite z-plane. We have that |z| < ∞. Then this
function has no singularities anywhere in the finite z-plane. Example: all polynomials, ez, sin z, sinh z are entire. Note that
log(z) is not entire, but it is analytic everywhere in the finite z-plane except at the branch points.

Complex Logarithm Recall that log(z) = ln |z| + i arg(z) = ln
√
x2 + y2 + i tan−1(y/x) + 2πik. Write u(x, y) =

ln
√
x2 + y2 and v(x, y) = i tan−1(y/x). Then ux = x

x2+y2 and vy = 1
x

1
1+y2/x2 = ux. Also, uy = −y

x2
1

1+y2/x2 and vx = y
x2+y2

so uy = −vx and the CR equations are satisfied. We hence can write d(log z)
dz = ux + ivx = x−it

x2+y2 = z̄
zz̄ = 1

z . Note that 1
z

does not have a branch point at z = 0, but has a pole instead. We note that if f(z) = log z then f is not single valued in the
z-plane. But f ′(z) = 1

z is single-valued in the z-plane with a singularity at z = 0.

Powers Consider f(z) = eα where alpha is not an integer. Then write dzα

dz = d
dz e

α log z = eα log z d
dz (α log z) = α

z e
α log z =

αzα−1. Note that if α is not an integer then f(z) has a branch point at z = 0, and hence its derivative also has a branch
point there. We need to ensure that we evaluate the derivative on the same branch! Use the same branch as the original
function.

Harmonic Functions Take f(z) = u(x, y) + iv(x, y). By CR, ux = vy, uy = −vx. Differentiate the first w.r.t y and the
second w.r.t x, obtaining uxy = vyy, uyx = −vxx. If u ∈ C2, then the mixed second partial derivatives are equal and hence
vyy = −vxx or ∇2v = 0. Repeating this by changing the variable of differentiation, we have that ∇2u = 0. Both u and v
are hence harmonic functions. Note that the converse is also true: If ∇2u = 0 then there exists an analytic f(z) such that
u = Re(f). Same for ∇2v.

Harmonic Conjugate A harmonic function v(x, y) related to u(x, y) by the CR equations is said to be the harmonic
conjugate of u(x, y). Notes: If the harmonic conjugate exists, it is unique up to an additive constant. Note that if v(x, y) is
the harmonic conjugate of u(x, y), then −u(x, y) is the harmonic conjugate of v(x, y). Note the minus sign! This is because
if(z) = iu− v = −(v − iu). We say that u and v are conjugate pairs if they satisfy the CR equations.

Finding the harmonic conjugate Given u(x, y), find v(x, y) such that v(x, y) is the harmonic conjugate of u(x, y) in
some domain D. We construct v(x, y). Suppose that D has the following properties: Take the point (x, y) ∈ D such that
u(x, y) satisfies Laplace’s equation at that point. Then take a point (x0, y0) ∈ D such that we can connect these points using an
L-shaped curve. We first integrate vx = −uy with respect to x to obtain: v(x, y) = −

∫ x
x0
uy(x′, y)dx′+c(y). We then take the

second equation vy = ux and form the derivative: vy = − ∂
∂y

∫ x
x0
uy(x′, y)dx′+c′(y) =

∫ x
x0
−uyy(x′, y)dx′+c′(y) after taking the
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derivative inside the integral. Because u is harmonic, we can write the RHS as
∫ x
x0
ux′x′dx

′+c′(y) = ux(x, y)−ux(x0, y)+c′(y).

But we know that by the CR equations, this is going to equal ux(x, y). Hence we have that c′(y) = ux(x0, y). Hence
c(y) =

∫ y
y0
ux(x0, y

′)dy′ + v(x0, y0). Hence we have v(x, y) = −
∫ x
x0
uy(x′, y)dx′ +

∫ y
y0
ux(x0, y

′)dy′ + v(x0, y0).

Related results Suppose u is harmonic in D. then g(z) = ux(x, y) − iuy(x, y) satisfies the CR equations because
(ux)x = (−uy)y because u is harmonic. Also, (ux)y = −(−uy)x because u is C2. We hence have that g(z) is analytic in D
and if u is a real part of analytic f(z) where f(z) = u+ iv, then g(z) = f ′(z).

Finding branch points Construct the positions of all complex points relative to suspected branch points, then examine
what happens when you go around that point.
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Chapter 4

Week 4

4.1 Monday 20 Oct 2014

Example: Finding the complex conjugate Let u(x, y) = x3 + axy2. So ∇2u = 6x + 2ax = 0 if a = −3. Hence
u = x3 − 3xy2 and ux = 3x2 − 3y2 = vy by Cauchy-Riemann equations. Hence we integrate this with respect to y to
obtain v = 3x2y − y3 + D(x) for some unknown function D(x). But we have the other Cauchy-Riemann equation that
uy = −6xy = −vx. Hence we differentiate v by x to obtain 6xy+D′(x) = 6xy. So D′(x) = 0 and D(x) is a constant. Hence
we have the harmonic conjugate v = 3x2 − y3 + ε, where ε is a constant. Then f = u + iv = (x + iy)3 + ε = z3 + ε is an
analytic function.

Alternative method to find the complex conjugate Construct ux − iuy = g(z) which is the derivative of some
analytic function f = u+ iv for unknown v. So g(z) = (3x2 − 3y2) + 6ixy = 3z2 = f ′(z). So f = z3 + ε immediately.

Conformal Map Consider w = f(z) as a mapping. If f(z) is analytic, then w is a conformal mapping from some domain
D of the xy-plane to some domain D in the uv-plane. A mapping is said to be conformal at every point at which its derivative
f ′(z) is non-zero and non-infinite. Suppose we have two curves in the xy plane C1 and C2. We consider the mapping of these
curves onto the w-plane C ′1 and C ′2. The mapping is said to be conformal if the angle between the two curves at a point in
the xy-plane is equal to the angle between the two images in the uv-plane.

Inverse function theorem We write the inversion of w = f(z) to be z = f−1(w). Then the IFT states that provided
f(z) is analytic, then z = f−1 exists and is analytic provided f ′(z) 6= 0. Sketch of proof: take the local Taylor expansion
w − w0 = (z − z0)f ′(z0) + O(z − z0)2 so z − z0 = w−w0

f ′(z0) +other terms. Hence locally, dz
dw

∣∣
z=z0,w=w0

= 1
f ′(z) . Note that in

the inversion we now have x(u, v) and y(u, v), inverting the dependence of the function on its inputs. We note that the CR

equations hold in the sense that
(
∂x
∂u

)
v

=
(
∂y
∂v

)
u

and
(
∂x
∂v

)
u

= −
(
∂y
∂u

)
v
.

Relating partial derivatives under an inversion Consider u(x, y), v(x, y). Now we want to know what the partial

derivatives of x(u, v) and y(u, v) are. We write

(
du
dv

)
=

 (
∂u
∂x

)
y

(
∂u
∂y

)
x(

∂v
∂x

)
y

(
∂v
∂y

)
x

( dx
dy

)
. Then we can write the column

vector (dx, dy)T in terms of some matrix multiplied by (du, dv)T , which will just be the inverse of the 2x2 matrix. But we
also can write the total differential of (dx, dy)T in terms of the matrix of the partials of x(u, v) and y(u, v) multiplied by
(du, dv)T . We hence equate these two expressions for (dx, dy)T to obtain the Cauchy-Riemann equations. It can also be
shown that the level sets of x(u, v) and y(u, v) will be orthogonal to each other at every point.

Complex Integration Recall the definition of integration for real variables:
∫
f(x)dx exists as a Riemann integral.

Recall also the fundamental theorem of integration for real variables: Take f(x) to be continuous on integral [a, b] and has

antiderivative F (x) such that F ′(x) = dF (x)
dx = f(x). Then

∫ b
a
f(t)dt = F (a) − F (b). Let φ(t) be a parametrised complex

function of a real variable: φ(t) = φ1(t) + iφ2(t) where φ1 and φ2 are real-valued continuous function of t. Take φ1 and φ2 to
be differentiable with derivatives φ̇(t) = φ̇1(t) + iφ̇2(t). Also let φ1, φ2 be integrable on a ≤ t ≤ b. Then the integral of the

complex function
∫ b
a
φ(t)dt =

∫ b
a
φ1(t)dt + i

∫ b
a
φ2(t)dt. Also from the real valued fundamental theorem of calculus we have

d
dt

∫ t
a
φ(u)du = φ(t) and

∫ b
a
φ̇(t)dt = [φ(t)]

b
a.

Curves in the complex plane Define x = ξ(t), y = η(t) such that z = x + iy is parametrised by ζ(t) = ξ(t) + iη(t).
Then z = ζ(t) describes a curve C in the complex plane. Call the trace of C to be the set of points occupied by C. A simple
curve does not cross itself. A closed curve has endpoints that are equal. Call an “arc” a continuously differentiable curve
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on some interval. Take ArcCj to be the curve z = ζj(t) for some aj ≤ t ≤ bj . A set of arcs form a contour if the ending of
one arc is joined to the beginning of the next arc: ζj(bj) = ζj+1(aj). Hence a contour can be written as a set of arcs. Note
that the derivatives of the arcs do not need to match at the joining points.

Complex function on C Let f(z), z = x + iy be a complex function, and curve C with z = ζ(t). Then we have

φ(t) = f [ζ(t)], t ∈ [a, b], t ∈ R for the complex value of the function on C. Then φ̇(t) = df(z)
dz

∣∣∣
z=ζ(t)

dζ(t)
dt by the chain rule.

Integral on a curve Consider a curve defined by x = ζ(t), y = η(t).
∫
C
f(z)dz =

∫
C

[u(x, y) + iv(x, y)](dx + idy) =∫ b
a

[u+ iv](ζ̇ + iη̇)dt =
∫ b
a
f(ζ(t))dζ(t)dt dt.

4.2 Wednesday 22 Oct 2014

Complex integration Recall that
∫
c
f(z)dz =

∫ b
a
f(ζ(t))dζdt dt where ζ(t) = ξ(t) + iη(t).

Arclength Define ds =
√
dx2 + dy2 = dt

√
ξ̇2 + η̇2 =

∣∣∣dζdt ∣∣∣ dt. So integrating along arclength is just
∫
c
f(z)ds =∫ b

a
f(ζ(t))

∣∣∣dζdt ∣∣∣ dt.
Conjugate integration Take

∫
c
f(z)dz̄ =

∫ b
a
f(ζ(t))dζ̄(t)dt dt =

∫ b
a

(u+ iv)(dx− idy).

Properties of integrals

• Integration is linear:
∫
c
(αf(z) + βg(z))dz = α

∫
c
f(z)dz + β

∫
c
g(z)dz

• Consider a contour C = {C1, C2, . . . , Cn}. Then
∫
C
f(z)dz =

∑n
j=1

∫
Cj
f(z)dz. If C is closed, write

∮
C
f(z)dz.

Theorem Let F = U + iV be analytic and single-valued in some domain D. Also let f = dF
dz = F ′ with f con-

tinuous. Also let c ∈ D,x = ξ(t), y = η(t), z = ζ(t) = ξ(t) + iη(t). Write f = F ′ = Ux + iVx = Vy − iVy by CR

equations. Also, dz = dx+ idy = (ξ̇ + iη̇)dt. Consider U̇(x, y) using the chain rule to obtain U̇(x, y) = Uxξ̇(t) + Uy η̇(t) and

V̇ (x, y) = Vxξ̇(t) + Vy η̇(t). We can write fdz = (Ux + iVx)(dx + idy) = (Ux + iVx)(ξ̇ + iη̇)dt = (Uxξ̇ − Vxη̇) + i(Vxξ̇ + Uxη̇)

after gathering real and imaginary parts. Using the CR equations, we can simplify this to become: (U̇ + iV̇ )dt. This is

just (dUdt + idVdt )dt. Hence we have a real integral
∫ z2
z1
f(z)dz =

∫ z2
z1
F ′(z)dz =

∫ b
a

(
dU
dt + idVdt

)
dt, z1 = ζ(a), z2 = ζ(b). But

using the fundamental theorem of calculus, we have that this is just [U + iV ]|ba = F (z2) − F (z1). Hence we have that∫ z2
z1
F ′(z)dz = F (z2)− F (z1) and the integral only depends on the end-points. If C is closed, then the integral is zero (note

that F has to be single-valued). Note that the converse is also true! If
∮
c
f(z)dz = 0 and f is continuous in D, then

∃F (z) such that F ′ = f .

Notes on the previous theorem The antiderivative F must be analytic. Also, if f is a branch, the F ′ must be on the
same sheet of the Riemann surface.

Cauchy’s Integral Theorem Suppose f is analytic and single-valued in D. Let D be simply connected. Then:

∮
f(z)dz = 0,∀c ∈ D

Write f = u+ iv. Consider the function G(λ) = λ
∮
f(λz)dz, 0 ≤ λ ≤ 1. Then G(1) =

∮
f(z)dz and G(0) = 0. Differenti-

ating, we obtain dG
dλ =

∮
f(λz)dz+λ d

dλ

∮
f(λz)dz =

∮ (
f(λz) + λdf(λz)

d(λz)
d(λz)
dλ

)
=
∮

d
dz (zf(λz))dz. But since f is single-valued

in D, the integral is going to be zero. Hence dG
dλ = 0 so G is a constant. But since G(0) = 0, this requires that G(1) = 0 also.

Hence
∮
f(z)dz = 0.

Doubly-connected example where the Cauchy Integral Theorem fails Let f(z) = 1/z and let D be the
annulus 1

2 < |z| < 2. On |z| = 1, let z = eiθ, dz = ieiθdθ so f(z) = e−iθ and fdz = eiθie−iθdθ = idθ. Hence∮
c
fdz = i

∫ 2π

0
dθ = 2πi 6= 0. Note that f = 1/z has antiderivative F (z) = log z which is not single-valued in D. Hence the

Cauchy integral theorem fails in this case.

Green’s theorem Consider the imaginary part of the integral Im[
∮
C
fdz] =

∮
C

(udy + vdx) =
∫∫
A

(
du
dx −

dv
dy

)
dxdy

by Green’s Theorem. The real part is given by Re[
∮
C
fdz] =

∮
C

(vdy − udx) =
∫∫
A

(
dv
dx + du

dy

)
dxdy. Then we have that
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∮
fdz = Re[

∮
fdz] + iIm[

∮
fdz]. But the Cauchy Riemann equations imply that the double integrals are going to be zero.

But f has to be analytic everywhere on the domain for the double integrals to vanish.

Integration on circles Consider the curves z = Reiθ or z − z0 = Reiθ. Then dz = iReiθdθ = iR z
Rdθ = izdθ.

Bounds on integrals For F complex, t ∈ R, a ≤ t ≤ b.

∣∣∣∣∣
∫ b

a

F (t)dt

∣∣∣∣∣ ≤
∫ b

a

|F (t)|dt

Proof Suppose some real-valued function g(t) ≤ G(t), a ≤ t ≤ b. Then
∫ b
a
g(t)dt ≤

∫ b
a
G(t)dt. Now we let

∫ b
a
F (t)dt = Jeiθ

be some complex number. Now J is real. Hence we can write J =
∫ b
a
e−iθF (t)dt =

∫ b
a
Re[e−iθF (t)]dt because J is real. Let

G(t) = |F (t)|, g(t) = Re[e−iθF (t)] be two real-valued functions. We note that g(t) ≤ G(t). Hence J ≤
∫ b
a
|F (t)|dt, and the

bound on the integral follows immediately.

Another bound on the integral

∣∣∣∣∫
c

f(z)dz

∣∣∣∣ ≤ML

where M is the maximum of the |f(z)| on C and L is the length of C. Note dz here, not dt.

Proof of the second bound Let f = ρeiφ, where ρ(s), φ(s) are functions of arc length s. Then we have dz = dx+ idy =
ds cos θ + ids sin θ = ds · eiθ(s). Then

∣∣∫
C
f(z)dz

∣∣ =
∣∣∫ ρ(s)ei(θ(s)+φ(s))ds

∣∣. But we have that this is going to be less than or
equal to

∫
ρ(s)ds =

∫
|f |ds, which is less than or equal to |f |max

∫
ds = |f |maxL.

4.3 Recitation 22 Oct 2014

CR for Polar Coordinates Write f(r, θ) = u(r, θ) + iv(r, θ). Then the CR equations are:

rur = vθ

uθ = −rvr

CR Theorem for Polar Coords If the first order partial derivatives of u and v exist in the neighbourhood of some
point z0, and they satisfy the Cauchy-Riemann equations, then f ′(z0) exists and equals f ′(z0) = e−iθ(ur + ivr).

Poles in polynomials/rational functions Consider Pn(z) = (z− z1)(z− z2) · · · . Note that z =∞ is a pole. For 1
Pn(z)

the poles will be at z1, z2, · · · etc.

Making branch cuts Note that when you construct branch cuts, it is the combined angle (not the angle with respect
to individual points) that should be discontinuous.
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Chapter 5

Week 5

5.1 Monday 27 Oct 2014

Recall Cauchy-Integral Theorem Consider f(z) analytic and single-valued in D, with D simply connected. Then we
have

∮
C
f(z)dz = 0 for any contour C in D.

Corollary to Cauchy-integral Theorem Suppose f(z) is analytic and single-valued in D. Then there exists a function
F (z) also analytic in D such that F ′ = f . Note that F (z) may not be single-valued.

Sketch of proof of Corollary Consider the function F (x) =
∫ z
z0
f(ζ)dζ along some curve. Consider

∣∣∣F (z+h)−F (z)
h − f(z)

∣∣∣
where h is complex. It will suffice to show that as h → 0, then F ′(z) goes to f(z). Write

∣∣∣ 1
h

∫ z+h
z

f(ζ)dζ − 1
h

∫ z+h
z

f(z)dζ
∣∣∣.

Note the second term is just f(z) because f(z) = f(z)hh = f(z) 1
h

∫ z+h
z

dζ. Hence we can simplify the expression to∣∣∣ 1
h

∫ z+h
z

[f(ζ)− f(z)]dζ
∣∣∣. But by the bounds on the integral, we know that the expression is going to be less or equal to

max|ζ−z|<h |f(ζ) − f(z)|. Since f(z) is analytic and hence differentiable, we can bring h arbitrarily close to zero and show
that F exists such that F ′ = f in D.

What happens if the domain is not simply connected? Suppose D is multiply connected. Then F exists but
is not single-valued. For example, take f(z) = 1/z and F (z) = log z. Take the domain to be the complex plane without
the origin. Suppose we want to evaluate

∫ z
1

1
z′ dz

′ =
∫ z

1
d
dz′ log z′dz′ = ln |z| + iθ + 2πiN,N ∈ Z. This integral depends

on the path! The more times you wind around the origin, the larger N is. Call N the winding number. Then we can
write

∫ z
1
dz′

z′ = Logz + 2πiN . To make this integral single-valued, we need to introduce a cut and make the domain simply-
connected. Because of the cut, the curve cannot go around the origin. Then Cauchy’s Integral Theorem holds.

Contour Deformation Pick the usual f and domain D such that Cauchy’s integral theorem holds. Example 1. Define
two points A and B. Pick two contours that connect A → B, C1 and C2. We know that

∮
C1−C2

f(z)dz = 0 for analytic f
by Cauchy’s integral theorem. But we know that by reversing the direction of the curve we change the sign of the integral.
Then we have

∫
C1
f(z)dz =

∫
C2
f(z)dz, the integral is independent of path provided there is no singularity of f(z) on the

domain between C1 and C2.

Contour Deformation Example 2 Consider two closed curves C2 and C1 such that C2 is completely contained in the
interior of C1. Let f(z) be analytic between C2 and C1. Connect the contours with a straight line L1 from the outside to the
inside. Define a composite contour C = C1 + L1 + (−C2) + (−L1). Then

∮
C
f(z)dz = 0 by the Cauchy Integral Theorem.

Then we can write this as
∫
C1

+
∫
L1

+
∫
−C2

+
∫
−L1

= 0 (short-hand). Hence we have that
∫
C1
f(z)dz =

∫
C2
f(z)dz. This

means that we can deform closed contours in any way we want (while remaining within the domain where f(z) is analytic)
while not changing the value of the integral on the contour.

Contour Deformation with singularities Consider a function with N singularities, but being analytic everywhere
else on a domain. Then we have that

∫
C
f(z)dz =

∑
N

∫
Ci
f(z)dz, where Ci is a small curve/circle around the ith singularity.

Cauchy’s Integral Formula Let f be analytic in D and consider some curve C ∈ D. Then 1
2πi

∮
C

f(z)
z−z0 dz ={

f(z0), z0 ∈ C
0, z0 6∈ C

. The value of a function at an interior point is completely determined by the value of the func-

tion on any curve surrounding it, provided that the function is analytic in the domain. In particular, when f(z) = 1,
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1
2πi

∮
C

1
z−z0 dz =

{
1, z0 ∈ C
0, z0 6∈ C

.

Proof We note that f(z)
z−z0 is analytic in C if z0 6∈ C so that the denominator does not vanish. Hence the Cauchy

Integral theorem gives us
∮ f(z)
z−z0 dz = 0 immediately. If z0 ∈ C, then we just deform the contour C into a small circle

of radius δ surrounding z0, the singularity. Then we have 1
2πi

∮ f(z)
z−z0 dz = 1

2πi

∮
|z−z0|=δ

f(z)
z−z0 dz = f(z0)

2πi

∮
|z−z0|=δ

1
z−z0 dz +

1
2πi

∮
|z−z0|=δ

f(z)−f(z0)
z−z0 dz. We write dz = iδeiθdθ, so that

∮
dz
z−z0 =

∮
iδeiθ

δeiθ
dθ = 2πi. Also, we also know that f(z) is

continuous at z = z0. Hence we have that |f(z)− f(z0)| < ε whenever |z− z0| < δ by continuity. By the integral bounds, we

have that
∣∣∣∮ f(z)−f(z0)

z−z0 dz
∣∣∣ ≤ ε

δ2πδ = 2πε which goes to zero as ε→ 0. Hence we have that 1
2πi

∮ f(z)
z−z0 dz = f(z0) if z0 ∈ C.

5.2 29 Oct 2014

Generalization of Cauchy’s Integral formula to derivatives Recall that 1
2πi

∮
C

f(z)
z−z0 dz =

{
f(z0), z0 ∈ C
0, z0 6∈ C

, f(z)

analytic in some domainD. Then its derivatives exist and are themselves analytic. Consider the function f(z) = 1
2πi

∮
C
f(ζ)
ζ−z dζ.

Then we evaluate f(z+h)−f(z)
h = 1

2πih

∮
C

f(ζ)
ζ−z−hdζ−

1
2πih

∮
C
f(ζ)
ζ−z dζ. We can combine the integrals to obtain 1

2πi

∮
C

f(ζ)
(ζ−z−h)(ζ−z)dζ.

We now take the limit as h → 0. Then we get f ′(z) = limh→0
f(z+h)−f(z)

h = 1
2πi

∮
C

f(ζ)
(ζ−z)2 dζ. We can generalise this by

induction to obtain that f (n)(z) = n!
2πi

∮
C

f(ζ)
(ζ−z)n+1 dζ. Hence if we know f(ζ) on a curve C, we can construct the function

and all its derivatives. Hence an analytic function is infinitely differentiable.

Morera’s Theorem Let D be a domain, not necessarily simply connected. Also let f(z) be continuous at each z ∈ D.
Suppose

∮
C
f(z)dz = 0 for all C ∈ D. Then f(z) is analytic.

Sketch of proof Recall that
∮
C
fdz = 0 =⇒ ∃F (z) such that F ′ = f . But this means that F is analytic. But if F is

analytic, then its derivative F ′ = f is also analytic (from the Cauchy Integral Formula).

Cauchy Inequality Suppose f(ζ) is analytic for |ζ − z| < R, in the interior of some circle. Let MR be the maximum
value of |f(ζ)| on the circle |ζ − z| = R. Then the maximum value of the derivative inside the circle |f (n)(z)| ≤ n!MR

Rn from

the Cauchy Integral formula and bounds on the integral. In particular, for n = 1, we have that |f ′(z)| ≤ MR

R .

Liouville’s Theorem Suppose |f(z)| < M in the whole z-plane (including infinity). Assume f(z) is analytic. Then f
has to be a constant.

Sketch of Proof Observe that from Cauchy’s Inequality |f ′(z)| ≤ MR

R . But now we can take R → ∞ to include the
whole z-plane. Hence we have that |f ′(z)| = 0, and hence f(z) is constant.

Entire Function If f(z) is analytic for |z| < α on the finite z-plane (no singularities), then f(z) is said to be entire.
Note that from Liouville’s theorem, the entire function will be unbounded at infinity if it is not the constant function. But
functions with singularities in the finite z-plane can be bounded at infinity.

Point at Infinity Say that f(z) is analytic at infinity if g(ζ) = f(1/ζ) is analytic at ζ = 0.

Fundamental Theorem of Algebra Consider a polynomial of degree N : PN (z) = a0 + a1z + . . . + aNz
N , aN 6= 0,

ai ∈ C,∀i. We show that PN (z) has at least one zero for N ≥ 1. That is, ∃z0 such that PN (z0) = 0. We proceed by
contradiction. Suppose we do not have any zeros. Then f(z) = 1

PN (z) is clearly entire. We also know that it will be

bounded because |PN (z)| → |aN ||zN | as z → ∞ for all arg z and |zN | is unbounded as z → ∞. (Note that this does
not work for f(z) = ez because |e−z| → 0, x → ∞ and |e−z| → ∞, x → −∞. e−z has an essential singularity at infin-
ity.). Hence 1

|PN (z)| → 0 as z → ∞. Hence 1
PN (z) is bounded and entire. But the Liouville Theorem says that the only

function that satisfies this is the constant function. But we know that 1
PN (z) cannot be a constant. Contradiction. Hence

PN (z) has at least one zero. Call this point z0. Now we write PN (z) = (z − z0)PN−1(z) for another polynomial PN−1(z) of

order N−1. But we can repeat this process for PN−1(z) and finally we have PN (z) = P0(z)
∏N
i=1(z−zi), hence it has N roots.

Example Consider I =
∮
C
z̄dz on C : |z| = a. On the circle, z = aeiθ, dz = iaeiθdθ so z̄ = ae−iθ. Hence we have

I =
∫ 2π

0
ae−iθ(iaeiθ)dθ = 2πa2i.
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Example Consider I =
∮
C
dz
z2 =

∫ 2π

0
iaeiθ

a2e2iθ
dθ = 0. Similarly,

∮
C
dz
zn = 0, n > 1. But these are clear form the CIF for

derivatives.

Using the CIF to evaluate integrals Consider I = 1
2πi

∮
|z|=1

eaz

z2(z−2)dz. Clearly, the function inside is not analytic

at z = 0, 2. But z = 2 is outside the circle of radius 1. We can hence expand the denominator using partial fractions:
1
z2

1
z−2 = −1

2z2 + −1
4z + 1

4(z−2) . Hence we can write the integral as 1
2πi
−1
2

∮
eaz

z2 dz+ 1
2πi
−1
4

∮
eaz

z dz+ 1
2πi

1
4

∮
eaz

z−2dz. But the third

term vanishes since z = 2 is outside the circle of integration (CIF). Now we let f(z) = eaz and f ′(z) = aeaz. Then we appeal
to the CIF to rewrite the integrals as 1

2πi
−1
2 f
′(0) + 1

2πi
−1
4 f(0).

Another example Evaluate I =
∫
C

3z−2
z(z−1)dz for closed curve C that encloses z = 0 and z = 1, both the singularities of

the function in an anticlockwise function. We can write the function in the integral as 2
z + 1

z−1 . Since we can deform the
contour anyway we want provided it does not cross any singularities, we can re-write the contour as the sum of two integrals
that surround each of the singularities:

∫
C0

2
zdz +

∮
C1

1
z−1dz since one of the singularities is outside each of C1 and C0.

5.3 29 Oct 2014 Recitation

Theorem for Cauchy-Riemann Equations If the following conditions hold: (1) f(z) is defined in the ε neighbourhood of
z0, (2) the first order partial derivatives of u and v exist everywhere in the ε neighbourhood of z0, (3), the first order partial
derivatives are continuous at z0 and satisfy the CR equations, then we have that f ′(z0) exists and f is analytic at z0.

5.4 31 Oct 2014

Weak Cauchy Assume that f(z) is analytic in D, with D̄ = D + δD, where δD is the boundary of D. Now we note
that f(z) may not be analytic at the boundary. The theorem states that limC→δD

∮
f(z)dz =

∮
δD
f(z)dz provided that

L =
∮
δD
|dz| <∞ the length of δD is finite.

Example of Weak Cauchy Consider f(z) = (z2 − 1)1/2 with two branch points. Construct a cut going from −1 to 1
along the real axis. Then f(z) is analytic in the cut plane. Consider the following curves: circle C ′1 with radius R, which is
large and surrounds the cut, C1, which is contained in C ′1, and δD, which is the curve just surrounding the branch cut. We note
that f(z) = i

√
1− x2 just above the cut and f(z) = −i

√
1− x2 just below the cut. We consider

∮
C1
f(z)dz =

∮
C1→δD f(z)dz

as we deform C1 towards δD. We can write the RHS as i
∫ −1

1

√
1− x2dx− i

∫ 1

−1

√
1− x2dx = −iπ as we move along δD. We

now deform C1 towards C ′1, where |C ′1| = R >> 1, so we obtain that (z2 − 1)1/2 = z − 1
2z + O( 1

R3 ), and z = Reiθ. Hence∮
C′1
f(z)dz =

∫
C′1
zdz − 1

2

∫
C′1

dz
z + O( 1

R2 ). The first term will vanish to zero, but the second term is the winding number

(times 2πi) for one round around the origin (scaled by −1
2 ), and hence we obtain that the integral is −iπ.

Partial sum Recall that Sn(z) = a0 + a1(z − α) + . . . + an(z − α)n, where α ∈ C and an ∈ C. Let f(z) and {Sn(z)}
be given in G of the complex plane. Then we say that {Sn(z)} converges uniformly to f(z) in G if ∀ε > 0, ∃N(ε) such that
|f(z)− Sn(z)| ≤ ε for n ≥ N(ε), z ∈ G. Write f(z) = limn→∞ Sn(z) uniformly in G, so f(z) =

∑∞
k=0 ak(z − α)k. Note that

N(ε) only depends on ε, and not on z. If N(ε, z), then the sequence is not uniformly convergent.

Taylor Series Suppose we have some f(z) which is analytic in some open disk |z− z0| < R. Then for each z in the disk,

we can write f(z) =
∑∞
n=0

f(n)(z0)
n! (z − z0)n and the series is uniformly convergent.

Proof Put z0 = 0 WLOG. Consider a circle that lies inside |z| < R, C1: |z| < r1, r1 < R but that contains z.

Hence z is inside C1 and the big disk. Now the Cauchy Integral formula gives us f(z) = 1
2πi

∮
C1

f(ζ)dζ
ζ−z . Now we note that

1
1−w = 1 +w+w2 + · · ·+wN−1 + wN

1−w . Now we define w = z
ζ , w 6= 1, then we have that 1

ζ−z = 1
ζ + z

ζ2 + . . .+ zN−1

ζN
+ zN

ζN (ζ−z) .

We now can use the Cauchy Integral Formula to evaluate each of the terms. We note that 1
2πi

∮
C1

f(ζ)
ζn+1 dζ is f(n)(0)

n! us-

ing the CIF. Then we have that f(z) =
∑N
n=0

f(n)(0)
n! zn + ρN (z), where ρN (z) = 1

2πiz
n
∮
C1

f(ζ)dζ
ζN (ζ−z) . Suppose |z| = r.

Then |ζ − z| ≥ ||ζ| − |z|| = r1 − r. Let M = max|ζ|=r1 |f(ζ)|. Then using the bounds on integrals, we have that

|ρN (z)| ≤ rNM
2π(r1−r)rN1

2πr1 = Mr1
r1−r ( rr1 )N . But since r < r1, as N → ∞, |ρN (z)| → 0. Hence we obtain the Taylor se-

ries: f(z − z0) =
∑∞
n=0

f(n)(z0)
n! (z − z0)n.

Remarks on the Taylor series

17



• If f(z) is analytic within circle C0 centred on z0, then the convergence of the Taylor series for all z inside the circle is
guaranteed.

• The maximum value for the radius of the circle is the distance of z0 to the closest singularity.

• If there exists constants an, n = 0, 1, 2, . . . such that f(z) =
∑∞
n=0 an(z − z0)n for all z ∈ C, then it must be the Taylor

series. The Taylor series is unique.

• Suppose f(z) is entire. Then its Taylor series is defined for all points in the finite z-plane.
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Chapter 6

Week 6

6.1 Monday 3 Nov 2014

Maclaurin series Recall f(z) =
∑∞
n=0

f(n)(0)
n! zn converges in D inside |z| < R here R is the distance to the nearest singu-

larity of f(z).

List of Maclaurin series for entire functions

• ez =
∑∞
n=0

zn

n! , |z| <∞

• sin z =
∑∞
n=0(−1)n z2n+1

(2n+1)! , |z| <∞

• sinh z =
∑∞
n=0

z2n+1

(2n+1)!

Note that the cosh function is periodic along the imaginary axis for all z since cosh z = cosh(z + 2πi). Hence cosh z =∑∞
n=0

z2n

(2n)! =
∑∞
n=0

(z+2πi)2n

(2n)! , |z| <∞.

Maclaurin series for functions with finite radius of convergence

1

1− z
=

∞∑
n=0

zn, |z| < 1

1

1 + z
=

∞∑
n=0

(−1)zn, |z| < 1

Absolute convergence, Uniform convergence of power series Consider f(z) =
∑∞
n=0 anz

n. A series is absolutely
convergent if

∑∞
n=0 |an||z|n <∞ for some z.

Facts about convergence

• All absolutely convergent series are uniformly convergent. But the converse is not true.

• Divergent (i.e. non-convergent) series does not imply that it blows up to infinity.

• If
∑
anz

n converges when z = z1 6= 0, then it is absolutely convergent for all |z| < |z1| on the open disk.

• If
∑
anz

n diverges for some z1, |z1| = R2, then it diverges for all |z| > R2.

• Radius of convergence: The circle |z| = R such that the series is convergent for |z| < R and divergent for |z| > R. For
|z| = R, we do not know; it depends on the series. Interesting case study:

∑
zn

n is convergent for |z| ≤ 1 and divergent

for |z| > 1 or z = 1. Using deMoirve’s theorem, we note that this implies that
∑

cosnθ
n is convergent except at θ = 0

and
∑

sinnθ
n is convergent.

• Suppose z1 is a point inside the circle of convergence for the series S(z), write the circle as |z| = R. Then the power
series S(z) is uniformly convergent inside |z| ≤ |z1|.
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Tests for convergence: Sufficient condition for absolute convergence except on the radius of convergence
Define An = anz

n. Then S(z) =
∑
An. Then S(z) is absolutely convergent if

∑
|An| is convergent.

Comparison Test Consider
∑
An. If we can show that |An| < Bn ∈ R, Bn > 0. Also suppose that

∑
Bn < ∞ is

absolutely convergent. Then
∑
An is absolutely convergent.

D’Alembert Test/Ratio Test A series S(z) =
∑
An is absolutely convergent if

∣∣∣an+1z
n+1

anzn

∣∣∣ < 1−ε, ε > 0, for all n > N .

In practice, we say that a series is absolutely convergent if limn→∞

∣∣∣an+1z
n+1

anzn

∣∣∣ < 1 and diverges if the limit is greater than 1.

Finding the radius of convergence Suppose limn→∞

∣∣∣ an
an+1

∣∣∣ exists. Then the series is convergent if |z|
limn→∞

∣∣∣ an
an+1

∣∣∣ < 1.

Hence the radius of convergence is R = limn→∞

∣∣∣ an
an+1

∣∣∣ = 1

limn→∞| an+1
an
| . This condition is sufficient but not necessary!

Example Consider an = Pn, a polynomial. Then an
an+1

= Pn
Pn+1

→ 1 from below. Hence the radius of convergence is unity.

The same holds for rational polynomials an = Pn
Qn

.

Cauchy’s Test Necessary and sufficient conditions for {An}∞n=1 to converge is that for any ε > 0,∃N(ε) such that
|An −Am| < ε for n,m > N(ε).

6.2 5 Nov 2014 Wednesday

Cauchy’ Test for Functions A sequence of functions {Sn(z)}∞n=1 converges iff for all ε > 0,∃N(ε, z) such that |Sn(z) −
Sm(z)| < ε whenever n,m > N(ε, z). If N = N(ε), not dependent on position, and it holds for all z ∈ D, then {Sn(z)} forms
a uniform Cauchy sequence.

Limit Superior Define the limsup of a sequence of real numbers {xn} to be the smallest real number such that for any
ε > 0, there exists only a finite set such that xn > S+ + ε. Define lim supxn = S+.

Examples of limit superior Consider the sequence {(−1)n}. Then lim sup{(−1)n} = 1. Consider the sequence
xn = (−1)n(1/20 + 1/n). Then lim supxn = 1/20 and lim inf xn = −1/20.

Cauchy’s Test using Limsup
∑∞
n=0 anz

n is absolutely convergent if lim sup |anzn|1/n = S+ < 1. This means that given
ε > 0, there exists N(ε) such that |anzn|1/n ≤ S+ + ε < 1 for all n > N(ε). Call

∑
anz

n divergent if lim sup |anzn|1/n > 1.
Observe that since the series is convergent if |z| lim sup |an|1/n < 1, then |z| < 1

lim sup |an|1/n
. The RHS is the radius of

convergence R.

Examples Consider
∑∞
n=0

2n

3n+4n z
n. Then a

1/n
n = 1

2

[
1 +

(
3
4

)n]−1/n → e−
1
n (3/4)n 1

2 hence R = 2.

Example 2 Consider
∑∞

1 sin(nα)zn, α = a+ ib. Then | sinnα|1/n = [sinh2(nb) + sin2 na]1/2n → e|b|. Hence R = e−|b|.

Gamma function Define Γ(z) =
∫∞

0
tz−1e−tdt. This is only defined for <(z) > 0 because

∫
0
tx−1dt at t = 0 is only

convergent for x > 0. If z is a positive integer, we have that Γ(n+ 1) = n!.

Stirling’s Approximation Γ(n+1) = n! ≈
√

2πe−nnn+1/2 for n→∞. Hence (n!)1/n goes as n/e. Hence for
∑∞
n=0 n!zn

has R = 1
lim sup(n!)1/n = 1

n/e → 0 as n→∞. On the other hand,
∑∞
n=0

zn

n! has R→ n/e which goes to infinity as n→∞.

Topics for Midterm: Elementary functions, branch points, analytic functions, Integrations

Integration of power series multiplied by function Recall that S(z) =
∑∞
n=0 anz

n is a continuous function in-
side its radius of convergence. Let C be a contour inside the circle of convergence. Let g(z) be continuous on C. Then∑
C g(z)S(z)dz =

∑
an
∫
C
g(z)zndz, the integration can be done term-by-term.

Multiplying by one Consider g(z) = 1. Then we have that
∮
C
g(z)zndz =

∮
C
zndz = 0, for n = 0, 1, 2, . . . hence∮

C
S(z)dz = 0, for all contours C inside the circle of convergence. Then by Morera’s theorem, we have that S(z) is analytic

in its circle of convergence.

Term-by-term differentiation The power series can be differentiated term-by-term for all z inside the circle of conver-
gence. Hence if S(z) =

∑∞
n=0 anz

n, |z| < R, then S′(z) =
∑∞
n=0 nanz

n−1 =
∑∞
n=1 nanz

n−1, |z| < R.
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Proof of term-by-term differentiation Write g(ζ) = 1
2πi(ζ−z)2 . Apply the integration of power series multiplied by a

function. Then we have
∮
C
g(ζ)S(ζ)dζ = 1

2πi

∮ S(ζ)dζ
(ζ−z)2 . But by the Cauchy integral formula, the RHS is just S′(z). Applying

this to individual powers, we have that
∮
C
g(ζ)ζndζ = 1

2πi

∮
C

ζndζ
(ζ−z)2 = d

dz z
n by the CIT. Summing all the contributions, we

have that
∑
an
∮
C
g(ζ)ζndζ =

∑
an

d
dz z

n = S′(z), and the identity follows. We can repeat this process for higher derivatives

by choosing a different g(ζ) = 1
2πi(ζ−z)n .

Example 1
z can be expanded as a Taylor series around z = 1 to obtain

∑∞
n=0(−1)n(z − 1)n, |z − 1| < 1. Differentiating

on each side, we obtain that 1
z2 =

∑∞
n=0(−1)n(n+ 1)(z − 1)n. Hence we now have the Taylor series for 1

z2 at z = 1.

Caveat While integration and differentiation works term-by-term for power series within its radius of convergence, there
are some exceptions. Consider f(x) =

∑∞
n=1(−1)n+1 sinnx

n . This series converges to 1
2x for −π < x < π. However,

differentiation term-by-term gives a sum that does not converge.

6.3 Friday 7 Nov 2014

Multiplication and Division of Power Series Suppose f(z) =
∑∞
n=0 anz

n and g(z) =
∑∞
n=0 bnz

n, for |z| < R, where R
is the smaller of the radii of convergence of both series. Then f(z)g(z) =

∑∞
n=0 cnz

n, where cn =
∑n
k=0 akbn−k. To prove,

differentiate each side and use the Maclaurin series. Similarly, f(z)
g(z) =

∑∞
n=0 dnz

n whenever g′(z) 6= 0.

Zeros of analytic functions Suppose f(z) is analytic at z = z0. Then we say that f(z) has a zero of order m at z0 if
the following conditions hold:

• f(z0) = 0

• f (j)(z0) = 0, j = 0, . . . ,m− 1

• but f (m)(z0) 6= 0

Near z = z0, we can write f(z) = (z− z0)m[am + am+1(z− z0) + . . .], where am = f(m)(z0)
m! 6= 0. We note that the series in

the square brackets converges where f(z) converges. Hence we can write f(z) for an mth order zero as f(z) = (z− z0)mg(z),
where g(z)

∑∞
n=m an(x− x0)n is analytic at z0 and g(z0) = am 6= 0.

Simple Zero A function with a 1st order zero is said to have a simple zero. That is f(z0) = 0 but f ′(z0) 6= 0.

Limit Point of Zeroes Suppose f(z) = 0 for z = z1, z2, . . . , zn, . . . (so f has a sequence of zeroes) such that ∃α such
that limn→∞ zn = α. Then we call α a limit point/point of accumulation of zeros. Using limit notation, there exists ε > 0
such that |zn − α| < ε for n > N(ε). This means that for all circles around α, the circle will contain an infinite number of
zeros. We say that the zeros are not isolated.

Example with limit point Consider f(z) = sin(1/z), which as zeros at zn = 1
nπ , n = 1, 2, . . .. The limit point of f will

be zero, because we can draw a circle around z = 0, which will contain an infinite number of zeros. Hence α = 0 is a limit
point of zeros.

Theorem: Analytic function has isolated zeros only The zeros of an analytic function inside its domain of analytic-
ity are always isolated. There will not be any accumulation points. Exception: f(z) = 0 has accumulation points everywhere.

Converse of Theorem If there exists an accumulation point and f(z) is analytic, then f(z) = 0.

Corollary Suppose f(z) = g(z) for a series of points {zn} ∈ D such that limn→∞ zn = α ∈ D, where D is the domain of
analyticity for both f and g. Then f(z) = g(z) everywhere in D. See this by defining F (z) = f(z)− g(z) as another analytic
function in D. Then F (z) has an accumulation point at α. Hence, by the converse of the theorem above, it must be that
F (z) = 0 over D.

Example Consider f(z) = sin2 z + cos2 z. Also consider g(z) = 1. Take z ∈ R. We know that along the real axis
f(x) = g(x). Constructing any limit of points along the real axis, and using the theorem above, we can show that f(z) = g(z).

Maximum Modulus Principle Suppose f(z) is analytic in D and continuous in the closed domain D̄ = D+∂D. Then
either of the two statements are true:
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• f(z) is a constant in D.

• |f(z)| < M , where M is the maximum value of |f(z)| on ∂D.

f(z) cannot have a maximum modulus in D. The proof is by contradiction. Suppose |f | = M , a maximum, at some
z = α ∈ D. Then |f(z)| ≤ M in some δ neighbourhood surrounding α. But the Cauchy Integral Formula says that

f(α) = 1
2πi

∮ f(z)
z−αdz. Writing z = α + δeiθ, we have that 1

z−α = 1
δeiθ

. Hence f(α) = 1
2π

∫ 2π

0
f(α + δeiθ)dθ. Dividing both

sides by f(α), we have that 1 = 1
2π

∫ 2π

0
ρeiφdθ, where ρeiφ = f(α+δeiθ)

f(α) . Writing out the real and imaginary parts of ρeiφ, and

noting that ρ ≤ 1 because f(α) is a local maximum, we can show that the only values of ρ and φ that satisfy the equation
are that ρ = 1 and φ = 0. Hence f(z) = f(α) =constant inside the circle. Now we pick another point inside the δ circle,
and draw another circle δ1 around it. Now f(α) is also a maximum in the union of the δ circle and the δ1 circle. Keep re-
peating this for every polygonal path connecting two points in the domain to show that f(z) =constant over the whole domain.

Example Suppose f(z) = 2 on |z| = 1. Inside |z| = 1, f = 2 is impossible unless f = 2 everywhere.

Schwarz Lemma Suppose that the following are true:

• |f(z)| ≤M on |z| = 1.

• f(0) = 0

• f(z) is analytic inside and on the unit circle |z| = 1.

Then either |f(z)| < M |z| for |z| < 1 or f(z) = z×complex constant. Prove this by applying the maximum modulus principle

to g(z) = f(z)
z .

Analytic functions are uniquely determined by its values on the boundary Weaker form: f(z) can be uniquely
determined up to a constant by either its real or imaginary parts on its boundary. This is called a boundary value problem.

Singularities of Analytic Functions A singularity is a point where f(z) is not analytic. If f(z) is analytic and single-
valued in the punctured disk 0 < |z − α| < R, but is not analytic at z = α. Note that α is not a branch point, because f(z)
is single valued in the neighbourhood. Note also that the singularity is isolated, because there is a circle of radius R1 < R
around α such that there is no other singularity other than the one at z = α. For example, 1

1−z has an isolated singularity

at z = 1. However, functions with a branch point do not fulfil this condition. Also, 1
sin(1/z) has a denominator with a point

of accumulation at z = 0. Hence the point z = 0 is a non-isolated singularity.
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Chapter 7

Week 7

7.1 10 Nov 2014

Behaviour of Isolated Singularities

• 1. Removable singularity: An IS at z = α is removable if (1) limz→α(z − α)f(z) = 0 (2) equivalently, f(z) can be
made analytic at z = α by assigning f(α). For example f(z) = sin z

z is singular at z = 0. But if we define f(0) = 1,
then the function becomes analytic at z = 0.

• 2. Pole: An IS is a pole of order m if f(z) near the singularity can be written as f(z) = g(z)
(z−α)m , where m ≥ 1,m ∈ Z,

and g(z) analytic at z = α, and g(α) 6= 0. If m = 1, then the pole is said to be simple. Note that we can write the
condition as limz→α(z − α)mf(z) =constant.

• Necessary and sufficient condition for an IS to be a pole: limz→α |f(z)| = ∞,∀ paths z → α. Equivalently,
given any M > 0, there exists δ(M) > 0 such that |f(z)| > M whenever 0 < |z − α| < δ(M).

• Poles and Zeroes If f has a pole of order m at z = α, then 1
f has a zero of order m at z = α.

• 3. Essential Singularity Example: f(z) = e1/z. Examine this function near z = 0. Separating into real and

imaginary parts, we obtain that f(z) = e[x/(x2+y2)][cos(y/(x2 + y2))− i sin(y/(x2 + y2))]. Consider z = x, x > 0, y = 0.

Then f(z) = e
1
x → ∞ as x → 0+. Also, limz→ 0 x

me1/x → ∞ for all m. Now consider z = x, x < 0, y = 0. Now
f(x)→ 0, x→ 0−. If z = iy, x = 0, then f(z) = [cos(1/y)− i sin(1/y)] which has an accumulation of zeros at z = 0.

Picard’s Theorem Let f(z) have an isolated essential singularity at z = α. Then in the neighbourhood of z = α, f(z)
assumes all possible complex values an infinite number of times except for possibly one value. In other words, for all A ∈ C,
the equation f(z)−A = 0 has an infinite number of roots inside |z − α| = δ, for all δ > 0, except possibly one A.

Example of Picard’s Theorem Consider f(z) = e1/z. Then e1/z + 1 = 0 has an infinite number of roots z =
1

(2n+1)πi , n = 0,±1,±2, . . .. But there is are no roots for e1/z = 0. This is the exception in Picard’s theorem.

Non-isolated Singularities

• If a function f has a limit point of zeros, then we will have an isolated essential singularity there. Example: sin(1/z).

• If a function has an accumulation of poles, then there will be a non-isolated essential singularity there. E.g. 1
sin(1/z) .

Point at infinity Let z = 1
ζ and consider f( 1

ζ ) when ζ = 0. Then a singularity at infinity corresponds to the singularities

of f(1/ζ) at ζ = 0. Generally, when |f | → ∞ as |z| → ∞ for all arg z, then there will be a pole at z = ∞. Then we can
write f(z) = zmg(z) near infinity, where |g(z)| < M is bounded as z → ∞. Example 1 Let PN = zN + a1z

N−1 + . . ..
Then PN (1/ζ) → 1

ζN
as ζ → 0 and PN has a pole of order N at z = ∞. Example 2 Put f(z) = ez. Then f(1/ζ) = e1/ζ ,

which has an isolated essential singularity at ζ = 0. Hence ez has an isolated essential singularity at infinity. Exam-

ple 3 Take f(z) = (z2−1)(z−2)3

(sinπz)3 . Examine the denominator (sinπz)3. It has zeros for integer values of z. We can write

sin(πz) = (−1)n(z−n) + . . . so (sin(πz))3 = (−1)3n(z−n)3 + . . .. The numerator of the original function has a zero of order
1 at z = ±1 and a zero of order 3 at z = 2. Hence the function has a pole or order 2 at z = ±1. We also have that at
limz→2

z−2
sin(πz) = 1

π and limz→2 f(z) = 3
π3 so f(z) has a removable singularity at z = 2. For all other values of z = n, n ∈ Z,

f(z) has a pole of order 3. Now consider the point at infinity. Then f(1/ζ) = ( 1
ζ2 − 1)( 1

ζ − 2)3 1
sin3(π/ζ)

. The first two terms

give a pole of order 5 at ζ = 0, but the third term will give a non-isolated singularity at ζ = 0.
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Laurent Series Consider f(z) analytic and single-valued in some domain D, which is the finite annulus between R1 <
|z − α| < R2 ≤ ∞. Then we can write:

f(z) =

∞∑
n=0

an(z − α)n +

∞∑
n=1

bn
(z − α)n

where the first term is absolutely convergent in the circle |z − α| = R2 and the second term is absolutely convergent
OUTSIDE the circle |z − α| = R1. The second term is called the singular part. If all bn = 0, there is no singular part and
the Laurent series is just the Taylor series. The coefficients an and bn can be written as integrals (WLOG α = 0):

an =
1

2πi

∫
C

f(z)dz

(z)n+1

bn =
1

2πi

∫
C

f(z)dz

(z)−n+1

7.2 12 Nov 2014 Wednesday

Laurent Series Proof Let C1 be the curve that traces out |z| = R1 clockwise, and C2 be the curve that traces out

|z| = R2 anticlockwise. Consider a point in the annulus. Then we can write f(z) = 1
2πi

∮
C2

f(ζ)dζ
ζ−z −

1
2πi

∮
C1

f(ζ)dζ
ζ−z . We

note that for |z| < R, ζ on R2, we can expand 1
ζ−z = 1

ζ

(
1 + z

ζ + z2

ζ2 + . . .
)

. Similarly, for |z| > R1, ζ on C1, we have

1
ζ−z = − 1

z (1 + ζ
z + ζ2

z2 + . . .). Substitute these expressions into the CIF equation to obtain the Laurent series.

Laurent series around isolated singularity Consider an isolated singularity at z = α. Define R1 = 0. Then f(z) is
analytic on 0 < |z − α| < R, where R is the distance to the nearest other singularity. We can combine the summation by

reindexing m = −n. Then we have f(z) =
∑∞
n=−∞ an(z−α)n, an = 1

2πi

∮
C

f(ζ)dζ
(ζ−α)n+1 for C being any circle |z−α| =constant,

such that 0 < const < R.

Remarks on the Laurent series

• If f(z) is analytic on the punctured disc 0 < |z − α| < R, then the Laurent series is unique and converges to f(z).

• If an = 0 for all n ≤ 0, then the singularity is removable.

• If an = 0 for all n < −m, then f(z) has a pole of order m at z = α.

• If the set of non-zero an, n < 0 is infinite, then z = α is an essential singularity.

• The radii R1 and R2 are determined by the singularities of f . The Laurent series cannot converge outside the annulus
defined by R1 and R2.

Residues The coefficient of n = −1, which can be written as a−1 = 1
2πi

∮
f(ζ)dζ is called the residue.

Calculation of residues

• Suppose f(z) has a simple pole at z = α. Then we know that a−1 = limz→α(z − α)f(z).

• Suppose f(z) = g(z)
h(z) , where g(α) is finite and h(z) has a simple zero at z = α. Then a−1 = g(α)

h′(α) . Note that

limz→α
(z−α)g(z)

h(z) has both numerator and denominator go to zero. Then using L’Hopital’s rule, we have that a−1 =

limz→α
g(α)
h′(α) .

• If a function has a pole of order m at z = α. Then we can write f(z) = (z−α)−m[a−m + . . .+ a−1(z−α)m−1 + a0(z−
α)m + . . .]. Then we note that a−1 is the m− 1st derivative of the function in the brackets (up to multiplication by a

factorial): a−1 = dm−1

dzm−1

(z−α)mf(z)
(m−1)! |z=α.

• If f(z) has an essential singularity, then the residue there is generally hard to find. Perform the full Laurent series.
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Example Define f(z) = 1
(z−1)z which has simple poles at z = 0, z = 1. Consider the Laurent series about z = 0. Define

the interior of the unit circle Region I and the exterior Region II. When 0 < |z| < 1, then we have R1 = 0, R2 = 1. When
1 < |z| < ∞, R − 1 = 1, R2 = ∞. There are distinct Laurent series in the two regions. We can calculate the Laurent series
using two different methods.

Method 1: In Region I, consider an = 1
2πi

∮
CI

dζ
ζn+2(ζ−1) , CI is in |z| < 1. Then we can use the Cauchy Integral formula to

obtain that an = 1
(n+1)!

dn+1

dzn+1

(
1
ζ−1

)
ζ=0

=

{
−1, 1 + n ≥ 0

0, n < −1
. Hence f(z) = − 1

z − 1− z2 − z3 + . . . and hence we have the

residue at z = 0 is −1. In Region II, consider an = 1
2πi

∮
CII

dζ
ζn+2(ζ−1) , where CII is a circle outside |z| = 1. Performing the

integration, we will obtain f(z) = 1
z2 + 1

z3 + . . . so the residue at z = 0 is 0.

Method 2: Do a partial fraction expansion f(z) = 1
z−1 −

1
z . Then just perform a binomial expansion of the first term in

either region.

Note that we do not have to take the Laurent series around the singularities. We can perform the expansion around any
point α. But now we need to draw circles around α that touch each of the singularities, and the Laurent series will take on
a different form in each of the three regions.

Example Let f(z) = Log(1+z), which has a branch point at z = −1. Construct a branch cut along the negative real axis

going to infinity. Construct the Laurent series around z = 0. Then we will have that Log(1 + z) = z − z2

2 + z3

3 + . . . , |z| < 1.
Note that for |z| > 1, then f(z) is no longer single-valued in the annulus and hence the LE does not exist.

7.3 14 Nov 2014 Friday

Residue Theorem Consider f(z) analytic in D, except at a finite number of isolated singularities. Index the singularities

by z = αj , and let the residues at each singularity be rj = a
(j)
−1 for the Laurent series about each of the isolated singular

points. Statement of theorem:
∮
C
f(z)dz = 2πi

∑
j rj ,∀C ∈ D, where the sum is over all αj in C.

Proof of residue theorem We can deform the contour surrounding the singularities to consider the arbitrarily small
contours surrounding each of the singularities. Then we have that

∮
C
f(z)dz =

∑
j

∮
Cj
f(z)dz, where Cj : |z − αj | = δj is a

circle around the jth singularity with radius δj . Then for each
∮
Cj
f(z)dz =

∮
Cj

[∑∞
−∞ a

(j)
n (z − αj)n

]
dz after writing the

Laurent series around each singular point. But by the Cauchy integral formula, the integral of each of the powers of z on the

curve will vanish except the integral involving the power of negative one. Hence we have that
∮
Cj

= 2πia
(j)
−1 = 2πirj . Hence

the total contour integral is 2πi
∑
j rj for all singularities within the contour C.

Residue of a pole rj = a
(j)
−1 = dm−1

dzm−1

(z−αj)mf(z)
(m−1)! .

Evaluation of definite integrals - General Consider I =
∫ 2π

0
F (cos θ, sin θ)dθ on some circle. Consider the unit circle.

Then cos θ = 1
2 (z + 1

z ), sin θ = 1
2i (z −

1
z ) since eiθ. Hence we can write the integral as I =

∫ 2π

0
F ( 1

2 (z + 1/z), 1
2i (z − 1/z))dziz

because dz = ieiθdθ =⇒ dθ = dz
iz .

Evaluation of definite integrals - Example I =
∫ 2π

0
dθ

1+a sin θ , 0 < a < 1. Considering the unit circle, we can use

the notation of the previous section to write I =
∮
|z|=1

dz
iz(1+ a

2i (z−1/z)) = 2
a

∮
|z|=1

dz
z2+ 2ia

z −1
. Hence we just need to find the

residues at the poles of 1
z2+2ia/z−1 . The singularities of the function inside the integral is located at z = i

a

(
±
√

1− a2 − 1
)
.

Note that there will be one root inside the unit circle and another outside. The singularity within the unit circle is located at
i
a (
√

1− a2 − 1). We write f(z) = 2
a

1
z2+2ia/z−1 = 2

a
1

(z−z1)(z−z2) so the residue at the inner singularity within the unit circle

is a
(1)
−1 = limz→z1(z − z1)f(z) = 1

i
√

1−a2
.

Notes on definite integrals

• If we replace θ → θ + π/2 then we can evaluate functions with cos θ instead of sin θ.

• If we have higher order trigonometric terms in the denominator (like sin2 θ), then we can write it in terms of a linear
combination of first-order sines and cosines to make the polynomial in z (when substituting in the sine and cosine in
terms of z) simpler and lower order.
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Example Consider I =
∫ 2π

0
ecos θ cos (nθ − sin θ) dθ. We can write this as the real part of <

(∫ 2π

0
ecos θ−i(nθ−sin θ)dθ

)
note the negative sign does not matter because cosine is even. But we can write this integral on the unit circle to be

<
(∮
|z|=1

ez 1
zn

dz
iz

)
. This is because ecos θ+i sin θ = ez and e−inz = 1

zn . But now we have that we want to find <
(

1
i

∮
|z|=1

ez

zn+1 dz
)

,

which we can use the Cauchy integral formula to write I = <
(

2πi
in!

)
= 2π

n! .

Summing series using contour integration Consider the useful function π cot(πz), which has simple zero at zn =
n, n ∈ Z. The residue at each of the poles is rn = 1,∀n. Furthermore, this function will be bounded on a well-chosen contour.

Summing series using the useful function Consider the series
∑∞
n=1

1
n4+α4 . Now define Pn = 1

2πi

∮
Cn

π cot(πz)
z4+α4 dz.

Now consider the square CN centred at the origin and having the points z = −N,−N + 1, . . . ,−1, 0, 1, . . . , N − 1, N in
its interior. Let the length of the square have value 2N + 1. Now the contour integral on the square is going to be the
sum of the residues at all of the interior points. But the residue of π cot(πz) is 1, hence the residue of the function in the
integral is π

n4+α4 at each point n = −N, . . . , N . Now the denominator also has zeroes at zj = αeiπ/4, . . . , αe7iπ/4, which will

contribute another 4 residues to the function. The residue at each of these additional singularities is rj =
π cotπzj

4z3
j

. Hence

PN =
[∑N
−N

π
n4+α4 +

∑4
j=1

π cotπzj
4z3
j

]
1

2πi . On the square, cot(πz) is bounded. Hence PN will be of order 4(2N+1)
N4 cot(N + 1

2 ),

which goes as 1
N3 and hence goes to zero as N →∞.

General Series Summation Consider S =
∑
n f(n). Define the integral 1

2πi

∮
CN

f(z)π cot(πz)dz.

26



Chapter 8

Week 8

8.1 Monday 17 Nov 2014

Integrals over the Real Axis Usual requirements:

• f(x) = limy→0 f(z) represents some part of f(z) on the real axis.

• f(z)→ 0 as z →∞ in either the upper or lower half-complex-plane.

• f(z) has one or more singularities (otherwise contour integration will be zero).

Improper integrals Write
∫∞
−∞ f(x)dx is the limit: limR→∞

∫ R
−R f(x)dx. We require that the limit exist to evaluate the

improper integral. Typically, for the integral to exist, we can check that f(x) is monotonically decreasing and ensure that
f(x) goes as x−1+ν , ν > 0 as x→∞. The case when f(x) goes as x−1 will not allow f(x) to converge.

Picking a contour Pick the semi-circular contour with the base along the real axis and centred at the origin. Call this

contour CR, which we split into two parts:
∮
CR

=
∫ R
−R dx+

∫
semicircle

. This value is going to be 2πi
∑
j rj .

Example If |f | goes as O( 1
|z|2 at infinity, then the integral over the big semicircle as R→∞ will look like

∫
O( 1

R2 )iReiθdθ

which goes like 1
R , and hence goes to zero.

Example Consider I =
∫∞
−∞

dx
1+x4 Let f(z) = 1

1+z4 . Clearly, when z is large, |f(z) goes as 1
|z|4 and the integral of f(z)

along the semi-circular part will go as O( 1
R3 ) and hence go to zero as R→∞. The poles of f(z) occur when z4 = −1, which

we can write as z = eiπ/4, e3iπ/4, e−iπ/4, e−3iπ/4. Of these 4 roots, two will be in the upper half plane and two will be in the
lower half plane. Hence we just require the residues of the singularities in the one half-plane. Observe that rj = 1

4z3
j
. In the

upper half plane, we find that r1 = 1
4e
−3iπ/4, r2 = 1

4e
−9iπ/4. Hence we have that:

∫ ∞
−∞

dx

1 + x4
+ 0 = 2πi(r1 + r2) =

π√
2

Notes

• Note that we chose the upper half-plane in the example immediately above. This is called closing in the upper half
plane. We could have closed in the lower half plane as well because f(z) in that case also vanishes as z → ∞ in both
the half-planes. However, if we had closed in the lower half-plane, then the contour is negatively oriented and hence we
need to introduce an additional minus sign.

• Note that in the previous example, f(−x) = f(x) is an even function. Hence
∫∞

0
f(x)dx =

∫ 0

−∞ f(x)dx = 1
2

∫∞
−∞ f(x)dx.

Harder Example Define F (a) =
∫∞

0
cos ax
1+x2 dx = 1

2

∫∞
−∞

cos ax
1+x2 dx. Set a > 0, a ∈ R. We could try f(z) = cos az

1+z2 . But
this is not going to work because f(z) will go like cosh ay when y → ±∞ and hence f(z) becomes unbounded there. The
underlying problem is that there is an essential singularity at infinity for cos az. We need to try something different. Note

that cos ax = <(eiax). So we try
∫∞
−∞

eiax

1+z2 dx and take the real part (which works). Take f(z) = eiaz

1+z2 = cos az+i sin az
1+z2 . Hence

the poles of f(z) are at ±i and r(z = i) = e−a

2i . We close in the upper half-plane. Then we write:
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lim
R→∞

∫ R

−R

eiax

1 + x2
dx+

∫
upper semicircle

eiaz

1 + z2
dz = πe−a

We examine the behaviour of the function on the semicircular portion. Since a > 0, we have iaz = iax − ay so
eiaz = e−ayeiax which goes to zero when y → ∞. Also, 1

1+z2 goes as O(1/R2) as R → ∞ hence the integral on the upper
half circle will go to zero. Hence taking the limit as R→∞, we obtain that

∫ ∞
−∞

eiax

1 + x2
dx = πe−a

=⇒
∫ ∞

0

eiax

1 + x2
dx = πe−a

1

2

Note that we cannot close in the lower-half plane because a > 0 and e−ay will blow up in the lower half plane when y < 0.
However, if a < 0, then e−ay will go to zero in the lower half plane and we should close in the lower half plane instead of the
upper half plane. We will obtain F (a) = π

2 e
a, a < 0.

Example Consider I =
∫∞
−∞

sin x
x dx. Note that sinx/x is an even function and has a removable singularity at x = 0.

Note that we cannot use
∮

sin z
z dz because sin z has an essential singularity at infinity and hence the integral along the upper

semicircle will blow up. Instead, we try
∮
eiz

z dz. There exists a simple pole at z = 0. We would like to close in the upper
half-plane but the contour would pass through the origin. Hence we need to use an indented contour which makes a small
semicircle of radius ε around the origin. There are now four sections of the contour:

∮
eiz

z
dz =

∫ −ε
−R

eix

x
dx+

∫ R

ε

eix

x
dx+

∫
|z|=ε,upper,CW

eiz

z
dz +

∫
|z|=R,upper,ACW

eiz

z
dz = 0

Note that the first two terms are equal and can be written as 2i
∫ R

0
sin x
x dx = i

∫ R
−R

sin x
x dx. For the third term, we write

z = εeiθ so dz = iεeiθdθ. Hence the third term can be written as
∫ 0

π
(eiεe

ıθ

)idθ = −iπ. For the 4th term, we need to consider
Jordan’s Lemma.

Jordan’s Lemma Consider
∫
|z|=R |e

iz| · |dz|. This is the same as R
∫ π

0
e−R sin θdθ because eiz = e−y(cosx+ i sinx) and

hence |eiz| = e−y = e−R sin θ. Also, |dz| = Rdθ. Take 0 ≤ θ ≤ π/2. Note that with θ ∈ [0, π/2], sin θ ≥ 2θ
π (can be seen

graphically if plotted against θ). Then we have a bound on the integral
∫
|z|=R |e

iz| · |dz| < 2R
∫ π/2

0
e−2Rθ/πdθ where we have

split the domain into [0, π/2], [π/2, π] and noted that sin θ is symmetric about the line θ = π/2. The RHS integrates to
2R π

2R (1− e−R), which goes to π as R→∞.

Hence we have another bound:

∣∣∣∣∣
∫
|z|=R

eiz

z
dz

∣∣∣∣∣ ≤
∫
|eiz||dz|
|z|

=
1

R

∫
|eiz||dz|

and the right-most term goes to zero as R→∞.

Going back to the example, we have that the 4th term goes to zero, so
∫∞

0
sin x
x dx = π

2 .

8.2 19 Nov 2014 Wednesday

Alternative solution for sin x/x Consider the contour that goes around the pole such that the pole is contained within
the interior of the contour. Then we have to use the residue at z = 0, which is 1. Rewriting, we have

∮
eiz

z
dz =

∫ −ε
−R

eix

x
dx+

∫ R

ε

eix

x
dx+

∫
|z|=ε,lower,ACW

eiz

z
dz +

∫
|z|=R,upper,ACW

eiz

z
dz = 2πi

Repeating the calculations for the 1st, 2nd and 4th term, and noting that the third term is now in the opposite direction,
we will obtain the same solution.
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Corollary to Jordan’s Lemma Consider f(z) = p(z)
q(z) with p(z) having no zeroes and q(z) having a finite number of

zeros. Let all the singularities of f be below |z| = R in the upper half-plane. Also assume that |f | ≤MR for |z| = R, y > 0,
and that limR→∞MR = 0. Statement limR→∞

∫
f(z)eiazdz = 0 on the upper semicircle at |z| = R. to verify exact statement

Trigonometric integrals Note that integrals of the form
∫∞

0
f(x) sinxdx or

∫∞
0
f(x) cosxdx exist even though

limR→∞
∫ R

0
f(x)dx =∞. Requirement: f(x) is monotonically decreasing.

Existence of trigonometric integrals We use integration by parts. Example:
∫ R

0
sin x
x dx = − cosR

R −
∫ R

0
sin x
x2 dx. The

first term goes to zero as R→ 0, and the second term converges to zero by the comparison test since
∣∣ sin x
x2

∣∣ ≤ 1
x2 and

∫ R
0

dx
x2

converges for R→∞.

Exceptions: When the semicircular integration fails Example: Consider I(a) =
∫∞
−∞

eax

ex+1dx, 0 < a < 1. Pick

f(z) = eaz

ez+1 . But we note that the denominator has an infinity of zeros z = (2n+ 1)πi and hence the function has an infinity
of poles. We need to use another trick that works when the denominator is a periodic function of x. We choose a rectangle
defined by x ∈ [−R,R] and y ∈ [0, 2iπ], where the vertical cut is in between the poles z = iπ and z = 3iπ. Hence there
is only one pole in the interior, and it has residue −eiπa. Then we have that the integral along the bounding rectangle is∮
C
f(z)dz = 2πi(−eiπa). This is going to be equal to the sum of 4 integrals, one along each side of the rectangle. Label the

corners of the rectangle as ABCD, where A is at the lower left hand corner and we proceed anticlockwise.

Then we have that
∮
C

=
∫
AB

+
∫
BC

+
∫
CD

+
∫
DA

. By the bounds of integrals, we note that along the vertical path BC,

|
∫
BC
| is less than 2π eaR

eR+1
, where the part in the fraction is the maximum value of f(z) on the path and 2π is the length of

the path. Similarly, along vertical path |
∫
AD
| ≤ 2π e−aR

e−R+1
. Hence the values of the integral along the vertical paths vanish

as R→∞. Now we also have
∫
AB

f(z)dz+
∫
CD

f(z)dz =
∫ R
−R

eax

ex+1dx+
∫ −R
R

eax

ex+1e
2πiadx. where the extra exponential term

comes from us noting that the function is periodic in the imaginary axis with period 2πi. Taking the limit as R → ∞, we
have that

(
1− e2πia

) ∫∞
−∞

eax

ex+1dx = −2πieiπa Hence we have that I(a) = π
sinπa .

Analytic continuation of the previous example Note that in the previous example, we restricted 0 < a < 1. Now
we want to consider the case for any value of a. Note that I(a) has poles at the positions a = n, n ∈ Z. We can define I(a)
to be an analytic function of a, and since we know its value matches that obtained value in the previous example, then by
analytic continuation, we can say that this function is the actual analytic function over all values of a.

More identities:

•
∫∞
−∞ e−x

2

dx =
√

π
2

•
∫∞

0
cos(x2)dx =

∫∞
0

sin(x2)dx =
√

π
8

Cauchy Principal value integral Consider
∫ b
a
f(x)dx, where f(x) is continuous except at one point. Example

f(x) = 1√
x

. If limε→0

∫ b
a+ε

f(x)dx exists, then we say that the integral exists as an improper integral. If f(x) is contin-

uous except at x = c, and c is within the limits of integration, then we examine limε1→0,ε2→0

[∫ c−ε1
a

f(x)dx+
∫ b
c+ε2

f(x)dx
]

exists, then we say that the integral
∫ b
a
f(x)dx exists as an improper integral.

Example limε→0

∫ 1

ε
dx√
x

= limε→0 [2
√
x]

1
ε = 2.

Example Consider
∫ 1

−1
dx
x = limε1→0,ε2→0 ln ε1

ε2
and hence the limit does not exist if we have the relation ε1 6= ε2. But

if we have ε1 = ε2, then we have that the limit exist and is zero. Integrals that exist in such a manner is called the Cauchy
Principal Value Integral.

Formal Definition of the CPVI P
∫ b
a
f(x)dx = limε→0

[∫ c−ε
a

f(x)dx+
∫ b
c+ε

f(x)dx
]
.

Example Note that P
∫ 1

−1
dx
x2 =∞ because there is a double pole at x = 0.

Example P
∫∞
−∞

cos x
a2−x2 , a ∈ R. Consider

∮
eiz

a2−z2 dz which has poles at z = ±a. Pick the anticlockwise contour on the
upper semicircle of large radius R that goes around the poles in the clockwise sense (i.e. interior of contour does not contain
the singularities). We now have 6 pieces to consider. We hence have:
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0 =

∮
f(z)dz =

∫ −a−ε
−R

f(z)dz +

∫ a−δ

−a+ε

f(z)dz +

∫ R

a+δ

f(z)dz +

∫
|z+a|=ε,around z=-a, upper, CW

f(z)dz

+

∫
|z−a|=δ,around z=-a, upper, CW

f(z)dz +

∫
|z|=R

f(z)dz

but we can write the first three terms as the Cauchy principal value integral P
∫ R
−R f(z)dz, the 4th term is − 1

2 (2πiRes(z =

−a)) and the 5th term is − 1
2 (2πiRes(z = a)). The 4th and 5th terms are called half-poles because we are going around the

poles halfway. The minus sign comes from the clockwise orientation of these half-poles.

Also, by the Jordan Lemma, the 6th term is on order O(1/R), and hence goes to zero as R→∞. Hence we write:

∮
eiz

a2 − z2
dz = P

∫ ∞
−∞

eix

a2 − x2
dx− 1

2
(2πirz=−a)− 1

2
(2πirz=1)

8.3 Recitation 19 Nov 2014

Example Consider:

w(z) =
1

z − 3
+

1

z − 4

Take the Laurent expansion around z = 1 and 2 < |z − 1| < 3. Write

w(z) =
1

(z − 1)− 2
+

1

(z − 1)− 3

=⇒ w(z) =
1/(z − 1)

1− 2/(z − 1)
+

−1/3

1− (z − 1)/3

=⇒ w(z) =
1

z − 1

∞∑
n=0

(2/(z − 1))n +
−1

3

∞∑
n=0

((z − 1)/3)n

Take the Laurent expansion around z = 0 for 3 < |z| < 4. Then we have:

w(z) =
1/z

1− 3/z
+
−1/4

1− z/4

=⇒ w(z) =
1

z

∞∑
n=0

(3/z)n +
−1

4

∞∑
n=0

(z/4)n

Take the Laurent expansion around z = 0 for |z| < 3. Then we have:

w(z) =
−1/3

1− z/3
+
−1/4

1− z/4

=⇒ w(z) =
−1

3

∞∑
n=0

(z/3)n +
−1

4

∞∑
n=0

(z/4)n

Example 2 Find the first three terms of:

log(
z + 1

z − 1
)

First define the branch. Note the branch points at z = ±1. Since we want the series for |z| > 1, we perform the branch
cut in between the branch points.
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8.4 Friday 21 Nov 2014

Integration around an arc Consider f(z) that has a simple pole at z = α with residue a−1. We want to integrate around
a circular positively oriented arc centred at z = α subtending an angle φ and with radius δ. We hence consider:

∫
δ→0,cφ

f(z)dz

Because f(z) has a simple pole at α, we can write f(z) = g(z) + a−1(z − α)−1 with g(z) analytic at z = α. Then we can
break the integral into two parts to give:

∫
Cφ

g(z)dz +

∫
Cφ

dz

z − α

We bound the first integral by defining M = max |g(z)| and note that the length of the arc is δφ so the first integral is
bounded by Mδφ which goes to zero as δ → 0. For the second integral, we write z − α = δeiθ, 1

z−α = 1
δ e
−iθ, dz = iδeiθdθ.

We now explicitly perform the second integral:

∫
dz

z − α
=

∫ θ0+φ

θ0

iδeiθ

δeiθ
dθ = iφ

Hence we have that
∫
δ→0,Cφ

f(z)dz = ia−1φ. When we integrate on the full circle, we set φ = 2π so we get consistency

with the previous definition of the residue. For a half-pole, we set φ = π, and hence it is exactly half the value of the residue.

Note that the previous analysis only holds when we have a pole, not a branch point.

Principal value at infinity Define P
∫∞
−∞ f(x)dx = limR→∞

∫ R
−R f(x)dx. Note that we can replace R = 1

ε and take the
limit as ε→ 0.

Example: Convergence at infinity Take P
∫∞
−∞

xdx
(x2+1) = limR→∞

∫ R
−R

xdx
x2+1 =

[
1
2 ln(1 + x2)

]R
−R → 0. Hence the

Cauchy Principal value exists. However, if we take limR→∞
∫ R

0
xdx
x2+1 , we note that this latter integral will not exist! It

happens that in the former case, the integration across the whole real line has parts that cancel.

Plemelj Formula Consider an arc C going from a to b and consider the function I(z) = 1
2πi

∫
C
f(ζ)
ζ−z dζ. This defines an

analytic function defined on a cut with C, since as long as z does not lie on C, the integral is well-defined. Note that if f(ζ)
is a constant, we can just evaluate this integral using the logarithm. Consider what happens if C is a closed curve. Then we
have:

I(z) =

{
f(z), z ∈ C
0, z 6∈ C

by the Cauchy integral formula provided f(z) is analytic inside C. Now consider a point z1 on the curve. Let z approach z1

from both inside and outside the curve. Call the limiting values z+
1 and z−1 respectively.

When z → z+
1 , we must have I+(z1) = limz→z+

1
f(z) = f(z) because z still remains inside C. Similarly, as z → z−1 , we

must have I−(z1) = 0 because z is now outside C.

We now define the following: Ip(z1) = 1
2πiP

∮
C
f(ζ)dζ
ζ−z1 where z1 is on C. We hence will integrate on C and cut out a small

neighbourhood around z1. We also require Ip(z1) = 1
2 [I+(z1) + I−(z1)]. The latter equation follows because we can perturb

the contour slightly to either go around z1 in the clockwise or anticlockwise fashion. But since we have from the Integration
along the arc earlier, going in either direction around the pole will give a value with the same magnitude (φ = π). Note
further that we can write f(z1) = I+(z1)− I−(z1). why?

Now we can write I+(z1) = Ip(z1) + 1
2f(z1) = 1

2πiP
∮ f(ζ)
ζ−z1 dζ + 1

2f(z1) and I−(z1) = Ip(z1)− 1
2f(z1).

Plemelj Formula for a non-closed arc Call C+ the arc that goes around the point z+
1 in an anticlockwise fashion. Call

C− the arc that goes around the point z−1 in the clockwise fashion. I+(z1) = 1
2πi

∫
C+

f(ζ)

ζ−z+
1

dζ, I−(z1) = 1
2πi

∫
C−

f(ζ)

ζ−z−1
dζ. But
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by the Integration along the Arc formula earlier, the integration along the pole has the same magnitude in either direction.

Hence we can write I+(z1) = 1
2πiP

∫
C

f(ζ)
ζ−z1 dζ+ 1

2f(z1) and I−(z1) = 1
2πiP

∫
C

f(ζ)
ζ−z1 dζ−

1
2f(z1). Call Ip(z1) = 1

2πiP
∫
C

f(ζ)
ζ−z1 dζ

so that Ip(z1) = 1
2 [I+(z1) + I−(z1)] and f(z1) = I+(z1)− I−(z1).

Example I(z) =
∫ 1

−1
dt
t−z , z 6= x, |x| < 1. This is a perfectly well-defined function except on the line from z = −1 to

z = 1. We need to choose a branch that allows I(z) to be single-valued outside the circle |z| = 1. We find that this branch
will be I(z) = Log(z − 1) − Log(z + 1), with angles around z = ±1 defined by θ ∈ [−π, π). Then, just above the cut,

z+ = x+ 0i, z− = x− 0i. Picking a x on the cut, we can define Ip = P
∫ 1

−1
dt
t−x = limε→0

[∫ x−ε
−1

dt
t−x +

∫ 1

x+ε
dt
t−x

]
.
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Chapter 9

Week 9

9.1 Monday 24 Nov 2014

Residue at infinity Define the residue at infinity to be Resz=∞f(z) = 1
2πi

∫
C∞

f(z)dz, where C∞ is the limit R → ∞
of a circular contour |z| = R. We calculate this using the a−1 coefficient of the Laurent series in the neighbourhood of
infinity. We make the change of variables z = 1

t so that z = −t
t2 dt and hence we have the transformation of CR : z = Reiθ to

Cε : 1
Re
−iθ = εe−iθ. Note that the transformed contour is now clockwise. Hence we have:

Res(f(z),∞) = − 1

2πi

∮
Cε

1

t2
f(1/t)dt

which we can write (noting that Cε is taken clockwise), Res(f(z),∞) = Res( 1
t2 f(1/t), 0). Note that this is different based

on how the residue at infinity is defined. In this case, we take the residue at infinity to be measured by a anticlockwise contour.

Integrals with branch points Consider the function f(z) = za−1

z+1 which has branch points at zero and infinity, as well

as a simple pole at z = −1. We want to make this function single-valued by letting za−1 = ra−1ei(a−1)θ, 0 < θ ≤ 2π.

Now due to the choice of branch, the integrals on each side of the cut do not cancel. We will choose the keyhole contour
that surrounds the origin and the positive real axis. Start just ε above the real axis, then take a anticlockwise circle around
the origin with radius R, then end ε below the real axis, then encircle the branch point with a small circle oriented clockwise.

On the contour just above the real axis, we have θ = 0, z = r, r : ε → R and dz = dr. Similarly, on the contour just
below the real axis, we have θ = 2π, z = re2πi, r : R→ ε and dz = dre2πi. Hence the integral along the top of the real axis is∫ R
ε

ra−1

r+1 dr and the integral along the bottom of the real axis is
∫ ε
R

(re2πi)a−1

re2πi+1 e2πidr =
∫ ε
R
ra−1e2πi(a−1)

r+1 dr = −e2πia
∫ R
ε

ra−1

r+1 dr.

Now we want to show that the contributions of the integral on the big circle CR and the small circle (clockwise) Cε go to
zero. Use the ML bound:

∣∣∣∣∣
∫
|z|=R

za−1

z + 1
dz

∣∣∣∣∣ ≤ Ra−1

R− 1
2πR

note that the denominator has the “reverse” triangular inequality. This bound goes to zero as R→∞. Similarly,

∣∣∣∣∣
∫
|z|=ε

za−1

z + 1
dz

∣∣∣∣∣ ≤ εa−1

1− ε
2πε

which also goes to zero as ε → 0. We hence have that the integral along this contour will equal (1 − e2πia)I, where

I =
∫ R
ε

ra−1

r+1 dr. By the Cauchy residue theorem, we also have that this the integral on the contour will equal to 2πi times

the residue at −1, which is −eπia. Taking R→∞, ε→ 0, we have
∫∞

0
xa−1

x+1 dx = π
sinπa .

Justification for the cut Consider two branches and contours: f1(z) = za−1

z+1 ,−π/2 < arg z ≤ 3π/2 and f2(z) =
za−1

z+1 , π/2 < arg z ≤ 5π/2. Consider two contours that make up the keyhole contour. The first contour C1 will start above
the real axis and end along some ray L1 that is not just below the real axis, thereby encircling the branch point in an
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incomplete fashion. Choose L1 such that C1 encircles the point z = −1. The second contour “completes” the keyhole

contour. By the residue theorem, we know that
∫ R
ε

ra−1

r+1 dr +
∫
CR,1

+
∫
L1

+
∫
Cε,1

= 2πiRes(f1(z),−1) while
∫ ε
R

(re2πi)a−1

r+1 dr +∫
CR,2

+
∫
−L1

+
∫
Cε,2

= 0 since only the first contour encircles the point at z = −1. But the values of the three integrals (with-

out the kernel stated) and the residue remains unchanged upon replacing f1 and f2 with another function with a different
branch cut.

Example Define I =
∫ 1

0
xa−1(1 − x)−adx, 0 < a < 1 which has branch points at z = 0, z = 1. Then consider f(z) =

za

z (z−1)−a and define a branch (z−1)a = r1e
iaθ1 , za = r2e

iaθ2 ,−π < θ1, θ2 ≤ π. Then we have za(z−1)−a =
(
r2
r1

)a
eia(θ2−θ1).

Then the branch cut is between z = 0 and z = 1 by checking the continuity of θ2 − θ1 across the real axis. Hence f(z) will
be analytic in the plane except on the cut x ∈ [0, 1].

Now we need to define the values of r1 and r2 on the contour. Since the contour is restricted to the real axis from z = 0
to z = 1, then we have that r2 = x and r1 = 1 − x along this range of the real axis. Hence on the top of the cut, we have

that za(z − 1)−a =
(

x
1−x

)a
e−iaπ while on the bottom of the cut we have za(z − 1)−a =

(
x

1−x

)a
eiaπ.

Now we define the contour that will integrate on. We start ε away from z = 0, go around the origin in the counterclockwise
fashion, head out to z = 1 under the branch cut, go around the branch point at z = 1 counterclockwise, then head back to
the origin over the branch cut. This is the “dog bone” contour. Hence we have that:

∫
C

f(z)dz =

∫ 0

1

1

x

(
x

1− x

)a
e−iaπdx+

∫ 1

0

1

x

(
x

1− x

)a
eiaπdx+

∫
C,z=0

+

∫
C,z=1

= (eiaπ − e−iaπ)

∫ 1

0

xa−1(1− x)−adx

= 2i sin(πa)I

where I =
∫ 1

0
xa−1(1−x)−adx. Now to evaluate

∫
C
f(z)dz, we need to deform the contour C∞ because the Cauchy theorem

does not apply with the current C. We can do this because the function is analytic away from the branch cut. hence hence
we have that the value of

∫
C
f(z)dz will be 2πi times the residue at infinity (defined on a contour going counterclockwise).

9.2 26 Nov 2014 Wednesday

Plemejl formulae Recall the formulae:

I+(z1) =
1

2πi
P

∮
f(ζ)dζ

ζ − z1
+

1

2
f(z1)

I−(z1) =
1

2πi
P

∮
f(ζ)dζ

ζ − z1
− 1

2
f(z1)

Hilbert Transform This transform can be obtained from the Plemejl formulae. Suppose we have f(z) = u + iv which
is analytic on the upper half-plane (y ≥ 0) and f(z) → 0 as z → ∞ in the upper half plane. Now consider the semicircular
contour containing a certain point z. Then by the Cauchy integral formulae. we have that:

f(z) =
1

2πi

∫ ∞
−∞

f(ζ)dζ

ζ − z

along the real axis when we let the semicircle go to infinity. Now on y = 0, we have that f(ζ) = u(ζ, 0) + iv(ζ, 0) =
U(ζ) + iV (ζ). Now let z → x+ 0i, just above the real axis. Then using the Plemejl formula, we have that:

U(x) + iV (x) =
1

2πi
P

∫ ∞
−∞

[U(ζ) + iV (ζ)]
1

ζ − x
dζ − 1

2
[U(x) + iV (x)]

Comparing real and imaginary parts, we have that:

U(x) =
1

π
P

∫ ∞
−∞

V (ζ)

ζ − x
dζ

V (x) =
−1

π
P

∫ ∞
−∞

U(ζ)

ζ − x
dζ
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these two integrals above are called a pair of Hilbert transforms. Hence, given a function U(x), we can form a function
V (x) whose inverse will be U(x).

Integral along a branch point involving principal values Consider I(a) = P
∫∞

0
xa−1

1−x dx, 0 < a < 1. Now since
a 6∈ Z, we expect branch points at z = 0,∞ and a pole at z = 1. Pick a branch cut along the positive real axis that cuts
through the singularity.

We hence define the following contour: Start near the origin above the branch point, go to z = 1 above the branch point,
go in a clockwise semicircle around the singularity at z = 1, continue to z = R, go around a large circle of radius R until
you reach the bottom of the branch cut, head back to z = 1 under the branch cut, do a clockwise semicircle around the
singularity, the proceed to the origin under the branch cut, then go around the branch point at the origin in the clockwise
fashion with radius ε back to the starting point.

Now the closed contour does not enclose any singularities, hence we know that
∮
C
f(z)dz = 0. We know that along the

circular parts, the function will go to zero under the limits R→∞ and ε→ 0. Then we have:

0 =

(∫ 1−ε

δ

xa−1

1− x
dx+

∫ R

1+ε

xa−1

1− x
dx

)
(1− e2πi(a−1)) +

∫
bottom of semicircle

za−1

1− z
dz +

∫
top of semicircle

za−1

1− z
dz

where we note that (xe2πi)a−1

1−(xe2πi) dx = e2πi(a−1) xa−1

1−x dx.

Now on the top of the semicircle, we write z = 1 + εeiθ so that za−1 =
∣∣1 + εeiθ

∣∣a−1
ei(a−1) arg z. Since arg z = 0 as ε→ 0,

za−1 = 1 +O(ε), and hence za−1 → 1 as ε→ 0.

On the bottom of the semicircle, however, the argument of z will be 2π, and hence we have that za−1 =
∣∣1 + εeiθ

∣∣a−1
ei(a−1)2πi =

e2πi(a−1) +O(ε).

Now the residue on the top of the cut will be −1 and the residue at the bottom of the cut will be −e2πi(a−1). Hence the
integral on the two half-poles will equal:

∫
top of semicircle

xa−1

1− x
dx+

∫
bottom of semicircle

xa−1

1− x
dx = −iπ(−1)− iπ(−e2πi(a−1))

where the −iπ comes from the fact that each integral is a half-pole and goes in the clockwise direction.

hence in the limit as R→∞, ε→ 0, δ → 0, we have that:

0 = P

∫ ∞
0

xa−1

1− x
dx
(

1− e2πi(a−1)
)

+ iπ
(

1 + e2πi(a−1)
)

and hence:

I(a) = P

∫ ∞
0

xa−1

1− x
dx = π cot(aπ)

Infinite integrals/Improper integrals Consider the integral:

f(z)

∫
C∞

F (z, ζ)dζ

which is a function of an integral evaluated on the infinite circle. Consider the limiting case when:

fR(z) =

∫
CR

F (z, ζ)dζ

If we can show that limR→∞ fR(z) = f(z), then we say that the integral is convergent. A stronger condition is uniform
convergence. If there exists an R0(ε) such that |f(z)− fR(z)| < ε for R > R0 and for all z ∈ D.

If the integral is uniformly convergent, then the following are true:
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• limR→∞ f ′R(z) = f ′(z)

• f ′R(z) =
∫
CR

∂F
∂z dζ when we exchange the operation of differentiation and integration.

• f(z) is analytic.

Explicitly, when the infinite integral is uniformly convergent:

lim
R→∞

∫
CR

∂F

∂z
dζ =

∫
C∞

∂F

∂z
dζ =

d

dz

∫
C∞

F (z, ζ)dζ = f ′(z)

Example: Gamma function Define (using t instead of ζ):

Γ(z) =

∫ ∞
0

e−ttz−1dt

integrating by parts, we obtain the recursion formula:

Γ(z) = (z − 1)Γ(z − 1)

It is also true that Γ(n) = (n − 1)!, n ∈ N because Γ(1) =
∫∞

0
e−tdt = 1 and we can use the recursion relationship to

obtain other integer values.

Note that

|tz−1e−t| ≤ tx−1e−t, x = <(z)

Hence in the limit where R→∞:

lim
R→∞

∫ R

0

tx−1e−tdt =

∫ ∞
0

tx−1e−tdt

is uniformly convergent because of the e−t part that will dominate all tx−1 for all x > 0. Then by the comparison test
with the above integral, the gamma function:

lim
R→∞

∫ R

0

e−ttz−1dt

converges uniformly and is equal to the gamma function for <(z) > 0. This implies that Γ(z) is an analytic function of z
for <(z) > 0.

Beta function The complete beta function is defined:

β(p, q) =

∫ 1

0

tp−1(1− t)q−1dt

With <(p),<(q) > 0.

It can be shown that β(p, q) = Γ(p)Γ(q)
Γ(p+q) .
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Chapter 10

Week 10

10.1 Monday 1 Dec 2014

Gamma Function Recall that Γ(z) =
∫∞

0
tz−1e−tdt which is absolutely convergent for <(z) > 0. Also, Γ(z + 1) = zΓ(z).

We can write this as Γ(z) = Γ(z+1)
z which will be singular at z = 0.

Negative z values for Gamma Function Note that
∫∞

0
e−3/2e−tdt does not converge. This should correspond to

Γ( 1
2 ). Consider the strip −1 < <(z) ≤ 0. We know that 0 < <(z + 1) ≤ 1 and Γ(z + 1) is defined by a convergent integral.

Hence we can just use the recurrence relation to define Γ(−1/2) = Γ(1/2)/(−1/2). Note that this does not work for z = 0
because the recurrence relation requires a division by z. We can repeat this process for strips further to the left in the real
axis. This is the analytic continuation of the gamma function into the left half plane. Hence we can define Γ to be analytic
in the whole z plane except at he poles of z = −n, n ∈ Z+

0 .

Conformal Mapping Motivation: Solving Laplace’s equation in some domain ∇2φ = 0 with (x, y) ∈ D, where φ is
given on ∂D or ∂φ

∂n is given on ∂D (or both boundary conditions).

Set-up Let w = f(z) be a mapping from D in the xy plane to D in the uv plane. Write W (x, y) = U(x, y) + iV (x, y).

Exponential Mapping Consider w = ez and its inverse z = Log w. This function maps the strip in the xy plane:
−π ≤ y ≤ π to the entire w plane with a branch cut along the negative real axis in the w plane. The mapping is one to one.

Now note that the mapping z = Log w can be written as z = x+ iy = ln(u2 + v2)1/2 + i tan−1 v
u =⇒ x = ln(u2 + v2)1/2,

y = tan−1 v
u . Hence the lines x = c, c constant maps into u2 + v2 = ex, which is a circle of radius ex/2. Similarly, the lines

y = c, c constant maps into radial lines through the origin (v = u tan y).

For the inverse mapping, we write w = ez = ex cos y + iex sin y so u = ex cos y, v = ex sin y. Hence the line u = c, c
constant, maps to the function x = − ln(cos y/u) and the line v = c, c constant, maps to the curve x = − ln(sin y/v).

Theorems

• Locally One to Oneness Suppose w = f(z) is analytic in some domain near z = z0. Let f ′(z0) 6= 0,∞. Then there
exists a neighbourhood N around z0, such that the mapping is locally one-to-one in the neighbourhood.

– Sketch of Proof Since w is analytic at z0 its derivative is also analytic there. Then we can write the Taylor
series w = f(z0) + f ′(z0)(z− z0) + . . . =⇒ w−w0 = f ′(z0)(z− z0). Hence very close to z0, we have the mapping
between w − w0 and z − z0 that is one-to-one. It is not singular because f ′(z0) 6= 0.

– Note that a function can be locally one-to-one everywhere but may not be globally one-to-one. For example, the
mapping w = z2, z = w1/2 is locally one-to-one everywhere except at z = w = 0 and along a branch cut.

– A linear mapping is globally one-to-one. f(z) = 1/z, f(z) = Az +B are globally one-to-one.

• Conformality Consider a point z0 in the xy plane and w0 = f(z0) in the uv plane. Consider two curves passing
through z0, and call these curves γ1, γ2. Let the curves make an angle θ to each other at z0. Now consider the image
of these curves in the uv plane. Let the angle between the images of the curves in the uv plane be θ′. A mapping at
z = z0 is conformal if θ = θ′ for all curves passing through z0. An analytic function is conformal at every point where
its derivative is nonzero and noninfinite.
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– Sketch of proof Write w = f(z) so dw = f ′(z0)dz in a small epsilon neighbourhood around f(z0). Let dw1 =
f ′(z0)dz1, dw2 = f ′(z0)dz2 for two small displacements dz1, dz2 in the xy plane. Then we can write arg(dw1) =
arg f ′(z0) + arg dz1 and arg(dw2) = arg f ′(z0) + arg dz2. Hence we have that arg dw2 − arg dw1 = arg dz2 −
arg dz1 =⇒ θ = θ′.

Some Elementary Mappings

• w = Az, A = aeiα, a, α ∈ R. Then this is a stretching by factor a and rotation by angle α.

• w = Az + b. Same as above but with a translation b.

10.2 Wednesday 03 Dec 2014

Inversion transformation Consider w = 1
z . Maps the exterior of the unit circle to the interior and vice versa. Mapping is

globally one-to-one but does not preserve shapes. Examples of transformations under inversion:

• A straight line through the origin in the xy plane maps to a straight line passing through the origin in the uv plane.

• A straight line not through the origin in the xy plane can be written as Ax + By = C,C 6= 0 and maps to u2 + v2 −
A
c u+ B

c v = 0 which is a circle passing through the origin. The point at infinity maps to the origin. The point on the
line closest to the origin maps to the point on the circle furthest away from the origin.

• Circles through the origin in the z-plane map to straight lines not passing through the origin in the uv plane (just the
reverse of the previous statement).

• Circles not passing through the origin in the xy plane map to circles not passing through the origin in the uv plane.
Note that if we start with two concentric circles in the xy plane that do not pass through the origin, then under the
transformation the images are no longer concentric. The interior of the inner circle and the exterior of the outer circle
in the xy plane are mapped to the interiors of the image circles in the uv plane.

Generally, the class of straight lines and circles is mapped to the class of straight lines and circles under the inversion
mapping and the mapping is one-to-one.

Mobius transformation Consider w = f(z) = az+b
cz+d , a, b, c, d ∈ C, ad 6= bc. Restriction is required to that w is not

just a constant. f ′(z) = ad−bc
cz+d)2 hence the mapping is conformal at every point except at the pole at z = −c

d . This Mobius

transformation can be written as the composition of the following mappings:

W1 = cz + d

W2 =
1

W1

W3 = (b− ad

c
)W2 +

a

c

W = W3 ◦W2 ◦W1 =
az + b

cz + d

Notes on the Mobius transformation

• This transformation maps the class of circles and lines back to itself.

• This transformation is 1-1.

• This transformation is conformal everywhere except at the pole z = −c
d .

• The inverse transformation is z = f−1(w) = −dw+b
cw−a which is also a Mobius transformation.

• A composition of Mobius transformations is also a Mobius transformation.

• The mapping of three non-coincident pairs of points define a unique Mobius transformation.

Application of Mobius Transformations Consider two cylinders C1 and C2, one of radius R1 centred at the origin and
the other cylinder of radius R2 < R1 inside the first cylinder passing through the origin. We want to solve the heat equation
∂T
∂t = κ∇2T, T = T (x, y, t). We keep the big cylinder at temperature T1 and the inner cylinder at temperature T2. Now we
want to find the temperature in between the cylinders. Consider the steady-state so that the time derivative vanishes. Hence
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we just need to solve ∇2T = 0 with the Dirichlet boundary conditions at the cylinders. We first introduce non-dimensional
variables ψ = T−T2

T1−T2
such that ψ = 1 at C1 and ψ = 0 at C2. We also introduce the variables x = X

R1
, y = Y

R1
. Now also

consider for simplicity a = R2

R1
= 1

3 . Now define the function w(z) = φ+ iφ. If it is analytic, then the real and imaginary parts
are harmonic. We hence want to find the function w to satisfy the boundary conditions. We pick the following mapping:

ζ = z−1/3
z−3 . Note that on the xy-plane, the centre of the inner circle is at z = a. The mapping maps the two circles into the

ζ = ξ + iη plane with the images of the two circles being concentric. The outer circle is mapped to the circle in the ξη plane
|ζ| = 1

3 and the inner circle is mapped to the circle |ζ| = 1
9 . Now we can solve the problem in the ζ plane. Consider the

function G(ζ) = Φ + iΨ. We know that ∇2Φ = ∇2Ψ = 0 and Laplace’s equation is invariant under the mapping. Hence we
want to find Ψ such that Ψ = 0 in the inner circle |ζ| = 1

9 and Ψ = 1 in the outer circle |ζ| = 1
3 . By inspection, we claim

that the solution is G(ζ) = i log(9ζ)
ln 3 which is an analytic function of ζ in the annulus. Taking the imaginary part of G, we

obtain that Ψ = ln |9ζ|
ln 3 . On the outer circle, we calculate that Ψ(|ζ| = 1

3 ) =
ln(9× 1

3 )

ln 3 = 1 and Ψ(|ζ| = 1
9 ) = 0 so the boundary

conditions are satisfied. To get the solution in the xy plane, we just substitute ψ(z) = =[w(z)] = ={G[ζ(z)]}.

10.3 Friday 5 Dec 2014

2D Irrotational, invoiced flow past body Consider ρ = c constant and µ = 0. Consider incoming flow with horizontal
component U∞ and vertical component V∞ so that it has angle of incident α. Since the flow is 2D, then there exists a stream
function (volume flow) ψ(x, y, t) such that the fluid velocity in the x-direction u = ∂ψ

∂y and the fluid velocity in the y-direction

v = −∂ψ
∂x . Irrotational means that the fluid vorticity ω = ∂v

∂x −
∂u
∂y is zero. Combing these two conditions, we obtain that

∇2ψ = 0. This also implies the existence of some φ such that ∇2ψ = 0 and u = ∂φ
∂x , v = ∂φ

∂y . Mass continuity also require

that ∇ · (u, v) = 0. We may hence write:

u =
∂φ

∂x
=
∂ψ

∂y

v =
∂φ

∂y
= −∂ψ

∂x

but these are just the CR equations! Hence φ and ψ are harmonic conjugates and there exists a complex velocity poten-
tial W (z) such that W = φ + iψ. The complex velocity can be expressed as a derivative u − iv = ∂φ

∂x − i
∂φ
∂y and equivalent

representations of dW
dz .

The problem is hence this: Given a body shape, find W (z) satisfying (a) dW
dz → U∞+ iV∞ as z →∞ for all arg z and (b)

v
u |body = dy

dx |body and (c) ψ =constant along the body. We also have Bernoulli’s principle: H = P
ρ + 1

2 (u2 + v2) =constant=
P∞
ρ + 1

2 (U2
∞ + V 2

∞).

Example: Flat Plate Aerofoil Let the aerofoil extend from x = −2a to x = 2a and let it lies on the real axis. We pick

the conformal mapping z = ζ + a2

ζ or equivalently ζ = z+(z2−4a2)1/2

2 (conformal everywhere except at z = ±2a). The inverse
is multivalued and hence we need to pick a branch. It has branch points at z = ±2a. We pick the branch that maps the
exterior of the aerofoil to the exterior of the unit circle |ζ| = 1. We write z = reiθ and ζ = ρeiχ. Then, substituting these
back into the mapping, we have:

reiθ = ρeiχ +
a2

ρ
e−iχ

Choosing ρ = a, we obtain that:

x+ iy = a(eiχ − e−iχ) = 2a cosχ

Hence x = 2a cosχ and y = 0.

Consider w(z) = U∞z,
dw
dz = U∞ which is just uniform flow. We hence write w = U∞(x + iy) and hence φ = U∞x and

ψ = U∞y.

Now consider w = w(z(ζ)) with the mapping previously. This corresponds to flow around a cylinder in the mapped plane.

We hence write w(z) = U∞(ζ + a2

ζ ). Now we consider a rotation of axes in the ζ plane to make the flow come at an angle

to the horizontal ξ axis. We hence make the additional mapping ζ1 = ζeiα which is just a rotation in α. We also add a
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circulation Γ around the origin in the ξ− η plane. Then we will be moving the two circulation points (where dW
dζ = 0) at the

surface of the cylinder. Taking all these changes into account, we hence have:

W (ζ) = U∞(ζe−iα +
a2

ζe−iα
)− Γ

2πi
Log

ζ

a

where the first term indicates the rotation eiα and the second term is the circulation added. We note that on |ζ| = a, the
imaginary part of w(ζ) will be a constant (actually zero). Returning to the z plane, we write:

w(z) = w(ζ(z)) = U∞

[
e−iα

(
z + (z2 − 4a2)1/2

2

)
+ a2eiα

2

z + (z2 − 4a2)1/2

]
− Γ

2πi
Log

z + (z2 − 4a2)1/2

2

It can be shown that on any contour around the aerofoil, we will have
∮
~u ·d~l = Γ. We want to choose Γ such that the flow

off the lagging edge comes off smoothly. This is called the Kutta condition. When z → ±2a, then dw
dz = (z ± 2a)−1/2 + . . ..

Then it is singular at z ± 2a. We want to relieve the singularity at one point (not possible for both).

Using the chain rule, we write:

dW

dz
=
dW

dζ

dζ

dz

where

dz

dζ
= 1− a2

ζ2
=
ζ2 − a2

ζ2

hence dW
dz = dW

dζ
ζ2

ζ2−a2 . To ensure that the velocity does not blow up at ζ ± a, we want to find Γ such that dW
dζ = 0 so

that dW
dz at ζ = a is finite. We hence evaluate dW

dζ :

dW

dζ
= U∞

(
e−iα − a2eiα

ζ2

)
− Γ

2π

1

ζ

hence when ζ = a,

U∞(−2i sinα)− Γ

2πia
= 0 =⇒ Γ = 4πaU∞ sinα

The choice of Γ above satisfies the Kutta condition. There is still a singularity at the leading edge, although we have
relieved the singularity at the lagging edge. The singularity at the leading edge can be relieved by rounding the leading edge.

It can also be shown that the drag is zero and the lift is proportional to sinα where the drag is in the direction of U∞
and the lift is orthogonal to it.

Schwarz-Christoffel Mappings This is a mapping that maps the interior of polygon shapes in the z-plane into the
upper half of the zeta plane.
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