
Ma1a Summary Sheet

1. The Principle of Induction: Let {P (n)} be a sequence of statements running over the natural numbers. Suppose that
P(1) is true and suppose that if P(n) is true, it follows that P(n+1) is true. Then P(n) is true for all natural numbers
n.

2. Well ordering principle: Every nonempty set of natural numbers has a smallest element.

3. Ordering of real numbers: Given two real numbers x and y, either x ≥ y or y ≥ x.

4. Any nonempty set of real numbers A which has a real upper bound, has a least upper bound in the reals.

5. Definition of the limit: A sequence {an} converges to limit L if for every real number ε > 0 there is a natural number
N so that |an − L| < ε whenever n > N .

6. Fundamental Theorem of Analysis: Every bounded monotonic sequence of real numbers converges.

7. Convergence: A monotonic sequence converges if and only if it is bounded.

8. If L is the least upper bound of an increasing sequence of real numbers bounded above, the sequence converges to L.

9. Cauchy Sequence: A sequence is Cauchy provided that for every ε > 0, there is a natural number N so that when
n,m ≥ N , we have |an − am| ≤ ε. A sequence converges if and only if it is Cauchy.

10. Subsequence test for convergence: If a sequence converges to some value L, then all of its subsequences also converge
to L.

11. Archimedean Principle: For all x ∈ R, there exists a N ∈ N such that N ≥ x. That is, there is no maximum element
in the reals.

12. Bolzano-Weierstrass Theorem: All bounded sequences of real numbers have a convergent subsequence.

13. Squeeze theorem: Given three sequences of real number an, bn, cn, if an and bn both converge to the same limit L,
and if we know that an ≤ cn ≤ bn, then cn converges to limit L as well.

14. Infinite squeeze theorem If an is a sequence of positive real numbers going to infinity, and bn ≥ an, then the sequence
bn converges to infinity.

15. Tails of convergent series: The series
∑∞
n=1 an converges if and only if its tail

∑∞
n=M an converges.

16. If an, bn are two sequences of real numbers, and if 0 ≤ an ≤ bn, if
∑∞
n=1 bn converges then

∑∞
n=1 an converges. If∑∞

n=1 an diverges then
∑∞
n=1 bn diverges as well.

17. Absolute convergence: A series is absolutely convergent if
∑∞
n=1 |an| converges.

18. Alternating series test: If {an} is a monotonically decreasing sequence to zero, then
∑
n→∞(−1)nan converges.

Note that it is not sufficient for the sequence to be decreasing. It must decrease to zero.

19. Ratio test: Suppose an 6= 0 for any n sufficiently large. Let limn→∞

∣∣∣an+1

an

∣∣∣ = L. If L < 1, the series
∑∞
n=1 an

converges absolutely. If L > 1, the series diverges.

20. nth root test: Suppose limn→∞ |an|1/n = L. If L < 1, the series
∑∞
n=0 an converges absolutely. If L > 1, the series

diverges.

21. nth term test: If limn→∞ an 6= 0, then
∑∞
n=1 an diverges.

22. Radius of convergence: Consider the power series S(x) =
∑∞
j=0 ajx

j . There is a unique R ∈ [0,∞] such that S(x)
converges absolutely when |x| < R and diverges when |x| > R. R can be infinity.

23. Sum of series: If Sa =
∑∞
n=0 an and Sb =

∑∞
n=0 bn are both absolutely convergent, then Sa + Sb =

∑∞
n=0 an + bn, and

SaSb =
∑∞
m=0 cm, with cm =

∑
i+j=m aibj .

24. Limit Laws: If the limit of an and bn exists and is L1 and L2 respectively, then limn→∞ an + bn = L1 + L2, and
limn→∞ anbn = L1L2. If bn 6= 0 for all n, then limn→∞

an
bn

= L1

L2
.

25. Function: A function f from the reals to the reals is a set G of ordered pairs (x, y) so that for any real number x, there
is at most one y with (x, y) ∈ G. The set x for which there is a y for which (x, y) ∈ G is called the domain of the
function. If x is in the domain, the real number y for which (x, y) ∈ G is called f(x).

1



26. Limit of function: We say that limx→a f(x) = L if for every ε > 0 there is δ > 0 so that if |x − a| < δ then
|f(x)− f(a)| < ε.

27. Squeeze theorem for functions: Let f,g,h be functions defined on the reals without the point a. Suppose that f(x) ≤
h(x) ≤ g(x) and suppose that limx→a f(x) = limx→a g(x) = L. Then limx→a h(x) = L.

28. Continuity: A function on the reals is continuous at a point a if limx→a f(x) = f(a).

29. Negation of continuity: A function on the real is not continuous if there is some value of ε > 0 for which we cannot find
a δ > 0 such that |x− y| < δ implies |f(x)− f(y)| < ε.

30. Extreme value theorem: Let f(x) be a function which is continuous on the interval [a, b]. Then f(x) attains its
maximum on this interval. If M = l.u.b.{f(x) : x ∈ [a, b]} then M exists and there is a point c ∈ [a, b] so that f(c) = M .

31. Intermediate value theorem: Let f be a function on the interval [a, b]. Suppose that f(a) < L < f(b). Then there is
some c ∈ [a, b] so that f(c) = L.

32. Little oh: A function f(h) is o(h) if as h→ 0 if limh→0
f(h)
h = 0. A function f(h) is o(g(h)) if limh→0

f(h)
g(h) = 0 if g(h)

is a continuous increasing function of h with g(0) = 0.

33. Big oh: A function f is O(h) as h→ 0 if there exsts C, δ > 0 so that for |h| < δ, then |f(h)| ≤ C|h|. A function f(h) is
O(g(h)) if there exists C, δ > 0 so that for |h| < δ, we have |f(h)| ≤ Cg(|h|), if g(h) is a continuous increasing function
of h with g(0) = 0.

34. Differentiability: A function f is differentiable at x if limh→0
f(x+h)−f(x)

h = f ′(x) exists.

35. Function class: A function f : R→ R is a Ck function on a specified interval if it has k continuous derivatives on that
interval. That is, it is k times continuously differentiable. A C0 function is a continuous function.

36. First order differential approximation: f(x+ h) = f(x) + hf ′(x) + o(h). f(x+ h) = f(x) +O(h).

37. Mean value theorem: Let f(x) be a function which is continuous on the closed interval [a, b] and which is differentiable

at every point of the interior (a, b). Then there is a point c ∈ (a, b) so that f ′(c) = f(b)−f(a)
b−a .

38. If a function f is continuous on the interval [a, b] and differentiable at every point of the interior (a, b). Suppose that
f ′(x) > 0 for every x ∈ (a, b), then f(x) is strictly increasing on [a, b].

39. Inverse Rule: Suppose f(g(x)) = x and g is differentiable at x with nonzero derivative and f is differentiable at g(x)
then f ′(g(x)) = 1

g′(x) .

40. First Derivative Test: Let a function be continuous on the closed interval [a, b] and differentiable on the interior (a, b).
Let c ∈ (a, b), f ′(c) = 0. Suppose there is some δ > 0 such that ∀x ∈ (c − δ, c), we have that f ′(x) > 0 and for every
x ∈ (c, c+ δ), f ′(x) < 0. Then f has a local maximum at c.

41. Second Derivative Test: Let f be a function continuous on the closed interval [a, b], and differentiable on the interior
(a, b). Let c be a point c ∈ (a, b) where f ′(c) = 0. Suppose the derivative f ′(x) is differentiable at c and that f ′′(c) < 0.
Then f has a local maximum at c.

42. Taylor’s Theorem: Let f be a function continous on a closed interval I having c on its interior. Suppose that
f ′(x) · · · f (m−2)(x) are defined and continuous everywhere inside I. Suppose that f (m+1) is defined everywhere on I and

that f (m) is defined. Then for h sufficently small such that [c, c+ h] ⊂ I, we have: f(c+ h) = f(c) +
∑m
k=1

hk

k! f
(k)(c) +

o(hm)

43. Definition of rational powers: Let x ∈ R, pq ∈ Q. Then x
p
q = l.u.b.{y : yq < xp}

44. Definition of real powers: Let x, α ∈ R. Then xα = l.u.b.{x
p
q : pq ∈ Q, pq < α}. Note that this requires x > 1 so that xα

is increasing.

45. Continuity of powers: Let k ∈ R. f(α) = kα is continuous at every real α. Use Cauchy condition to prove limit exists
and converges to kα for a fixed α.

46. Definition of e: e = limn→∞
(
1 + 1

n

)n
. Also, ex =

∑∞
j=0

xj

j! .

47. Exponential is faster than polynomial: limx→∞
xk

ex = 0.
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48. Function with zero Taylor series at x = 0

f(x) =

{
e−

1
x2 if x > 0

0 if x ≤ 0

49. e−
1
x2 is o(xn) for all n. So is e

−1
x . Proceed by changing variables y = 1

x and taking the limit as y goes to infinity.

50. Weird infinitely continuous function: Let f[a,b](x) = f(x− a)f(b− x). Then on the closed interval [a, b], this function
is of the class C∞(R) with f[a,b] > 0 for x ∈ (a, b) but f[a,b](x) = 0 otherwise.

51. Theorem of Borel: Every power series is the formal Taylor series of some C∞(R) function. Let
∑∞
n=0 anx

n be some
power series. There is a C∞(R) function g which has this series as its Taylor series at 0.

52. Newton’s method: Let I be an interval and f a function which is twice continuously differentiable on I. Suppose that
for every x ∈ I, we have |f ′′(x)| < M and |f ′(x)| > 1

K . Then if we pick x0 ∈ I, and define the sequence {xj} by:

xj = xj−1 −
f(xj−1)

f ′(xj−1)

Then if every xj is in I and |f(x0)| < r
K2M , we have the estimate:

|f(xj)| ≤
r2
j

K2M

53. Inverses: Let f be continuous and strictly increasing on [a, b]. Then f has an inverse uniquely defined from [f(a), f(b)]
to [a, b].

54. Greatest lower bound: Given a set A of real numbers bounded below, the g.l.b. is given by g.l.b.(A) = −l.u.b.(−A).

55. Riemann upper sum: Let P be a partition of an interval [a, b] with a set of points {x0, . . . , xn} so that x0 = a < x1 <
x2 . . . < xn−1 < xn = b. Then Up(f) =

∑n
j=1 l.u.b.{f(x) : xj−1 ≤ x ≤ xj}(xj − xj−1).

56. Riemann lower sum: Lp(f) =
∑n
j=1 g.l.b.{f(x) : xj−1 ≤ x ≤ xj}(xj − xj−1)

57. Refinement: A partition Q refines a partition P provided that P ⊂ Q.

58. Lower and upper sums under refinement: Let Q be a partition which refines P . Then for any bounded f defined on
[a, b], we have:

LP (f) ≤ LQ(f) ≤ UQ(f) ≤ UP (f)

59. Lower sums always smaller or equal to upper sums: Let P and Q be any partitions of [a, b]. Then for any bounded f
on [a, b], we have LP (f) ≤ UQ(f).

60. Lower and Upper Integrals: Il,[a,b] = l.u.b.{LP (f)}, IU,[a,b] = g.l.b.{UP (f)}

61. Riemann integrability: f is Riemann integrable on [a, b] if and only if the lower and upper integrals are equal.

62. Alternative definition of integrability: A function f is integrable on the interval [a, b] if and only if for any ε > 0, there
is a partition a = x0, . . . xn such that:

n∑
i=1

sup
x∈(xi−1,xi)

f(x)(xi − xi−1)−
n∑
i=1

inf
x∈(xi−1,xi)

f(x)(xi − xi−1) < ε

63. Shifting integral limits:
∫ b
a
f(x)dx =

∫ b+c
a+c

f(x− c)dx

64. Scaling integrals:
∫ b
a
f(x)dx = 1

k

∫ kb
ka
f
(
x
k

)
dx

65. Comparing upper and lower sums: UP (c1f + c2g) ≤ c1UP (f) + c2UP (g) and LP (c1f + c2g) ≥ c1LP (f) + c2LP (g).
Because the maximum and minimum of f may not coincide with the maximum and minimum of g.

66. Uniformly continuity: A function on the interval [a, b] is uniformly continuous if for every ε > 0 there is δ > 0 so that
whenever |x− y| < δ, we have that |f(x)− f(y)| < ε. Note that this has no fixed x. Hence this applies for any x and
any y.
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67. A function f on [a, b] which is uniformly continuous is Riemann integrable.

68. If f is continuous on [a, b] and differentiable at every point of (a, b), and if f ′ is continuous on [a, b], then f is uniformly
continuous on [a, b].

69. Fundamental Theorem of Calculus: Let F be a continuous function on the interval [a, b]. Suppose F is differentiable

everywhere in the interior of the interval with derivative f which is Riemann integrable. Then
∫ b
a
f(x)dx = F (b)−F (a).

70. Fundamental Theorem of Calculus II: Let f be continuous on [a, b[ and let F (x) =
∫ x
a
f(y)dy. Then F ′(x) = f(x).

71. Change of variables formula: Let f be integrable on an interval [a, b]. Let g(x) be a differentiable function taking the

interval [c, d] to the interval [a, b] with g(c) = a and g(d) = b. Then
∫ b
a
f(x)dx =

∫ d
c
f(g(x))g′(x)dx.

72. Improper Integral: If f is bounded and integrable on all intervals of non-negative reals, then
∫∞
0
f(x)dx = limy→∞

∫ y
0
f(x)dx.

If f is bounded and integrable on all intervals [a, y] with y < b, then
∫ b
a
f(x)dx = limy→b

∫ y
a
f(x)dx. These integrals

only converge if the limit defining them converges.

73. Integral test for convergence of series: Let f be a decreasing, nonnegative function of positive reals. Then
∑∞
j=1 f(j)

converges if
∫∞
1
f(x)dx converges. The series diverges if

∫∞
1
f(x)dx diverges.

74. Midpoint method for numerical integration: Partition the interval [a, b] into n equally spaced subintervals. Take mj

to be the midpoint of the ith interval. Then J =
∑n
j=1

b−a
n f(mj). This has error |J −

∫ b
a
f(x)dx| = O( 1

n2 ).

75. Trapezoid rule: J =
∑n
j=1

f(xj−1)+f(xj)
2

b−a
n . This has error O( 1

n2 ).

76. Simpson’s Rule:

J =

n∑
j=1

f(xj−1) + 4f(mj) + f(xj)

6

b− a
n

=
1

3
JTrapezium +

2

3
JMidpoint

77. Taylor Theorem with Remainder:

f(x) =

n∑
j=0

f (j)(c)

j!
(x− c)j +

1

n!

∫ x

c

(x− y)nf (n+1)(y)dy

78. Mean value theorem for integrals: Let f and g be continuous functions on the closed interval [a, b]. Assume that g
does not change sign on [a, b]. Then there is c ∈ (a, b) such that:∫ b

a

f(x)g(x)dx = f(c)

∫ b

a

g(x)dx

79. Taylor’s Theorem with Mean value theorem: There is some d ∈ (c, x) so that:

Rn(x) =
f (n+1)(d)(x− c)n+1

(n+ 1)!

f(x) =

n∑
j=0

f (j)(c)

j!
(x− c)j +

f (n+1)(d)(x− c)n+1

(n+ 1)!

80. Arclength: Let f be a differentiable function on the interval [a, b]. Then the arclength of the graph of f is:∫ b

a

√
1 + f ′(x)2dx

81. Arcsin:

arcsin a =

∫ a

0

dx√
1− x2

π

2
≡
∫ 1

0

dx√
1− x2
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82. Symmetry of sin and cos: cos(π2 − x) = sinx, sin(π2 − x) = cosx. Replace x with π
2 − x to obtain the other.

83. Critical point: Let f be a once continuously differentiable function on an interval I, and x be a point in the interior of
I. x is a critical point of f if f ′(x) = 0.

84. Concavity: A function f(x) is concave if for any a, b, x with x ∈ (a, b), we have:

f(x) ≥ b− x
b− a

f(a) +
x− a
b− a

f(b)

A function is also concave if for any a, b and λ ∈ [0, 1],

f(λa+ (1− λ)b) ≥ λf(a) + (1− λ)f(b)

85. Concavity and second derivative: Let f be twice continuously differentiable. Then f is concave if and only if for every
x, we have f ′′(x) ≤ 0 and convex if and only if for every x we have f ′′(x) ≥ 0.

86. Means: Arithmetic geometric mean inequality: a
1
2 b

1
2 ≤ 1

2 (a+ b). Generalized inequality: aαbβ ≤ αa+ βb if α + β =
1, a, b > 0.

87. Harmonic Geometric Mean Inequality: Let a, b > 0 be real numbers. Then 2
1
a+

1
b

≤
√
ab. Generalized inequality:

1
α
a+

β
b

≤ aαbβ when α+ β = 1 and a, b > 0.

88. n-term Arithmetic Geometric mean inequality: Let α1, . . . , αn > 0 with
∑n
j=1 αj = 1. Then aα1

1 aα2
2 · · · aαnn ≤∑n

j=1 αjaj .

89. Discrete Holder inequality: Let p, q > 0 and 1
p + 1

q = 1. Let a1, . . . an, b1, . . . , bn > 0 be real numbers. Then:

n∑
j=1

ajbj ≤

 n∑
j=1

apj

 1
p ( n∑

k=1

bqk

) 1
q

90. Holder Inequality: Let p, q > 0 and 1
p + 1

q = 1. Let f, g be non-negative intetrable functions on an interval [a, b]. Then:

∫ b

a

f(x)g(x)dx ≤

(∫ b

a

f(x)pdx

) 1
p
(∫ b

a

g(x)qdx

) 1
q

91. Jensen’s Inequality: Let g be a convex function and f be a non-negative integrable function on an interval [a, b]. Then:

g

(
1

b− a

∫ b

a

f(x)dx

)
≤ 1

b− a

∫ b

a

g(f(x))dx

92. Dot product: ~a ·~b = a1b1 + a2b2. ~a ·~b = |~a||~b| cos θ.

93. Cross product: ~a×~b = a1b2 − b1a2. ~a×~b = |~a||~b| sin θ.

94. Euler’s Formula: eiθ = cos θ + i sin θ.

95. Roots of unity: e
2πij
k for j = 0, 1, . . . , k − 1.

96. Fundamental theorem of algebra: Let p(z) be a polynomial with complex coefficients and degree k ≥ 1. Then there is
a complex number z with p(z) = 0.

97. Complex logarithm: log(reiθ) = log r + iθ. Note that there is ambiguity in the selection of θ.

98. Complex sine: sin z = eiz−e−iz
2i .

99. Analytic Function: A complex valued function of a complex variable f(z) which is differentiable at z as a function
of two variables is analytic at z if df(z) is a complex multiple of dz. Let f(z) = u(x, y) + iv(x, y). Then the required
conditions are that ∂u

∂y = − ∂v
∂x and ∂v

∂y = ∂u
∂x .
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100. Order of partial differentiation: Let F be a function of two variables whose first partial derivatives have continuous
first partial derivatives. Then:

∂

∂y

(
∂F

∂x

)
=

∂

∂x

(
∂F

∂y

)
101. Cauchy’s Theorem Let f be analytic with continuous derivative on a rectangle R. Let α be a closed curve lying in

rectangle R. Then
∮
α
f(z)dz = 0.

102. Integration of 1
z :

∮
α
dz
z = 2πi.
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