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MA1lA SUMMARY SHEET

. The Principle of Induction: Let {P(n)} be a sequence of statements running over the natural numbers. Suppose that

P(1) is true and suppose that if P(n) is true, it follows that P(n+1) is true. Then P(n) is true for all natural numbers
n.

Well ordering principle: Every nonempty set of natural numbers has a smallest element.
Ordering of real numbers: Given two real numbers x and y, either x > y or y > z.
Any nonempty set of real numbers A which has a real upper bound, has a least upper bound in the reals.

Definition of the limit: A sequence {a,} converges to limit L if for every real number e > 0 there is a natural number
N so that |a, — L| < € whenever n > N.

Fundamental Theorem of Analysis: Every bounded monotonic sequence of real numbers converges.
Convergence: A monotonic sequence converges if and only if it is bounded.
If L is the least upper bound of an increasing sequence of real numbers bounded above, the sequence converges to L.

Cauchy Sequence: A sequence is Cauchy provided that for every € > 0, there is a natural number N so that when
n,m > N, we have |a, — a;,| < e. A sequence converges if and only if it is Cauchy.

Subsequence test for convergence: If a sequence converges to some value L, then all of its subsequences also converge
to L.

Archimedean Principle: For all x € R, there exists a N € N such that N > x. That is, there is no maximum element
in the reals.

Bolzano-Weierstrass Theorem: All bounded sequences of real numbers have a convergent subsequence.

Squeeze theorem: Given three sequences of real number a,, b,, ¢,, if a, and b, both converge to the same limit L,
and if we know that a,, < ¢, < b,, then ¢, converges to limit L as well.

Infinite squeeze theorem If a,, is a sequence of positive real numbers going to infinity, and b,, > a.,, then the sequence
b, converges to infinity.

. . . [o'e) . op . . [e'e)
Tails of convergent series: The series >~ | a, converges if and only if its tail Y >~ , a, converges.

If a,,b, are two sequences of real numbers, and if 0 < a,, < b,, if 22021 b, converges then Zzozl an converges. If
>0 | an diverges then Y > | b, diverges as well.

Absolute convergence: A series is absolutely convergent if >, |a,| converges.

Alternating series test: If {a,} is a monotonically decreasing sequence to zero, then 3
Note that it is not sufficient for the sequence to be decreasing. It must decrease to zero.

oo (—1)"ay converges.

An 41
an

Ratio test: Suppose a, # 0 for any n sufficiently large. Let lim, . = L. If L < 1, the series Y~ a,

converges absolutely. If L > 1, the series diverges.

nth root test: Suppose lim, oo |an|1/" = L. If L < 1, the series ZZO:O a, converges absolutely. If L > 1, the series
diverges.

nth term test: If lim, oo ay, # 0, then > 7 a,, diverges.

Radius of convergence: Consider the power series S(x) = Z;io ajz’. There is a unique R € [0,00] such that S(z)
converges absolutely when |z| < R and diverges when |z| > R. R can be infinity.

Sum of serices: If S, => 02 ya, and Sy, = Y o by, are both absolutely convergent, then S, + S, = >~ a, + by, and
SaSy =2, _o Cm, With ¢, = ZiH:m a;b;.

Limit Laws: If the limit of a, and b, exists and is L; and Lo respectively, then lim, .. a, + b, = L1 + Lo, and

limy, 00 @nby = L1 Lo. If by # 0 for all n, then lim,, o 2 = £L.

Function: A function f from the reals to the reals is a set G of ordered pairs (x,y) so that for any real number x, there
is at most one y with (x,y) € G. The set x for which there is a y for which (z,y) € G is called the domain of the
function. If z is in the domain, the real number y for which (z,y) € G is called f(z).
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Limit of function: We say that lim, ., f(x) = L if for every € > 0 there is § > 0 so that if |x — a| < § then

[f(z) = fla)] <e

Squeeze theorem for functions: Let f,g,h be functions defined on the reals without the point a. Suppose that f(z) <
h(z) < g(x) and suppose that lim,_,, f(z) = lim,;_,, g(z) = L. Then lim,_,, h(xz) = L.

Continuity: A function on the reals is continuous at a point a if lim,_,, f(x) = f(a).

Negation of continuity: A function on the real is not continuous if there is some value of € > 0 for which we cannot find
a d > 0 such that |z — y| < ¢ implies |f(z) — f(y)| < e

Extreme value theorem: Let f(z) be a function which is continuous on the interval [a,b]. Then f(z) attains its
maximum on this interval. If M = l.u.b.{f(z) : z € [a,b]} then M exists and there is a point ¢ € [a, b] so that f(c) = M.

Intermediate value theorem: Let f be a function on the interval [a,b]. Suppose that f(a) < L < f(b). Then there is
some ¢ € [a, b] so that f(c) = L.

Little oh: A function f(h) is o(h) if as h — 0 if limp f(h) = 0. A function f(h) is o(g(h)) if limp_q % =0if g(h)

is a continuous increasing function of h with g(0) = 0.

Big oh: A function fis O(h) as h — 0 if there exsts C,J > 0 so that for |h| < J, then |f(h)| < C|h|. A function f(h) is
O(g(h)) if there exists C,d > 0 so that for |h| < §, we have |f(h)| < Cg(|h]), if g( ) is a continuous increasing function
of h with g(0) = 0.

Differentiability: A function f is differentiable at x if limy, g W = f'(x) exists.

Function class: A function f : R — R is a C* function on a specified interval if it has k continuous derivatives on that
interval. That is, it is k times continuously differentiable. A C° function is a continuous function.

First order differential approximation: f(z 4+ h) = f(x) + hf'(x) + o(h). f(x +h) = f(z) + O(h).

Mean value theorem: Let f(z) be a function which is continuous on the closed interval [a, b] and which is differentiable
at every point of the interior (a,b). Then there is a point ¢ € (a,b) so that f’'(c) = f(b) f(a)

If a function f is continuous on the interval [a,b] and differentiable at every point of the interior (a,b). Suppose that
f'(x) > 0 for every z € (a,b), then f(x) is strictly increasing on [a, b].

Inverse Rule: Suppose f(g(z)) = x and g is differentiable at x with nonzero derivative and f is differentiable at g(x)
then f(g(x)) =

First Derivative Test: Let a function be continuous on the closed interval [a, b] and differentiable on the interior (a, b).
Let ¢ € (a,b), f'(¢) = 0. Suppose there is some § > 0 such that Vz € (¢ — 4, c¢), we have that f/'(x) > 0 and for every
x € (e,c+0), f'(z) < 0. Then f has a local maximum at c.

Second Derivative Test: Let f be a function continuous on the closed interval [a, b], and differentiable on the interior
(a,b). Let ¢ be a point ¢ € (a,b) where f'(c) = 0. Suppose the derivative f’(x) is differentiable at ¢ and that f”(c) < 0.
Then f has a local maximum at c.

Taylor’s Theorem: Let f be a function continous on a closed interval I having ¢ on its interior. Suppose that
f'(x)--- fm=2)(z) are defined and continuous everywhere inside I. Suppose that f("+1) is defined everywhere on I and

that f(™) is defined. Then for h sufficently small such that [c,c+ k] C I, we have: f(c+h) = f(c)+ >, % f®(c) +
o(h™)

Definition of rational powers: Let z € R, 2 € Q. Then z7 = Lu.b. {y:y? < aP}

Definition of real powers: Let z,« € R. Then % = l.u.b.{xg e Q, < a}. Note that this requires = > 1 so that z®
is increasing.

Continuity of powers: Let k € R. f(a) = k“ is continuous at every real «. Use Cauchy condition to prove limit exists
and converges to k for a fixed .

Definition of e: e = limy, o0 (1 + %)n Also, e* = Z;io %

Exponential is faster than polynomial: lim, s .

ez
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Function with zero Taylor series at x =0

efw% ifz>0
f(x)_{o if 2 <0

1

e~ =2 is o(z™) for all n. So is e= . Proceed by changing variables y = % and taking the limit as y goes to infinity.

Weird infinitely continuous function: Let fq4)(z) = f(z —a)f(b—x). Then on the closed interval [a,b], this function
is of the class C°°(R) with fj, 4 > 0 for = € (a,b) but fi,4)(z) = 0 otherwise.

Theorem of Borel: Every power series is the formal Taylor series of some C°°(R) function. Let > 7 ja,z™ be some
power series. There is a C°°(R) function g which has this series as its Taylor series at 0.

Newton’s method: Let I be an interval and f a function which is twice continuously differentiable on I. Suppose that
for every « € I, we have |f”(z)| < M and |f’(z)| > +. Then if we pick o € I, and define the sequence {z;} by:

f(@j-1)
f'(zj-1)

Then if every x; is in I and |f(z0)| < =57, we have the estimate:

Tj =Tj—-1—

J
,],,2

£ < 2o

Inverses: Let f be continuous and strictly increasing on [a, b]. Then f has an inverse uniquely defined from [f(a), f()]
to [a, b].

Greatest lower bound: Given a set A of real numbers bounded below, the g.l.b. is given by g.l.b.(4) = —l.u.b.(—A).

Riemann upper sum: Let P be a partition of an interval [a, b] with a set of points {xq,...,z,} so that g = a < 27 <
< @p—1 <@y =b. Then Up(f) = 25 Lub{f(z) 1 2jo1 <o <ajj(w; —2j-1).
Riemann lower sum: Ly (f) =327, gLb{f(z) s 21 <z < aj}(r; —2j-1)

Refinement: A partition @ refines a partition P provided that P C Q.

Lower and upper sums under refinement: Let @ be a partition which refines P. Then for any bounded f defined on
[a, b], we have:

Lp(f) < Lo(f) < Uq(f) <Up(f)

Lower sums always smaller or equal to upper sums: Let P and @ be any partitions of [a,b]. Then for any bounded f
on [a, b], we have Lp(f) < Ug(f).

Lower and Upper Integrals: I 4 = L.u.b{Lp(f)}, Iy ap = 9-1.0{Up(f)}
Riemann integrability: f is Riemann integrable on [a, b] if and only if the lower and upper integrals are equal.
Alternative definition of integrability: A function f is integrable on the interval [a, b] if and only if for any € > 0, there

is a partition a = xo, ..., such that:

n n

sup  f(x)(@i—wia) =Y inf f@)(w— @) <e

i—1 TE€E(Ti—1,74) im1 T€(Ti—1,%4)

b+c

Shifting integral limits: ff fa)de = [7) f(x — c)dw

Scaling integrals: f; f(z)dz = % 15; f(2)dx
Comparing upper and lower sums: Up(cif + cog) < ciUp(f) + c2Up(g) and Lp(cif + cog) > c1Lp(f) + caLp(g).
Because the maximum and minimum of f may not coincide with the maximum and minimum of g.

Uniformly continuity: A function on the interval [a, b] is uniformly continuous if for every e > 0 there is § > 0 so that
whenever |z — y| < ¢, we have that |f(z) — f(y)| < e. Note that this has no fixed x. Hence this applies for any z and

any y.
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A function f on [a,b] which is uniformly continuous is Riemann integrable.

If f is continuous on [a, b] and differentiable at every point of (a,b), and if f’ is continuous on [a, b], then f is uniformly
continuous on [a, b].

Fundamental Theorem of Calculus: Let F be a continuous function on the interval [a, b]. Suppose F' is differentiable
everywhere in the interior of the interval with derivative f which is Riemann integrable. Then f: f(z)dz = F(b)—F(a).

Fundamental Theorem of Calculus II: Let f be continuous on [a,b[ and let F(z) = [ f(y)dy. Then F'(z) = f(z).

Change of variables formula: Let f be integrable on an interval [a,b]. Let g(x) be a differentiable function taking the
interval [c, d] to the interval [a, b] with g(¢) = a and g(d) = b. Then f; fl@)dx = fcd flg(x)g' (z)dx.

Improper Integral: If f is bounded and integrable on all intervals of non-negative reals, then fooo f(z)de = limy o foy f(x)dx.

If f is bounded and integrable on all intervals [a,y] with y < b, then f; f(x)dz = limy_;, [ f(x)dz. These integrals
only converge if the limit defining them converges.

Integral test for convergence of series: Let f be a decreasing, nonnegative function of positive reals. Then Zj’;l f()
converges if floo f(z)dx converges. The series diverges if floo f(z)dx diverges.

Midpoint method for numerical integration: Partition the interval [a, b] into n equally spaced subintervals. Take m;
to be the midpoint of the ith interval. Then J = 377, 22 f(m;). This has error |J — f: f(@)dz| = O(5).

Trapezoid rule: J =377 M”‘Ta This has error O(-;).

Simpson’s Rule:

J =
J

~ f(xj—1) +4f(my) + f(zj)b—a 1
=-J rapezium =J idpoin
a 6 " 3/ Trap +3 Midpoint

1

Taylor Theorem with Remainder:

") (e . @
@) = g s L [

=0

Mean value theorem for integrals: Let f and g be continuous functions on the closed interval [a,b]. Assume that g
does not change sign on [a, b]. Then there is ¢ € (a,b) such that:

[ s = 1) [ owas

Taylor’s Theorem with Mean value theorem: There is some d € (¢, ) so that:

f("'H)(d)(x _ c)n+1
(n+1)!

f(n+1)(d)(.’l,' _ C)n-i—l
(n+1)!

R, (x) =

J

P (e .
flx) =Y f j,( N ey +
=0

Arclength: Let f be a differentiable function on the interval [a,b]. Then the arclength of the graph of f is:
b
/ V14 fi(z)?dx
Arcsin:
arcsina = / ’ dix
[ Y4 1-— 1‘2
o=/ " ds
2 o 0 \/1 — {E2



82.
83.

84.

85.

86.

87.

88.

89.

90.

91.

92.
93.
94.
95.
96.

97.

98.
99.

Symmetry of sin and cos: cos(§ — x) = sinx,sin(§ — x) = cosz. Replace z with § — 2 to obtain the other.
Critical point: Let f be a once continuously differentiable function on an interval I, and x be a point in the interior of
I. z is a critical point of f if f/(z) = 0.

Concavity: A function f(z) is concave if for any a, b,z with « € (a,b), we have:

P > 2= pa) + 2

“b—a

f(0)

—a
A function is also concave if for any a,b and A € [0, 1],

fa+ (1 =Nb) > Af(a) + (1= A)f(b)

Concavity and second derivative: Let f be twice continuously differentiable. Then f is concave if and only if for every
x, we have f”(x) <0 and convex if and only if for every x we have f”(z) > 0.

Means: Arithmetic geometric mean inequality: atbs < %(a +b). Generalized inequality: a®b® < aa + Bbif a + =
1,a,b > 0.

Harmonic Geometric Mean Inequality: Let a,b > 0 be real numbers. Then < Vab. Generalized inequality:

5 <a®b? when a + 8 =1and a,b> 0.

a b

1 1
ats

n-term Arithmetic Geometric mean inequality: Let ai,...,a, > 0 with 2?21 a;j = 1. Then af'a3?---a2" <
n
Zj:l a;a;.

Discrete Holder inequality: Let p,q > 0 and 1% + % =1. Let a1,...an,b1,...,b, > 0 be real numbers. Then:

IN

1
n n P n %
b p q
Dabi < | Dy | | DU
=1 j=1 k=1

Holder Inequality: Let p,q > 0 and % + % = 1. Let f, g be non-negative intetrable functions on an interval [a,b]. Then:

/ ' f)a()de < < / b f(ﬂpda:); < / bg(oc)‘ldac>é

Jensen’s Inequality: Let g be a convex function and f be a non-negative integrable function on an interval [a, b]. Then:

g (bla/:f(x)dx> <t [ v

Dot product: @-b = aiby + asbs. @- b = |a||b|cos 6.

@||b] sin 6.

Cross product: @ x b= arby — bras. @ % b=
Euler’s Formula: € = cos + isin 6.
Roots of unity: et forj=0,1,...,k—1.

Fundamental theorem of algebra: Let p(z) be a polynomial with complex coefficients and degree k > 1. Then there is
a complex number z with p(z) = 0.

Complex logarithm: log(re?) = logr + if. Note that there is ambiguity in the selection of 6.

ei% _o—iz
2%

Complex sine: sinz =

Analytic Function: A complex valued function of a complex variable f(z) which is differentiable at z as a function
of two variables is analytic at z if df(z) is a complex multiple of dz. Let f(z) = u(z,y) + tv(x,y). Then the required

i3 du _ _ v v _ du
conditions are that oy = " ox and 5y = on



100. Order of partial differentiation: Let F' be a function of two variables whose first partial derivatives have continuous

first partial derivatives. Then:
9 (OF\ _ 0 (OF
oy \ oz ) 0x \ Oy

101. Cauchy’s Theorem Let f be analytic with continuous derivative on a rectangle R. Let « be a closed curve lying in
rectangle R. Then § f(z)dz = 0.

102. Integration of %: X % = 2mi.



