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1. Computational design of metalens 
 
The cylindrically symmetric phase-controlled metasurface at z=0 mm is parametrized by a set of 
1001 annular rings, each of 500 nm radial extent, to produce a total lens with a 500 µm radius. For 
each radial position, we assign a scalar 𝜙 for the propagation phase delay of light there. This treats 
the metasurface as phase-only and cylindrically-symmetric. We then illuminate the phase-
controlled surface with a uniform plane wave of vacuum wavelength 760 nm. This wavelength 
was chosen to be far blue-detuned from the D2 resonance of Rubidium-87 atoms at 780.241 nm, 
which allows for the optical dipole potential to be written as directly proportional to the field 
intensity. This direct proportionality arises when the quantum-mechanical optical potential1 is 
expanded to first order in the inverse detuning. We propagate this wavefront into the domain z>0 
using the vectorial diffraction integral2 implemented on an automatically differentiable platform 
(Tensorflow3). Automatic differentiation allows us to obtain objective function gradients 
efficiently and with a computational complexity that scales well with the number of degrees of 
freedom, which is 1001 in this problem. For concreteness, we assume that the incident polarization 
to the metasurface is oriented along the transverse x direction. The 𝐸! and 𝐸" components vanish 
on-axis by cylindrical symmetry (Supplementary Figure 7). For intensity calculations off-axis, 
we use all three Cartesian components.  
 
The 0D singularity positions are located at 𝑟 = 0 and 𝑧# = 500	µm, 503	µm,… , 527	µm and are 
uniformly spaced 3	µm apart. The uniform spacing is not necessary; the positions can have any 
spacing along the longitudinal axis (Supplementary Figure 1). However, the light intensity 
between adjacent singular positions will become small if the spacing is comparable to or smaller 
than the characteristic longitudinal extent of focused spots, which can be approximated by the 
depth of focus 𝜆/𝑁𝐴$, where 𝑁𝐴 is the equivalent numerical aperture for a focusing lens with a 
focal spot at that longitudinal position. In this system, the equivalent depth of focus given the 
system NA is approximately 1.5	µm, which is smaller than the desired singularity spacing. The 
singularity spacings in this case are chosen to be close to that of prior 87Rb Rydberg atom arrays4.  
 
We design the 0D singularity array using two stages of numerical optimization. These 
optimizations are performed with respect to the 1001 phase values over the cylindrically-
symmetric metasurface. In the first stage of optimization, we maximize the longitudinal phase 
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gradient at the target singularity positions. This step produces a 0D singularity at each of the target 
singularity positions. In the second stage of optimization, we use the optimized first stage result to 
equalize the phase gradient and second spatial derivative of the field intensity over all the 
singularity positions and thus obtain nearly identical singularities across the array.  
 
For the first optimization stage, at each singularity position, we compute the 𝑧-directed phase 
gradient of the field 𝜕𝜙/𝜕𝑧. The objective function 𝐹% to be minimized is the negative minimum 
of the squares of the z-directed phase derivatives for each singularity position: 
 

𝐹% = −min{(∂ϕ/ ∂z&)$}	#'%,…,*	 
 
To improve convergence, we use a smooth approximation to the minimum function, which is 
analytic instead of being piecewise continuous: 

min(𝑎%, … , 𝑎+) =
log[∑ exp(−𝑠 ⋅ 𝑎#)# ]	

−𝑠 , 𝑠 =
100

1
𝑛∑ |𝑎#|#

> 0 

The sum inside the argument of the logarithm is dominated by the term corresponding to smallest 
value of 𝑎#. 𝑠 is a scale factor chosen to bring the input array values onto the same approximate 
scale and avoid numerical loss of precision during the computation of the exponential.  
 
In the second optimization stage, the objective function 𝐹$ to be minimized is the maximum of the 
deviations of the phase gradient to a large target phase gradient, set here to be 100	times the 
nominal field wavenumber 𝑘,, plus penalty terms for differences in the second spatial derivative 
of the on-axis intensity 𝐼(𝑧) = |𝐸-(𝑟 = 0, 𝑧)|$: 
 

𝐹$ = max T
𝜕𝜙
𝜕𝑧#

− 100𝑘,U
#'%,…,*

$

+ 𝑐%
𝜎{𝜕"$𝐼(𝑧#)}#'%,…,*
𝜇{𝜕"$𝐼(𝑧#)}#'%,…,*

+ 𝑐$
𝜎{𝜕.$𝐼(𝑧#)}#'%,…,*
𝜇{𝜕.$𝐼(𝑧#)}#'%,…,*

 

 
where 𝜎 refers to the population standard deviation and 𝜇 is the population mean. 𝑐% and 𝑐$ are 
weight parameters that are chosen so as to bring the three terms in 𝐹$ onto similar scales. We use 
a smooth approximation to the maximum function to improve convergence, which is analogous to 
the smooth approximation to the minimum function described earlier.  
 

max(𝑎%, … , 𝑎+) =
log[∑ exp(𝑠 ⋅ 𝑎#)# ]	

𝑠 , 𝑠 =
100

1
𝑛∑ |𝑎#|#

> 0 

We find that F2 convergence can be improved by ramping up the target phase gradient from around 
5k0 to 100k0 in the objective function. That is, using the converged results from step 1, we target a 
phase gradient of 5k0 in F2, find a local optimization minimum, then repeat the process for a higher 
target phase gradient until we reach the target of 100k0.  
 
In order to realize this optimized radial phase profile in a metasurface that operates in transmission, 
we seek to place a meta-atom at each radial position (spaced in the circumferential direction by 
the meta-atom pitch of 500 nm) to enforce the required phase at that radial position. This 
nanostructure is chosen from a library of meta-elements comprising nanopillars made of 700 nm-
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tall amorphous TiO2 mounted on a substrate of fused silica. These meta-atoms are shown 
schematically in Supplementary Figure 11(a) and the dependence of the phase and transmission 
efficiency as a function of the nanopillar diameter is plotted in Supplementary Figure 11(b). 
Meta-elements close to resonances are removed from the library. Nanopillars of diameter between 
80 nm and 480 nm provide 2π phase coverage and are thus used to construct the metasurface based 
on the required phase profile. The library was computed using rigorous coupled wave analysis on 
the RETICOLO5 v8 platform. 
 

2. Comparison with Intensity Gradient optimization 
 
To make a comparison of z-directed phase gradient maximization with z-directed intensity gradient 
maximization, we performed an identical optimization to that of section 1 with the only difference 
being the use of the on-axis intensity gradient for the objective function: 
 

𝐹% = −min{(∂|E/|$/ ∂z&)$}	#'%,…,*	 
 
Since the other polarization components Ey,z vanish on axis, the total intensity is only a function 
of the x-polarized electric field for x=y=0. Supplementary Fig. 10a-b exhibits the xz intensity 
profile after Step 1 optimization, in which the z-directed intensity gradients at ten equally-spaced 
on-axis positions from z=500 um to z=527 um are maximized. The tunable parameters are the 
same as in the device of section 1: the 1001 phase values on the metasurface radial profile. The 
resultant intensity and phase gradients along the optical axis (x=y=0) are also plotted in 
Supplementary Fig. 10c.  
 
We notice that the dark regions are non-systematically displaced in the z-direction from the 
positions of intensity gradient maximization, and that the phase gradients in the adjacent dark 
regions are not appreciably larger in magnitude than the vacuum wavenumber k0. However, the 
absolute values of the intensity are substantially larger than those produced by phase gradient 
maximization due to most field structure being concentrated near the optimization points, whereas 
the device obtained through phase gradient maximization produces field structure further away 
from the optimization points, thereby spreading out the wave energy. Intensity maximization may 
be useful for applications which are less sensitive to the precise positioning of the dim regions or 
which emphasize contrast between the dark and bright regions. 
 

3. Experimental characterization of point singularity array 
 
Figure 3d shows optical and scanning electron micrographs (Zeiss UltraSEM) of a singularity 
array metasurface processed under identical conditions to the metasurface used for optical 
characterization, respectively. The metasurface used for optical characterization was not imaged 
in the SEM because this requires the irreversible deposition of a conductive metallic layer. The 
experimental setup for characterizing the singularity array metasurface is depicted in Figure 3e. 
A 760.9 nm single frequency distributed feedback (DFB) laser (TOPTICA Eagleyard GmbH) is 
driven with a constant current source (Newport 505 Laser Diode Driver) and kept at a constant 
temperature (Newport 325 Thermoelectric Cooler Driver). The single mode fiber-coupled output 
is collimated with a reflective collimator (Thorlabs RC12APC-P01) and is incident on the fused 
silica face of the metasurface. The metasurface z-position is controlled using a closed-loop piezo-
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motor stage with nm resolution (Attocube ECSx3030). The transmitted light is captured using a 
horizontal microscope system comprising a high NA objective (Olympus 100x MPLAPON 
NA=0.95), tube lens (Thorlabs TTL-180A) and CMOS camera (Thorlabs DCC1545M). The 
intensity image is captured over a range of longitudinal z-positions at steps of 50 nm, where z=0 
mm corresponds to the patterned surface of the metasurface. At each z-position, the system is 
allowed to stabilize for 10 seconds before multiple intensity images are captured at different 
exposure times ranging from 0.05 ms to 163 ms. These multiple exposure images are later 
weighted by their respective exposure times and stacked to remove saturated pixels and produce a 
composite image with a large intensity dynamic range.  
 
To set an absolute power scale for the transmitted light field, we measure the incident and 
transmitted energy flux. The incident power is measured through a 1 mm pinhole (Thorlabs 
P1000K) using a silicon power sensor (Thorlabs S120B). The 1 mm diameter is chosen to match 
the diameter of the metasurface. The transmitted energy flux is measured indirectly by estimating 
the power flowing through each pixel of the CMOS sensor at the axial plane of maximum on-axis 
intensity, which occurs at around z = 530 µm. This is measured by placing an iris and power meter 
head between the tube lens and the CMOS sensor. The iris is used to reduce the diameter of the 
light beam incident on the CMOS sensor so that it fits entirely within the sensor area. By making 
the approximation that the intensity recorded by each pixel on the CMOS sensor (with the power 
meter removed) is proportional to the energy flux through that pixel, we are thus able to relate the 
intensity distribution recorded on the CMOS sensor to the total power flux recorded by the power 
meter head. The CMOS sensor image is captured at a high intensity dynamic range using a range 
of exposure times from 0.08 ms to 245 ms to improve the estimation precision. The power flux 
through the maximum intensity pixel on the transverse plane is used to set the absolute power scale 
for the z-stack measurements in Figure 4. Note that the experimental intensity measurements are 
an underestimation of the true intensity values since the transmitted intensities are measured after 
the microscope objective and the tube lens, which introduce reflective losses.  
 

4. Numerical characterization of the point singularity array as a blue trap array 
 
The light distribution in the vicinity of each singular point in the experimental array is 
characterized by fitting the volumetric light distribution to second-order polynomials. The axial 
location of each singular point is first determined by fitting the on-axis intensity in a 1D window 
(1 µm full width) around each singular point and estimating the minimum intensity axial position 
using the fitted coefficients. The fitted quadratic coefficient provides an estimate of the curvature 
of the on-axis intensity profile. The transverse intensity profile at each singular point axial profile 
is then fitted to a 2D quadratic polynomial using a window width of 1 µm in both transverse 
directions. The fitted quadratic coefficients yield the intensity profile curvature in the transverse 
directions.  
 
The measured intensity profile 𝐼(𝒓)	can be converted to optical potential values 𝑈(𝒓)  in the 
context of neutral atom dipole traps by the relationship1: 
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𝑈(𝒓) =
ℏ𝛿
2 log _1 +

𝐼(𝒓)
𝐼012

1 + `2𝛿Γ b
$ c 

 
𝛿 = 𝜔 − 𝜔, is the detuning of the trap frequency to the dipole resonance frequency, 𝐼012 is the 
saturation intensity, and Γ is the natural linewidth of the dipole transition. For the D2 line of 87Rb, 
𝜔, = 𝑐 ` $3

45,.$7%	*9
b = 2𝜋 · 384.230	THz, Γ = 2𝜋 ⋅ 6.0666	MHz, 𝐼012 = 2.50399	mW/cm$ 6. In 

the limit where 𝐼(𝒓) ≪ 𝐼012 q1 + `
$:
;
b
$
r and `$:

;
b
$
≫ 1, the argument of the logarithm can be 

Taylor expanded to first order so that the optical potential is linear in 𝐼(𝒓): 
 

𝑈(𝒓) =
ℏ𝛿
2

𝐼(𝒓)
𝐼012

`2𝛿Γ b
$  

 
The curvature of the optical potential around the singularity is directly connected to the effective 
spring constant of an atom placed at the center of the singular position: 
 

𝑘# =
𝜕$𝐼(𝒓)
𝜕𝑖$ , 𝑖 = 𝑥, 𝑦, 𝑧 

 
The trap frequency in each direction can then be calculated from the spring constants and the atom 
mass 𝑚.  
 

𝜔# =
1
2𝜋

x𝑘#
𝑚 

 
The trap depth for each point singularity is computed by taking the optical potential difference 
between the optical potential at the center of the trap and that of the first potential peak encountered 
when moving away from the center of the trap. Since the trap is not spherically symmetric, this 
potential difference will depend on the direction at which one moves away from the trap center. 
We introduce a polar coordinate system with the polar axis aligned with the z-direction of the 
optical axis. The azimuthal angle is the direction corresponding to cylindrical symmetry. For each 
polar and azimuthal angle, we draw a line emanating from the trap center and pointing in that 
direction. We then compute the optical potential along that line and identify the potential barrier 
as the height of the first peak encountered relative to the potential at the trap center. We quantify 
the trap depth as a function of the polar angle 𝜃 with respect to the optic axis by computing the 
trap depth for the 2𝜋 azimuthal angle range with the same polar angle, then taking the minimum 
(worst case) trap depth. These potential depths are plotted as a function of 𝜃 in Supplementary 
Figure 15c-d. The trap depth is nonvanishing for all polar angles, indicating that every trap 
obtained numerically and experimentally has 3D confinement. The overall trap depth for each trap 
can then be associated with the minimum trap depth over all polar angles. This overall trap depth 
is at least 1.87 mK/W for the simulated optical potential profile and is measured to be at least 0.22 
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mK/W for the experimental optical potential profile. The units of the trap depth are chosen to be 
in temperature units (through division with the Boltzmann constant 𝑘<) and are normalized to the 
incident power on the metalens.  
 

5. Incident tilt and chromatic dependence of singularity array 
 
In Supplementary Figure 16, we examine the chromatic and incident beam tilt dependence of the 
singularity array metasurface on trapping behavior, partitioning the performance based on the trap 
index within the array from 1 to 10. These studies are performed numerically using the metasurface 
geometry and material optical parameters and assume a fixed 1W incident trapping power over the 
1 mm metasurface. Under large chromatic shift or incident tilt, several trap positions lose 3D 
confinement and are not plotted in Supplementary Figure 16. Changing the incident trap 
wavelength changes the realized phase and amplitude profile of the metasurface in a manner 
similar to that of diffractive optics: the effective focal length of the metasurface decreases as the 
wavelength increases, causing the structured intensity pattern to translate along the optical axis 
with minor perturbation. The minimum potential depth is largely dependent on the detuning from 
the D2 line and increases with decreasing detuning (Supplementary Figure 16a), although the 
variation in trap depths increases at smaller detuning as well. The trap center scattering rate, which 
depends on the field intensity at the trap center, remains low with small variations over trap 
positions for further detuning, but becomes larger and with high variation for reduced detuning 
(Supplementary Figure 16c). The axial and radial trapping frequency chromatic dependencies 
which are obtained by quadratic fitting of the trap potential in a 1 µm diameter window around 
each trap to obtain the potential curvature, are plotted in Supplementary Figure 16e and g, 
respectively. The inter-trap variation in trapping frequency is minimized at the design wavelength. 
The movie of the field structure and trap positions as a function of increasing wavelength is 
included as Supplementary Movie 1. 
 
The tilt dependence of the trap array is of interest because of the potential use of metasurface traps 
in tweezer arrays. Tweezer arrays are currently able to produce multiple red-detuned trap positions 
by diffracting an incident trap laser into multiple outgoing tilt angles using acousto-optic 
deflectors4,7,8. Each diffraction order has a beam tilt that controls the transverse displacement of 
the focal spot from the optical axis when imaged into the vacuum cell using a high NA objective. 
One may consider “duplicating” the blue trap array by illuminating the metasurface with a number 
of trap lasers at different tilt angles, thereby producing one copy of the array at different transverse 
displacements. Our metasurface is not designed for off-axis illumination and thus shows a rapid 
fall-off in potential depth as a function of incident beam tilt angle (Supplementary Figure 16b), 
falling to half the potential depth at an angle of 2 mrad (0.11°). The trap center scattering rate 
increases nonlinearly with the beam tilt (Supplementary Figure 16d). The axial trapping 
frequency remains relatively stable with tilt (Supplementary Figure 16f), but the radial trapping 
frequency falls off more rapidly and is the reason behind several traps losing 3D confinement 
(Supplementary Figure 16h). The movie of the field structure and trap positions as a function of 
increasing beam tilt is included as Supplementary Movie 2. 
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Supplementary Figures 

 
Supplementary Figure 1. Demonstration of a non-uniformly-spaced 0D singularity array. (a) xz 
intensity plot of a cylindrically symmetric 0D singularity array with five singularities spaced 3 µm 
apart (z = 500 µm to z = 512 µm) and five singularities spaced 5 µm apart (z = 517 µm to z = 537 
µm). Crosses indicate the positions of the 0D singularities at which the phase gradient optimization 
was performed. (b) Logarithmically-scaled intensity plot of a.  
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Supplementary Figure 2. Intensity |Ex|2+|Ey|2+|Ez|2 profile and zero-isolines for the ten 0D 
singularity positions in the array, just after the first optimization step. Zero-isolines for the real 
part of the scalar field where Re(Ex)=0 are plotted as solid black lines; zero-isolines for the 
imaginary part of the scalar field where Im(Ex)=0 are plotted as dashed black lines. The amplitude 
profile at the metasurface plane is assumed to be uniform in this calculation.  
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Supplementary Figure 3. Ex phase profile and zero-isolines for the ten 0D singularity positions 
in the array, just after the first optimization step. Zero-isolines for the real part of the scalar field 
where Re(Ex)=0 are plotted as solid black lines; zero-isolines for the imaginary part of the scalar 
field where Im(Ex)=0 are plotted as dashed black lines. The amplitude profile at the metasurface 
plane is assumed to be uniform in this calculation. 
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Supplementary Figure 4. Intensity |Ex|2+|Ey|2+|Ez|2 profile and zero-isolines for the ten 0D 
singularity positions in the array, just after the second optimization step. Zero-isolines for the real 
part of the scalar field where Re(Ex)=0 are plotted as solid black lines; zero-isolines for the 
imaginary part of the scalar field where Im(Ex)=0 are plotted as dashed black lines. The amplitude 
profile at the metasurface plane is assumed to be uniform in this calculation. 
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Supplementary Figure 5. Ex phase profile and zero-isolines for the ten 0D singularity positions 
in the array, just after the second optimization step. Zero-isolines for the real part of the scalar field 
where Re(Ex)=0 are plotted as solid black lines; zero-isolines for the imaginary part of the scalar 
field where Im(Ex)=0 are plotted as dashed black lines. The amplitude profile at the metasurface 
plane is assumed to be uniform in this calculation. 
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Supplementary Figure 6. Numerically-calculated z-directed phase gradient in the vicinity of each 
of the ten singularity locations. The full-width-at-half-maximum of the phase gradient is 2.3 nm 
for every location.  
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Supplementary Figure 7. Cross-sectional xy cuts for the Cartesian field components (Ex, Ey, Ez) 
after the second optimization step. The electric field values are normalized to E0, the incident x-
polarized electric field magnitude at the metasurface. Rows from top to bottom: Magnitude of Ex, 
phase of Ex, magnitude of Ey, phase of Ey, magnitude of Ez, phase of Ez. The plots are centered on 
(x=0, y=0).  
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Supplementary Figure 8. Cross-sectional xy cuts of the polarization azimuth (surface plot) and 
polarization ellipses (superimposed) after the second optimization step. The metasurface is 
illuminated with x-polarized light. Black ellipses indicate right elliptical/circular polarization and 
white ellipses indicate left elliptical/circular polarization. The plots are centered on (x=0, y=0). 
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Supplementary Figure 9. Transverse xy plot of numerically-simulated orbital angular momentum 
(OAM) density and power flux, after the second optimization step, at each singularity plane. The 
metasurface is illuminated with x-polarized light. The surface plot is the orbital angular momentum 
per incident power at the metasurface and the vector plot is the transverse projection of the 
Poynting vector. The plots are centered on the optic axis (x=0, y=0). The tiny OAM densities and 
lack of azimuthal circulation about the optic axis demonstrate that the OAM contributions are 
negligible in this system.  
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Supplementary Figure 10. Array designed using z-directed intensity gradient maximization. (a) 
xz total intensity profile, white crosses are the positions at which the intensity gradient was 
maximized. (b) log-scaled xz total intensity profile. (c) Intensity and phase gradient profile along 
the optical axis (x=y=0). E0 is the incident electric field at the metasurface and k0 is the vacuum 
wavenumber. The vertical dotted lines are the positions at which the intensity gradient was 
maximized. The maximum phase gradient position and the minimum intensity positions are 
displaced in an inconsistent fashion from the peak intensity gradient positions. 
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Supplementary Figure 11. (a) Cylindrical meta-atom geometry used in realizing the 0D 
singularity array. (b) Transmission phase and efficiency dependence on the nanopillar diameter 
for the cylindrical meta-atom. The circled data points are used in the meta-atom library. The 
diameter range used is 80 nm to 480 nm, which provides 2π phase coverage. 
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Supplementary Figure 12. Intensity |Ex|2+|Ey|2+|Ez|2 profile and zero-isolines for the ten 0D 
singularity positions in the array, after the second optimization step, and incorporating the non-
uniform transmission amplitudes of the TiO2 nanopillar library. Zero-isolines for the real part of 
the scalar field where Re(Ex)=0 are plotted as solid black lines; zero-isolines for the imaginary part 
of the scalar field where Im(Ex)=0 are plotted as dashed black lines. 
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Supplementary Figure 13. Ex phase profile and zero-isolines for the ten 0D singularity positions 
in the array, after the second optimization step, and incorporating the non-uniform transmission 
amplitudes of the TiO2 nanopillar library. Zero-isolines for the real part of the scalar field where 
Re(Ex)=0 are plotted as solid black lines; zero-isolines for the imaginary part of the scalar field 
where Im(Ex)=0 are plotted as dashed black lines.  
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Supplementary Figure 14. Longitudinal intensity profile comparison between the numerical 
simulation and experiment. These images are identical to that of Fig. 4a-c in the main text with 
the colorbar adjusted to show the full dynamic range of intensities without saturation. 
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Supplementary Figure 15. Operation of 0D optical singularities as blue-detuned atom traps. (a) 
Time-domain phasor plots of the driving electric field E and driven electric dipole moment p for 
driving frequencies that are red and blue detuned from the dipole resonance. As time progresses, 
the phasors rotate counterclockwise. The phase angle magnitude between E and p for red-detuned 
frequencies is always less than π/2, leading to an attractive electric dipole potential. The phase 
angle magnitude is larger than π/2 for blue-detuned frequencies, leading to a repulsive potential. 
A dark spot surrounded by blue-detuned light serves as a blue trap for neutral atoms. (b) Possible 
vacuum cell configuration to trap and interrogate atoms that are trapped by the light field from a 
metasurface. (c) Numerically simulated potential depth for 87Rb atoms placed at the 0D singular 
locations of the simulated light field in Figure 4(a). The polar angle θ is the angle from the optical 
axis and the potential depth is expressed in temperature units of millikelvin per watt of incident 
light on the metasurface. (d) Potential depth for 87Rb atoms placed at the 0D singular locations of 
the experimental light field in Figure 4(b-c).  



 22 

 
Supplementary Figure 16. Dependence of trapping parameters on wavelength and incident 
wavefront tilt for each of the ten 0D singularity traps generated by the metasurface used as blue 
traps for 87Rb. All calculations assume 1W of incident power at the metasurface. Error bars indicate 
one standard deviation of variation over the ten traps. (a) Escape potential depth, (c) trap center 
scattering rate, (e) axial and (g) radial trapping frequencies as a function of incident wavelength. 
(b) Escape potential depth, (d) trap center scattering rate, (f) axial and (h) radial trapping 
frequencies as a function of incident tilt. The tilt is defined as the angle from the surface normal 
for the incident wavefront at the air/glass interface on the back face of the metasurface.  
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