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1. Fabrication process flow

Waveguide fabrication (Fig. S4a). We first patterned metal marks on a silicon wafer to 
facilitate alignment between the waveguide and the freeform optics. A 10-µm layer of 
OrmoCore was then spin-coated on the silicon substrate as a bottom cladding layer, cured by 
a UV lamp under nitrogen atmosphere, and baked at 130 °C for 10 min. A 2.5-µm layer of 
EpoCore was subsequently spin-coated on top of the bottom cladding layer as the waveguide 
core, followed by a soft bake at 90 °C for 2 min. The waveguides were defined using an i-line 
UV stepper (AutoStep 200, GCA) with a dose of 150 mJ/cm2, baked at 90 °C for 5 min, and 
developed in SU-8 developer for 1 min. After 10 s surface activation in O2 plasma, another 
10-µm layer of OrmoCore was added on top of the waveguide as a top cladding layer 
following the same procedures of forming the bottom cladding layer.

Deep trench etching (Fig. S4b). A Cr/Cu (5/200 nm) metal mask was patterned on top of 
the waveguide structures through a lift-off process. The pattern was transferred into the 
waveguide layer stack to form deep trenches via reactive ion etching (RIE, PlasmaPro 100 
Cobra, Oxford Instruments). CF4 and O2 were used as etching gases with flow rates of 30 and 
20 sccm, respectively. The inductively coupled plasma (ICP) and RF power loads were set to 
1500 W and 75 W, respectively. The etch rate is approximately 500 nm/min at 20 °C. 

Freeform optics fabrication (Fig. S4c). A 20-µm layer of EpoCore was spin-coated on top 
of the waveguide stack to completely fill the deep trench, followed by a soft bake of 10 min at 
90 °C. The sample was then mounted on the 3-D printing station (Photonic Professional GT, 
Nanoscribe GmbH) for two photon polymerization in a dip-in laser lithography (DiLL) mode. 
A 63x lens was used for writing with an index matching oil (n = 1.598) filling the gap 
between the lens and the sample. The silicon substrate/bottom cladding interface was used as 
a datum plane to locate the height of the waveguide. Along the lateral direction, the freeform 
optics were aligned to the pre-defined metal marks on the substrate. The 3-D structures were 
exposed with 17.5-mW (100 fs, 80 MHz, 780 nm) laser power at a speed of 5 mm/s, with 
slicing and hatching distance set to be 200 nm and 100 nm, respectively. The sample was 
baked at 90 °C for 10 min before development in SU-8 developer for 5 min. 
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