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Abstract—Optical metasurfaces composed of precisely engineered nanostructures have gained significant attention for their ability to

manipulate light and implement distinct functionalities based on the properties of the incident field. Computational imaging systems

have started harnessing this capability to produce sets of coded measurements that benefit certain tasks when paired with digital

post-processing. Inspired by these works, we introduce a new system that uses a birefringent metasurface with a polarizer-mosaicked

photosensor to capture four optically-coded measurements in a single exposure. We apply this system to the task of incoherent

opto-electronic filtering, where digital spatial-filtering operations are replaced by simpler, per-pixel sums across the four polarization

channels, independent of the spatial filter size. In contrast to previous work on incoherent opto-electronic filtering that can realize only

one spatial filter, our approach can realize a continuous family of filters from a single capture, with filters being selected from the family

by adjusting the post-capture digital summation weights. To find a metasurface that can realize a set of user-specified spatial filters, we

introduce a form of gradient descent with a novel regularizer that encourages light efficiency and a high signal-to-noise ratio. We

demonstrate several examples in simulation and with fabricated prototypes, including some with spatial filters that have prescribed

variations with respect to depth and wavelength.

Index Terms—Metasurface, Image processing, Polarization-Encoded Point-Spread Functions, Optical Filtering

✦

1 INTRODUCTION

THere is a rich history in computational imaging of
using measurements that are “coded”, meaning they

are recorded by photosensor arrays that are coupled with
task-specific, spatially-modulating optics. Multi-shot sys-
tems record two or more of these coded measurements
sequentially over time, often through dynamic aperture
patterns that are implemented by mechanized optics or con-
trollable spatial light modulators. By combining the coded
measurements with suitable digital processing, multi-shot
systems have played an important role in depth sensing [1]–
[4], wavefront sensing [5]–[7], light field imaging [8] and
hyperspectral imaging [9]–[12].

Motivated by a desire for improved temporal resolution,
there is also work on systems that capture multiple coded
measurements in a single exposure. Most of these use a
Bayer-like photosensor, which has a pixel-aligned mosaic
of three spectral filters, in conjunction with a wavelength-
dependent spatial modulator that induces distinct codes on
the three channels. Early examples use this approach to
acquire depth maps, all-in-focus images, or hyperspectral
images [13]–[16]. Improvements to functionality and perfor-
mance have continued, using the conventional three spectral
channels (e.g. [17], [18]) or more spectral channels [19].

Analogous to Bayer or spectrally-mosaicked filter arrays,
photosensors with interleaved polarization filters are now
also quite common [20]–[22]. These measure four linear
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polarization channels and provide a new avenue for snap-
shot multi-coded imaging. For example, the recent work
of Ghanekar et al. [23] uses two of the four polarization
channels with a task-specific, polarization-dependent spa-
tial modulator for snapshot depth imaging. In our work, we
aim to expand the capabilities and potential of multi-coded
imaging with polarization.

Specifically, we explore the design and functionality of
a new snapshot system that uses a birefringent metasurface
and a polarizer-mosaicked photosensor, as depicted in Fig-
ure 1a. While there are other polarization-dependent optical
components that may be used for spatial modulation at
the aperture plane, metasurfaces stand out for their ability
to produce distinct, spatially-varying transformations of an
incident field for different polarization states [24]. We apply
our system to the task of opto-electronic filtering, where the
digital spatial filtering operation on an image is replaced by
the weighted, pixel-wise summation of the four optically-
encoded measurements captured on the sensor’s four polar-
ization channels. This task is inspired by classical work on
optical image processing [25], [26], where a filtered image
of a scene is synthesized by the pixel-wise subtraction of
two (unpolarized) coded measurements, captured simulta-
neously using a beamsplitter and distinct modulators placed
in parallel optical paths.

The technical heart of our paper is an approach to solve
a related class of computational design problems which we
call multi-image synthesis problems. In the simplest case, we
are given the specification of two real-valued spatial filtering
kernels f (1)(u, v), f (2)(u, v), along with the depth z and
wavelength λ of an ideal axial point source. For these, we
aim to design the arrangement of nanostructures on the
metasurface such that the spatial-polarimetric interference
pattern they induce on the sensor yields four, non-negative
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Fig. 1. (a) Our system includes a birefringent metasurface and a
polarization-mosaicked sensor, optionally preceded (see text) by a stan-
dard linear polarizer and narrow-band spectral filter. The metasurface
comprises nanofins with varying widths wx, wy . Each nanofin imparts
local phase delays φx, φy (in radians) to two linear polarization states
(in addition to amplitude modulations, not shown here). (b) Visualization
of the local phase delays imparted by a single nanofin as a function of
its widths, as computed by a field solver for incident light of wavelength
532nm. White areas cannot be imparted by any pair of widths in this
range.

per-channel point spread functions (PSFs) hc(u, v) that can
synthesize the specified filters via pixel-wise linear combi-
nations:

f (i)(u, v; z, λ) ≈
∑

c

α(i)
c hc(u, v; z, λ), c ∈ {0◦, 45◦, 90◦, 135◦}

for some set of digital weights α
(1)
c , α

(2)
c ∈ R.

We solve these problems by using a pre-trained multi-
layer perceptron (MLP) to differentiably map the collection
of nanostructure shapes, parameterized by roughly 107 total
parameters, to their optical responses. We then use gradient
descent through a differentiable field propagator to find
the set of nanostructures and digital weights that locally
minimize the approximation error. In doing so, we find it
necessary to introduce a new regularizer that constrains
the solution space and encourages the per-channel point-
spread functions to be light-efficient, spatially compact, and
mutually orthogonal.

We highlight that, in theory, the four coded measure-
ments captured by the sensor’s four linear polarization
channels cannot be independently designed, because the
specification of two PSFs h0◦ , h90◦ uniquely determines the
others. However, we show experimentally that relaxing the
design specification to allow h0◦ , h90◦ to be merely close
to their target PSFs over a finite domain provides enough
flexibility for h45◦ , h135◦ to be separately and usefully de-
signed. This observation can be exploited not just for our

spatial filtering objective, but for any task that uses linear
polarization sensors for snapshot coded imaging.

Like previous approaches to opto-electronic filtering, our
system uses optics to reduce the computational complexity
of spatial filtering operations to a pixel-wise summation that
is independent of filter size. However, compared to previous
approaches it offers several advantages. First, it is compact
because it avoids beamsplitters and other bulky refrac-
tive elements. Second, by increasing the number of coded
measurements from two to four, it can synthesize spatial
filtering operations corresponding to any linear combination
of two target filters (and thus an infinite set of spatial
filtering kernels) by changing only the digital summation
weights. Third, the spatial filtering kernels can be designed
to match a prescribed depth or wavelength dependence,
thereby producing synthesized images that have no equiva-
lent post-capture, digital counterparts. Fourth and finally, by
capturing multiple images on distinct polarization channels
instead of spectral channels, we can enforce the functionality
of the system without introducing assumptions about the
scene’s material properties. As a result, this is the first
compact (single-optic) demonstration of snapshot incoher-
ent image processing suitable for real-world scenes.

We apply our system to various optical image processing
tasks and perform evaluations in simulation and with a
prototype camera. In addition to providing the code and
data for the specific results in this paper1, we also create
and release a much larger open-source package, called D-
Flat, for comprehensive end-to-end metasurface design2. We
summarize the contributions of this paper as follows:

• We propose a metasurface-based architecture to cap-
ture four images simultaneously on different polar-
ization channels. Although the measurements are
theoretically not independent, we demonstrate that
in practice they can all be engineered and utilized.

• We introduce a generalization of two-channel opto-
electronic filtering to multiple channels and demon-
strate that gradient descent with a suitable regu-
larizer can find solutions that operate well under
standard imaging conditions.

• We design several image-synthesis systems that dis-
play new functionalities relative to previous work
by virtue of metasurface co-optimization. We present
validation for the design theory by comparison to
numerical field solvers and experiment.

2 RELATED WORK

2.1 Metasurface Optics

Metasurfaces are a class of recently matured optical devices
that consist of sub-wavelength scale structures patterned
on a planar, transparent substrate. By judiciously selecting
the shape of each nanostructure, the local polarization- and
wavelength-dependent optical response can be customized.
Moreover, by tailoring the arrangement of nanostructures
across the surface, metasurfaces can focus light with high
efficiency and can produce structured PSFs that complement
downstream computational tasks [27], [28]. Detailed reviews

1. https://github.com/DeanHazineh/Multi-Image-Synthesis
2. https://github.com/DeanHazineh/DFlat
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outlining the development and theory of optical metasur-
faces can be found in [24], [29], [30]. Previous metasurface-
based systems for snapshot coded imaging have used
panchromatic sensors and have captured their coded mea-
surements by designing the optic to induce their (two or
four) distinct measurements at spatially-offset locations on
the sensor [31]–[34]. In contrast, our system superimposes
its coded measurements at the same spatial location on
a sensor, and it uses the sensor’s polarization mosaic to
separately sample them.

2.2 Neural Representations

In Section 3.3, we introduce an MLP to efficiently model
the mapping from a nanostructure’s shape to the optical
modulation it imparts on an incident field. This builds
on a history of applying deep learning to tasks in nano-
photonics, as reviewed in [35], [36]. Most similar to us are
uses of fully connected neural networks for mapping shape
to broadband phase [37]–[41]. However, our work differs by
using neural models in an end-to-end optimization frame-
work, which is reflected in differences in our architecture.
Besides predicting the phase and transmittance for two
polarization states, we include wavelength as an input to
our MLP which provides a low-dimensional input/output
mapping that is similar to coordinate-MLPs [42].

2.3 Incoherent Spatial Filtering

Opto-electronic filtering with incoherent light has recently
been revisited in [43], [44], where a photonic crystal slab
or a multi-layer film is coupled with a refractive lens. In
both cases, the optical responses at two narrow wavelength
bands are engineered to create two coded measurements
that are captured at the photosensor using an array of
spectral filters. These two types of optical modulators work
by imparting a transmission that is dependent on the angle
of incidence, and because of this, they can only reshape
the Gaussian PSF of the refractive lens and cannot produce
more general PSFs like we show in this paper. Moreover,
these methods require that all objects in the scene emit light
of equal intensity at the two designed wavelength bands,
which cannot be enforced in practice and limits their utility.

2.4 Constrained Matrix Factorization

The optimization task that we encounter in this paper is
loosely related to prior work on finding constrained matrix
factorizations. Specifically, an optimization problem that is
related to our main objective is

argmin
H≥0,A

∥F −HA∥
2
, (1)

where the columns of F ∈ R
N×2 are a pair of spatially-

discretized target filters to be realized by synthesis. The four
columns of H ⊂ R

N×4
≥0 are the four (non-negative) compo-

nent PSFs produced by the optical system and captured at
the photosensor, and the two columns of A ∈ R

4×2 are the
sets of digital image weights. Objective (1) has been called
semi-nonnegative matrix factorization or semi-NMF [45].

In contrast to us, previous work has explored problems
of this form for situations where the columns of F outnum-
ber the columns of H , and where the recovered H and

A provide clustering or dimensionality reduction. In that
context, one usually iterates between updates of H and A;
see [46] for an early review. In our case, we use gradient
descent because it allows for the incorporation of conditions
that are specific to our domain, namely that the columns
of H are nonlinearly parameterized by the metasurface
shapes and outnumber the columns of F ; and that neither
nonnegativity nor orthogonality constraints are applied to
weights A.

3 PROPOSED METHOD

In this section, we present a method to solve the optimiza-
tion problem described in the introduction. In doing so, we
rely on the principle of incoherent image formation based
on the point-spread function (PSF). A simple model follows
from imagining a scene to be composed of planar, emitting
surfaces at various depths, which are each parallel to the
image sensor and do not occlude each other within the
field of view. For a polarization channel denoted by c, the
spectrally-integrated intensity distribution in that channel
at the photosensor plane Ic(u, v) can be approximated by
the spectral sum of 2D spatial convolutions between the
depth-dependent and wavelength-dependent PSF hc and
the (magnified) scene radiance Ic via

Ic(u, v) =
∑

λ

Ic(u, v, z;λ) ∗
(u,v)

hc(u, v, z;λ). (2)

From the linearity of convolution, it is clear that a pixel-
wise linear combination of such measurements

∑

c αcIc is
equivalent to spatially filtering the scene radiance with an
effective “net PSF” given by

∑

c αchc. In what follows, we
use polarization channels to capture measurements Ic, and
so we assume that the scene emits light that is unpolarized,
meaning Ic = I, ∀c. In practice, we can ease this assump-
tion by placing a linear polarizer at the entrance of the op-
tical system, as shown in Figure 1a. The relative orientation
of the polarizer is chosen to project equal intensity on two
specific linear polarization states.

3.1 Metasurface Point Spread Function

In this work, we define the relationship between the meta-
surface and the point-spread function hc by employing a
standard cell-based treatment, whereby the metasurface is
considered as the composition of smaller building blocks
[27]. While summarized here, a detailed review of the design
theory can be found in [47].

We define the metasurface Π as a collection of cells on a
regular grid of points χ. The nanostructures in each cell may
then be specified using a set of shape parameters π. Here,
we consider 350 nm wide square cells that each contain a
single 600 nm tall nanofin, parameterized by the fin widths
wx and wy , i.e.,

Π = {π(x′, y′)|(x′, y′) ∈ χ}; π(x′, y′) = (wx′ , wy′). (3)

We use an electromagnetic field solver to compute solutions
to Maxwell’s equations and create samples of the map-
ping O from the cell to its local optical response, given by
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Fig. 2. (a) A pre-trained MLP provides an efficient, differentiable proxy
for the nanofin field solver (FDTD). It maps shape parameters and inci-
dent wavelength to phase and transmittance values for two polarization
states. Phase is wrapped to 2π as drawn. (b,c) Comparisons between
FDTD and MLP outputs at 5x the resolution used for pre-training, for (b)
fixed wavelength λ = 532 nm and (c) fixed nanofin width wy = 180 nm.

the wavelength-dependent amplitude transmittance tc and
phase delay φc imparted to an incident wavefront,

O (π(x′, y′), λ) = tc(x
′, y′)eiφc(x

′,y′). (4)

We then approximate the phase and transmittance profiles
of the full metasurface by stitching together the spatial grid
of per-cell responses.

Notably, since the cells are sub-wavelength, its optical
response should in fact be dependent on the nanostructures
present in neighboring cells. To enable the treatment of a cell
as an independent building block, however, a key assump-
tion that is made in the design theory is the application of
periodic boundary conditions when solving for the field. By
utilizing periodic boundary conditions, we obtain an approx-
imation to the true local optical response that is independent
to the selection of cells at other locations on the metasurface.
In practice, it is observed that this assumption is sufficiently
accurate to describe composite, aperiodic devices as long as
the spatial gradients ∇π are generally small. In supplement
S2, we validate this treatment by designing reduced-size
versions of the metasurfaces presented in the results section.
We compare the optical response and the PSF obtained
when solving for the full field across the metasurface to that
obtained when utilizing the cell approach and find close
agreement.

We compute the mapping in Equation (4) for nanofins
made of titanium dioxide (TiO2) using a commercial finite-
difference time-domain (FDTD) solver, assuming normally
incident light of two orthogonal polarization states (0◦, 90◦),
chosen to be aligned with the x and y axis of χ. The optical
response need only be computed for a pair of orthogonal
linear polarization states since the response for all other in-
plane incident angles may be obtained by a change of basis.
More details of the simulation are provided in supplement
S1. We sweep nanofin widths between 60 and 300 nm, re-
sulting in a dataset of 2304 cell instantiations, and compute
the optical response for wavelengths between 300 and 750
nm. Slices from this dataset are displayed in Figure 2b-c.

This set of optical responses constrains the space of
possible polarization- and wavelength-dependent PSFs that
can be produced by the metasurface. For incident light of a
single wavelength λ = 532 nm, we show in Figure 1b that
the local phase delays, φx, φy , imparted to the two polar-
ization states approximately span the full range (wrapped
to 2π) and can be nearly decoupled. We may then consider
that a metasurface assembled from a collection of these cells
can be used to realize two distinct, spatially varying phase
modulations and can produce a pair of PSFs that can be
(approximately) independently designed.

Given the phase and transmittance defined across the
metasurface (applied linearly to an incident, spherical wave-
front originating from an axial point-source), we obtain the
complex PSF at the photosensor a distance d after the optic
by per-channel propagation using the Fresnel diffraction
equation [48], given in integral form via,
√

hc(u, v; z)e
iψc(u,v;z) =

∫∫

Tc(x, y)Q(u, v;x, y)dxdy (5)

where Tc corresponds to the wavefront after the metasurface
and Q is the standard Fresnel kernel,

Tc(x, y) = tc(x, y)e
iφc(x,y)

eikr

r
for r =

√

x2 + y2 + z2

Q(u, v;x, y) =
eikd

iλd
exp

[
ik

2d

(
(x− u)2 + (y − v)2

)
]

.

(6)

In carrying out this calculation, we define a finite sim-
ulation region S ⊂ R

2 at the sensor plane, comprised of
a uniform grid of points centered around the optical axis.
Due to computational constraints, this region covers an area
that is smaller than the actual dimensions of the intended
photosensor. Notably, light that is scattered outside of the
simulation region is undesirable as it reduces both the
contrast and the signal-to-noise ratio of images formed by
the system. To quantify the amount of light that is deflected
away, we evaluate as a metric the focusing efficiency, which
is defined as the fraction of incident light on the metasur-
face that is transmitted and scattered within the simulation
region. In the remainder, we use the shorthand hc to denote
the intensity and ψc the phase of the field that is induced on
the simulation region.

3.2 Interference of Birefringent PSFs

While four polarization states are simultaneously sampled
by the polarizer-mosaicked photosensor, we note that the
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Fig. 3. Visualization of the phase ψ0◦ and intensity h0◦ (insets) at the
photosensor plane for a phase-only optic optimized according to Equa-
tion (8). The target intensity distribution was a uniform disk. A cosine-
similarity (sim) loss function was used in (a) while the L1 loss was used
in (b). The text percent denotes the focusing efficiency for that particular
solution. Different intensity approximations to the target distribution, and
thus different output phase distributions, can occur by errors in the
intensity within the simulation region or by discarding energy outside
of the simulation region. Using a focusing-lens initialization (c) and a
random phase initialization (d), a pair of phase profiles for the optic are
optimized to approximate specified intensity distributions on h0◦ , h90◦

(uniform disk) and on h45◦ , which is formed from the interference.

set of intensity measurements captured in our system are
not fully independent. Specifically, given the intensity and
phase of the 0◦ and 90◦ polarized fields that are induced at
the sensor plane by the metasurface, the intensity measured
on the 45◦ and 135◦ channels may defined in terms of the
interference,

h45◦(135◦) =
h0◦

2
+
h90◦

2
∓

√

h0◦h90◦ cos(ψ0◦ − ψ90◦). (7)

Consequently, while the intensity patterns on all four chan-
nels are distinct, the design space is constrained and only
three measurements are linearly independent. Despite this
fact, it is still beneficial to utilize all four measurements as is
discussed in Section 3.4.

Since our proposed method relies on the ability to engi-
neer the collection of PSFs, we raise the following question:
When the intensity distributions h0◦ and h90◦ are fixed,
what is the space of functions that can be realized for
h45◦ by structuring the phases at the sensor plane, ψ0◦

and ψ90◦? For simplicity, let us consider the transmittance
of the metasurface to be a uniform disk with a spatial
constraint set by the aperture. In an exact sense, the answer
is then disappointing. Transport of intensity [49] tells us
that specifying the intensity h0◦ (or h90◦ ) everywhere on
the sensor plane determines the phase ψ0◦ (or ψ90◦ ), and so
the number of possibilities for PSF h45◦ is exactly one.

However, a key concept in this work is that substantially
more flexibility emerges in the solution space when we
are only interested in (and capable of realizing by gradient
descent) intensity distributions at the sensor that approximate
a target distribution over a finite subset of that plane.
Fortunately for us, there are an infinite number of these
approximations, and because each corresponds to a different

phase distribution, we may control the intensity measured
on the interference channels. For our particular task, we
also highlight that our approach relies less on having exact
intensity distributions for each of the component PSFs and
much more on the accuracy of their linear combination.

To visualize this flexibility, we first borrow inspiration
from [50] and compute different instantiations of the phase
at the sensor plane ψ0◦ that emerges when using gradient
descent to optimize the intensity h0◦ to approximate a
target intensity h′. We use different initial conditions and
terminate descent after a fixed number of steps. Specifically,
we solve the following minimization problem to recover the
phase modulation on the optic,

φ∗ = argmin
φ

[

L
(

|P (teiφ)|2, h′
)]

, (8)

where P denotes the free-space propagation operator of
Equation (5), transmittance t is set to be unity within an
aperture radius, and we consider different loss functions for
L to emphasize qualitatively different intensity solutions.
Examples of the optimized sensor plane intensity and phase
distributions (produced after propagating the field of t and
φ∗) are shown in Figure 3a-b. In panels c-d, we provide
a similar visualization demonstrating how these different
approximations to intensity enable the ability to uniquely
structure the interference. While the pair of intensities h0◦
and h90◦ are again optimized to approximate the target h′, a
different user-defined intensity distribution for h45◦ can be
realized.

3.3 Neural Optical Model

Motivated by the recent success of coordinate-MLPs as
neural implicit representations for a suite of tasks [42], [51],
we employ a pre-trained MLP as a differentiable proxy
function for the mapping between nanofin cells and their
optical response (Equation 4). We consider the network
depicted in Figure 2a, consisting of two hidden layers, ReLU
activation, and between 256 and 1024 neurons per layer.
Min-max normalization is applied to the inputs and phase-
wrapping is handled by predicting the geometric projection
of the phase (often referred to as cyclical feature encoding).
After training on the FDTD data, we find that the model can
accurately reproduce the mapping, with a mean absolute
error in complex field predictions for a withheld test set as
low as 0.019. Qualitatively, we also observe that the model
can correctly identify the cells that experience resonances
which are characterized by dips in the transmission. The
FDTD and MLP outputs are visually compared in Figure
2b-c.

As a benchmark, we compute the number of floating
point operations for an equivalent calculation utilizing the
auto-differentiable field solver in [52]. We find that the
MLP requires approximately a factor of 103 to 104 fewer
floating point operations per evaluation. Additional details
are provided in supplement S3. In the supplement, we
also compare the usage of an MLP to alternative models
including elliptic radial basis function networks and multi-
variate polynomial functions (as was used for nanocylinder
metasurface design in [53]). We find the MLP to be substan-
tially more accurate and to be the only model tested that
reproduces the high-spatial frequency features in the data.
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Fig. 4. Depiction of the minimum-bias problem in multi-image-synthesis.
On the first row, example decompositions with two component PSFs (red
and blue) are shown for a Laplacian of Gaussian target. On the second
row, the dashed black line corresponds to the target filter and the solid
black corresponds to the synthesized net PSF. The computed mean
signal-to-bias ratio (Equation 9) from left to right are 0.38, 0.76, and 1.0.
The decomposition in (c) corresponds to the minimum-bias solution.

Once trained, the network weights are fixed and the MLP
is used for the main optimization tasks in this work. In
order to constrain the learned nanofin dimensions wx, wy
to be within the min-max bounds of the training dataset,
we use reparameterization [54], [55] and optimize over an
unconstrained latent variable that is transformed to the
bounded nanofin widths.

3.4 Multi-Image Synthesis Optimization

In this section, we discuss our optimization algorithm to de-
sign a metasurface that produces four polarization-encoded
measurements for image processing. Since the formation
of an incoherent image may be modeled by convolution
with the intensity PSF (Equation 2), spatial frequency fil-
tering objectives may be formulated as the realization of
a discretized, target filtering kernel F ∈ R

BxNx1 from the
linear combination of non-negative PSFs. Throughout, B
denotes a batch dimension corresponding to the channels
of wavelength and depth, and N denotes the number of
sensor/image pixels used to define the kernel (flattened to
1D).

Considering the polarizer-mosaicked photosensor, our
optical system is characterized by the collection of four PSFs,
defined as H = [h0◦ , h45◦ , h90◦ , h135◦ ] where H ⊂ R

BxNx4
≥0 .

The PSFs h0◦ and h90◦ are computed utilizing Equations
(4)-(6) for a given metasurface, while h45◦ and h135◦ are
defined according to the interference via Equation (7). A
set of digital weights are defined as α ∈ R

4x1 such that
the (noiseless) synthesized net PSF approximating the target
filter is given by the tensor product Hα. Throughout this
paper, we use the notation XY to represent batched matrix
multiplication between tensors X and Y 3. The primary task
is then to identify suitable decompositions for α and the
physics-constrained tensor H (produced by a metasurface
Π) given one or more target filtering kernels.

While there are infinitely many solutions to this fac-
torization problem, we highlight that not all will perform

3. More generally, matrix operations applied to a tensor corresponds
to the operation on the matrix in the inner-two dimensions. For exam-
ple, if H has the shape [BxNx4], then HT takes the shape [Bx4xN ].

equally well in the presence of noise. Specifically, we con-
sider a measurement model Γ : R → R mapping photons
at the photosensor plane to detected electrical signal, where
the noise scales with the signal intensity (see supplement
S5 for details). The digitally-synthesized net PSF Γ(H)α
may then be unusable if the net signal at a pixel is much
weaker than the noisy component signals. This challenge
of identifying optimal decompositions has historically been
referred to as the minimum-bias problem [26], [56]. We
note that the consideration of measurement noise is also
the reason that it is beneficial to optimize over all four
polarization channels although one is not linearly inde-
pendent. Specifically, it is the comparison between directly
measuring Γ(h135◦) as opposed to its digitally synthesized
counterpart, a1Γ(h0◦)+a2Γ(h45◦)+a3Γ(h90◦) where ai are
scalar constants (see Figure 6 for a practical example).

A qualitative example of different decompositions of
varying quality are shown in Figure 4. Optimal solutions to
the unconstrained problem may be characterized by orthog-
onality for the component signals that are to be digitally
subtracted. To quantify the quality of a particular solution,
the authors in [26] propose as a metric the mean signal-to-
bias ratio which may be given in a generalized form via,

mSBR = ∥|Hα| ⊘H|α|∥ /N, (9)

where |·| denotes an element-wise absolute value and ⊘
denotes Hadamard division. Throughout we apply vector-

like norms for matrices ∥X∥p =
(
∑

ij |Xij |
p
)1/p

, where

p = 1 if unstated.
To identify a set of digital weights α and a metasurface Π

that together can realize target filtering operations, we then
propose an optimization scheme utilizing gradient descent
and a regularizer motivated by Equation (9). We formulate
the objective as

argmin
α,Π

∑

i

[∥
∥
∥
∥
∥

F (i)

∥
∥F (i)

∥
∥
2

−
Hα(i)

∥
∥Hα(i)

∥
∥
2

∥
∥
∥
∥
∥
+R

]

, (10)

where the superscript (i) enumerates over different sets of
weights and targets. We use a two-term regularizer R given
via,

R = −c1 Tr (R)
︸ ︷︷ ︸

energy

+c2 ∥M ◦R∥
︸ ︷︷ ︸

bias

, (11)

where R = HTH , M = max
(
−ααT , 0

)
, c1, c2 are hyper-

parameters, and ◦ denotes the Hadamard product.
Objective (10) aims to synthesize net PSFs that approxi-

mate the set of target filters only up to scale. The (batched)
matrix R contains the terms Ri,j = ⟨hi, hj⟩ such that the
elements on the diagonal are monotonically related to the
energy in each polarization channel. The first regularizer
term scaled by the coefficient c1 then encourages the learned
metasurface to have high focusing efficiency and the PSFs
it induces to be spatially compact, i.e., contained within
the finite simulation region. The second term controlled by
the coefficient c2 corresponds to a masked orthogonality
constraint that minimizes the pair-wise overlap of PSFs
with digital weights of opposite sign. In supplement S4,
we show that this masked bias-regularizer emerges as a
generalization of Equation (9) when considering distance
metrics of the form D (|Hα|, H|α|).
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Fig. 5. Visualization of the learned PSF decomposition for a metasurface
optimized with and without regularization (monochromatic incident light
and a single depth). The target filter is a second-derivative Gaussian
kernel and a noisy measurement model Γ(H) is applied to the PSFs.
Overlaid text denotes the PSNR which here compares the similarity
between the synthesized net PSF with and without component noise.
Blue and red pixel colors correspond to negative and positive signal,
respectively. The per-channel PSFs shown are displayed after the dig-
ital scaling, αcΓ(hc). When applying the bias regularization term, the
gradient descent solution may learn to use fewer than all four images if
beneficial via setting αc terms close to zero.

In Figure 5, we display an ablation study for the regu-
larization terms (see supplemental Figure 8 for visualization
with rendered images). Interestingly, for several target filter-
ing kernels and initial conditions, we empirically observed
that the unregularized gradient descent (c1 = 0, c2 = 0)
naturally produced low-bias solutions but with a significant
amount of energy deflected outside of the simulation region.
Both the energy and bias regularization terms together were
then required to achieve bias and energy efficient solutions.
We note that while it is feasible to consider the application
of noise via Γ(·) as a regularizer, we found that doing so
produced unstable optimizations for noise levels that are
large enough to have a substantial effect.

Lastly, we discuss an end-to-end variant of the objective
in Equation (10), used in this work to realize synthesized
filters that operate under broadband illumination. We again
define a target filtering kernel F but we now compute
the loss with respect to rendered images for planar scene
radiances I ∈ R

BxMx1
≥0 via,

argmin
α,Π

∑

i

[∥
∥
∥
∥
∥

F (i) ∗ I
∥
∥F (i)

∥
∥
2

−
(H ∗ I)α(i)

∥
∥Hα(i)

∥
∥
2

∥
∥
∥
∥
∥
+R

]

, (12)

where the spatial dimension of the tensors are unflattened
prior to the 2D spatial convolution denoted by ∗. We note
that it is not important here that the rendering treatment
be accurate for complicated scenes. Rather, we leverage a
loss based on convolved images in order to learn PSFs that
yield an image transformation with similar statistics to the
target operation. For example, while it is not possible to
synthesize a compact net PSF that matches a fixed-width
Laplacian of Gaussian kernel for all wavelength channels,
we can instead discover a similar but physically realizable
net PSF that approximates broadband edge-detection (see
Section 4.3 for more discussion).

4 RESULTS

In the following sections, we optimize 2 mm diameter
metasurfaces4 according to objective Equations (10) and
(12) and design multi-image synthesis systems for different
tasks. Throughout we utilize an Adam optimizer with an
exponentially decaying learning rate. All calculations are
implemented in Tensorflow and we obtain gradients by
automatic differentiation. When computing the PSFs, we
evaluate the intensity and phase at the photosensor plane
with sub-pixel resolution and use strided-convolutions to
down-sample the field to match the simulated sensor’s pixel
pitch.

In principle, the regularizer coefficients c1, c2 are hyper-
parameters that should be chosen by a parameter sweep
conducted for each task. In practice, however, we find
that starting with reasonable initial conditions reduces the
sensitivity to the exact values chosen. As an example, in
Section 4.1 where the target filter is a Gaussian derivative
kernel, we initialize the metasurface to focus h0◦ and h90◦
to two off-axis points; in Section 4.3 where the target is
edge-detection, we initialize to focus on-axis with different
focal spot widths. In doing so, we find that we may set the
bias regularizer coefficient c2 to a single value that is fixed
for all optimizations. We then conduct a coarse parameter
sweep for the energy regularizer coefficient c1 for each task,
increasing the value and re-running the optimization until
the total energy in the simulation region for optimized PSFs
converged.

When rendering images, the photosensor and its noise
properties are modeled according to the EMVA standard
[57] (see supplement S5 for details and the sensor parame-
ters used). We specify the peak signal-to-noise ratio (PSNR)
characterizing the simulated sensor noise, which is then
used to scale the maximum brightness of the scene (number
of photons) according to supplemental Eq. (3). While the
PSFs are optimized over a smaller simulation region, the
PSFs induced by the post-trained metasurfaces are com-
puted across a larger area when used for rendering in order
to capture the effects of scattered light. For demosaicing,
we find it sufficient in most cases to use simple nearest-
neighbor interpolation; we observe that the improvements
from bi-linear interpolation or more advanced treatments
are generally imperceptible since our target filters are rela-
tively large and smoothly varying.

We present experimental validation for the inverse-
designed metasurfaces and the PSF decompositions in Sec-
tion 4.4 (see also FDTD simulations in supplement S2).

4.1 Multi-filter Design: Steerable Derivatives

We first demonstrate that it is possible to realize multiple
opto-electronic filtering operations using a single fixed optic
and the capture from a single exposure. Specifically, one
may obtain different filtered images of a scene by chang-
ing only the digital synthesis weights α. To do this, we
exploit the class of steerable filters whose space of orientated
kernels lie in the span of a small number of basis kernels,
as discussed by the authors in [58]. In particular, we focus

4. While larger metasurfaces may be designed and fabricated, we
choose 2 mm optimizations as they can be done on a standard desktop
GPU enabling easier accessibility.
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Fig. 6. Multi-image synthesis for digitally steerable Gaussian first-derivatives. (a) The optimized metasurface phase and transmission imparted
to incident light of two linear polarization states is shown (designed for infinity-focus). Below are the simulated PSFs for the four measurable
polarization channels. Total focusing efficiency of the metasurface is approximately 71%. (b) Top row displays the synthesized net PSFs where
α(1),(2) are learned and α(3),(4) are defined by Equation (13). Below are the synthesized, net images computed by first rendering the images for
each polarization channel (where I0◦ is displayed). The four images are then combined by per-pixel addition with weights α(i).

attention to the steerable Gaussian first derivative, parame-
terized by two basis kernels. Demonstrating examples that
utilize a larger number of basis functions may be a topic
of future investigation. The optical implementation is made
possible by the fact that our architecture grants us access to
four imaging channels, while we require at minimum only
two channels per basis kernel in order to encode the positive
and negative components of the signal.

In particular, for a co-designed set of PSFs H induced by
the metasurface, we desire a set of synthesis weights α(1)

that yields a net PSF corresponding to the Gaussian first
derivative along the x-axis and another set of weights α(2)

corresponding to the first derivative along the y-axis. From
this pair, the synthesis weights corresponding to the deriva-
tive along any other direction, specified by the rotation angle
θ, can be defined via,

α(θ) = α(1) cos(θ) + α(2) sin(θ). (13)

By optimizing for the two basis filters as targets using
Equation (10), we thus obtain an infinite (but compact) set
of filters that can be digitally isolated.

For simplicity, we design this metasurface to operate
for monochromatic light of λ = 532 nm and infinity-
focus. The optical response of the optimized metasurface
and its simulated performance in imaging a target scene
is displayed in Figure 6. Notably, the optimization learns
a minimum-bias decomposition to approximate the two
target filters and the resulting metasurface can then produce
differentiated images at any orientation angle. We also show
that the synthesized filtered images are of suitable quality
even when the component images are captured with low
SNR.

4.2 Depth-dependent Differentiation

We demonstrate that the filter-based optimization objective
(Equation 10) can also be used to learn image transforma-
tions that are dependent on properties of the incident field.
Specifically, we frame the target filter as a Gaussian first-
derivative but with an orientation angle that varies with
respect to the depth of an on-axis point-source. We then
optimize for a metasurface Π and a single set of digital
weights α. The synthesized image formed from this optical
system would correspond to a differentiated image of the
scene but with a spatially varying filter dependent on the
depth of each object.

We consider monochromatic light of λ = 532 nm and
define the derivative orientation to vary linearly across a
depth range of 1 cm. Since a minimum of only two captured
images are theoretically needed for this case, we conduct the
optimization utilizing two polarization channels (trained by
zero-masking the weight values α2,4 = 0). These results are
shown in Figure 7a. We note that when the general four
image case is considered with a non-zero bias regularizer,
the optimized solution also converges to utilization of just
two images. In either case, we find that the trained metasur-
face accurately learns to approximate the rotating kernel by
encoding each lobe on orthogonal polarization channels.

We also show in simulation the potential use of this
optic for a simple test scene consisting of fronto-planar
disks of uniform intensity at different depths, as displayed
in Figure 7b. Inspired loosely by the principle of depth
from differentiated images in an event-camera architecture
[59], we hypothesize that these depth-dependent derivatives
may enable a unique approach to passive depth sensing by
serving as a sparse depth cue that is coaligned with the
undifferentiated, component images. Applying an equiva-
lent spatially-varying kernel would be difficult to reproduce
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Fig. 7. Multi-Image synthesis applied to the task of depth-dependent
directional differentiation. The metasurface here is optimized for two-
channel operation using h0◦ and h90◦ (a) The simulated PSFs and the
synthesized net PSF are shown for point-sources at different depths.
Total light efficiency is approximately 60%. (b) The rendered compo-
nent images and synthesized net image for a scene consisting of four
uniform-intensity fronto-planar disks with relative depths indicated by the
map (between 33 and 41 mm from the metasurface).

using a standard lens and digital post-processing. In the
multi-image synthesis method, however, it emerges with a
computational cost of as few as three floating point opera-
tions per pixel.

4.3 Broadband Filter Design: Edge-detection

Here we discuss the potential to leverage dispersion engi-
neering in metasurfaces to the task of multi-image synthesis.
We review that the PSFs produced by a metasurface vary
with wavelength because both the optical response of cells
(see Figure 2b) and field propagation from the optic to the
photosensor (see Equation 5) are wavelength dependent.
While we cannot control the latter, the freedom to select the
cells that are placed at each location across the metasurface
enables the ability to structure the PSFs with respect to
wavelength. Importantly, the control and precision depends
on the functional space of t(λ) and φ(λ). Here, we continue
utilizing nanofin cells; however, we highlight that a sub-
stantially larger design space can be realized by considering
cells with more complicated nanostructures. An example is
the three nanofin design introduced in [60], which contains
seven shape parameters per cell instead of two. Exploration
of the filters that can be realized in such case is left to future
investigations.

To demonstrate broadband capabilities, we utilize the
image-based objective Equation (12) and design an infinity-
focused (radially symmetric) metasurface and a single set
of synthesis weights. We optimize over a spectral range
between 500 and 600 nm, with a 10 nm step size. The target
filter is defined to be a narrow Laplacian of Gaussian kernel

Fig. 8. Broadband edge-detection (a) The PSFs for the four polariza-
tion channels at different wavelengths across the optimization range.
The h90◦ intensities have a larger spatial extent and are shown on
a larger grid in the overlaid insets. (b) The synthesized net PSFs for
each wavelength band are displayed above (c) the corresponding per-
wavelength band rendered image produced by convolution of the scene
radiance and the net PSF (d) We utilize the post-trained metasurface
and weights α to render images for different test scenes pulled from a
hyperspectral dataset. While we consider a monochromatic photosensor
for the synthesized images, on the left panel we project the broadband
image at the photosensor for each polarization channel to RGB-color for
visualization purposes.

and we utilize the “camera man” image as the scene irradi-
ance I , both of which are kept the same for all wavelength
channels. A key insight behind this approach is that we do
not expect to discover a metasurface that realizes the user-
defined filter exactly; in fact, it is ensured that we cannot
produce the wavelength invariant kernel specified here. By
providing the filtered images as targets, however, we are
able to find a decomposition that approximates the target
statistics, which in this case are those characterizing edge-
detection. We observe substantially better convergence by
utilizing this approach rather than objective Equation (10).

The results of this optimization are shown in Figure 8a-c.
The four polarization channels are utilized and the learned
synthesis produces a net PSF for each wavelength band with
properties similar to the Laplacian of Gaussian kernel. The
filtering operation in the post-trained system generalizes to
other scenes, and in panel-8d (see also supplemental Figure
9), we display rendered synthesized images for test scenes
utilizing the hyperspectral data released in [61]. The spectral
data is clipped to the optimization range, equivalent to
assuming a wide pass-band spectral-filter at the entrance of
the camera. The accuracy in which the synthesized images
approximate the target spatial filtering operation may be
improved by utilizing a collection of scenes during training
rather than just one out-of-distribution scene.
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Fig. 9. (a) Optical microscope image of the metasurface designed for
steerable filtering. The inset shows a photograph of the mounted 2 mm
device. (b) A scanning electron microscope image of a small region on
the metasurface. The fabricated structures approximate the designed
nanofins although machine limitations cause the rounding of edges.
Experimental vs simulated PSFs and synthesized net PSFs are shown
for (c) the steerable Gaussian first derivative kernel and (d) the Laplacian
of Gaussian kernel, measured for incident light of λ = 532 nm.

4.4 Experimental Validation

Lastly, we provide experimental validation for the design
methods utilized in this work by fabricating and testing
metasurfaces similar to those presented in Sections 4.1 and
4.3. We utilize electron-beam lithography and atomic layer
deposition as discussed in [62] to create the metasurface
composed of 600 nm tall TiO2 nanofins. Nanofabrication
details are contained in supplement S6. Optical and scan-
ning electron micrographs of one metasurface is displayed
in Figure 9a-b, respectively. We then build an experimental
camera utilizing an off-the-shelf polarizer-mosaicked pho-
tosensor (as shown in supplemental Figure 7) and simul-
taneously measure the four PSFs. The measurements are
displayed in Figure 9c-d for monochromatic light of λ = 532
nm, and we find good agreement between the experimental
and simulated PSFs.

Utilizing the camera mounted with the steerable-
derivative metasurface operating as a lens, we then capture
images of various scenes, some of which are shown in
Figure 10. Although the metasurface is designed to focus
at infinity, we find good performance for objects placed
as close as 1 meter in front of the camera. By digitally
computing only the weighted, pixel-wise summation of the
four captured images, we confirm the ability to synthesize

Fig. 10. Images captured with the steerable-derivative metasurface cam-
era. (a) Unprocessed measurements captured on the four polarization
channels for a particular scene. (b) The net images formed from the
pixel-wise linear combination of the four component images synthesizes
differentiation that is digitally steered to three angles (−30◦, 0◦, 30◦) by
only changing the summation weights α. (c) Target filtering results at
the same steering angles, computed by digital convolution of the target
filters (Gaussian derivatives at orientation angles 0◦ ± 30◦) and the in-
focus raw image. (d) Measurements I0◦ and the synthesized net image
corresponding to differentiation along the x-axis for other scenes.

a collection of new, differentiated images of the scene with
good agreement to the equivalent operations utilizing more
expensive digital convolutions (shown in panels a-c).

5 CONCLUSION

In this work, we have discussed the application of meta-
surfaces to the task of snapshot opto-electronic image pro-
cessing. While the original theory introduced the principle
of subtracting two normalized images, we present a gener-
alization and a new design scheme for the learned linear
synthesis of many images. Our experimental setup remains
compact involving at minimum a single birefringent meta-
surface operating as a lens and a commercially available
polarizer-mosaiced photosensor. By leveraging the unique
properties of metasurfaces, we are able to demonstrate
light-efficient polarization-encoded PSFs to realize multiple
filters, along with depth-dependent and broadband oper-
ation. We also present a general discussion on the use of
polarization for multi-coded imaging which may find use
in other tasks beyond image processing. While orthogonal
polarization states, e.g. h0◦ and h90◦ , have been used before
for other imaging tasks, we show that the intensity distribu-
tions formed from their interference may be engineered and
utilized as additional imaging channels.

Lastly, we highlight that metasurfaces have been used to
produce multiple images by means other than polarization
multiplexing. Guo et al. [31] used a metasurface to produce
two distinct images of a scene at spatially offset locations
on the photosensor. By combining that method with the
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polarization technique discussed in this work, it is possible
to capture eight images of a scene in a single exposure. One
may then optimize the image synthesis of all eight captures,
producing a very large collection of different filters that can
be isolated and applied with minimum computational cost.
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