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SUPPLEMENTARY METHODS 

Production of 0D point singularities 

One way to produce 0D point singularities is to place the singularities on the axis of a 
cylindrically symmetric field. Specifically, cylindrical symmetry here means that the complex 
electromagnetic field components (Ex, Ey, Ez, Hx, Hy, Hz) are only dependent on the radial 
distance r from the optical axis and the longitudinal coordinate z. Such a cylindrically symmetric 
field can be generated by uniform illumination of a patterned aperture that imposes a 
cylindrically symmetric phase profile. By minimizing the field amplitude or maximizing the z-
directed phase gradient at the desired axial positions, one can produce 0D singularities at these 
positions.  

In the demonstration system, we parametrize the cylindrically symmetric patterned aperture 
(located at z=-1000 μm) with 251 radial phase pixels, each spaced 4 μm apart in the radial 
direction, for a total aperture radius of 1000 μm. The incident vacuum wavelength is 532 nm and 
is linearly polarized in the x direction. We propagate the complex wavefront into the domain z>-
1 mm using the vectorial diffraction integral. The objective function used for optimization is:   
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Where '(
')!

 is the axial phase gradient located at z=zi. Minimizing F maximizes the z-directed 

phase gradient of the optical field at the three positions z1=0 μm, z2=1 μm, z3=2 μm. To improve 
convergence, we use a smooth approximation to the minimum function, which has the benefit of 
being analytic instead of piecewise continuous: 

min(𝑎$, … , 𝑎*) =
log[∑ exp(−𝑠 ⋅ 𝑎!)! ]	

−𝑠
, 𝑠 =

100
1
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> 0	 (2) 

In this smooth approximation, the sum inside the logarithm will be dominated by the term 
corresponding to smallest value of 𝑎!. 𝑠 is a scale factor chosen to normalize the input array 
values and avoid numerical underflow or overflow during the computation of the exponential.  

We perform the optimization using gradient descent, where the step size and termination 
condition are chosen through the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm1. 
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Supplementary Fig. 2 plots the resultant field profile from the optimization. Supplementary Fig. 
2a-b plot the field intensity (logarithmically-scaled) and phase as a function of (r,z). The z-
directed propagation phase has been removed from the phase plot (by multiplication with exp(-
ikz)) to show the long-scale phase variations. The three 0D singularities are visible as the low-
intensity features along r=0 and z=0, 1, 2 μm, at the intersection of the real and imaginary zero-
isolines. The radial phase mask on the patterned aperture that produces this singularity pattern is 
plotted in Supplementary Fig. 2c.  

 

Optimization details for the 2D heart-shaped phase singularity 

The phase-controlled surface at z=0 is parametrized with a grid of 101 × 101 superpixels, each 
spaced 8	µm apart in the 𝑥 and 𝑦 directions. For each superpixel, we assign a value of ϕ for the 
propagation delay for light incident at that position. We then illuminate the phase-controlled 
surface with a uniform plane wave of unit intensity and vacuum wavelength 532 nm. This 
produces a complex wavefront at z=0, which we propagate into the domain z>0 using the 
vectorial diffraction integral.  

At the focal distance of 𝑧 = 𝑓 = 10	mm, the heart-shaped singularity boundary is described by a 
parametric curve2: 

𝑥(𝑡) = 16	𝑠 sin& 𝑡 , 𝑦(𝑡) = 𝑠(13 cos 𝑡 − 5 cos 2𝑡 − 2 cos 3𝑡 − cos 4𝑡), 𝑡 ∈ (0,2𝜋) (3) 

The curve positions are scaled by the scale parameter 𝑠 = 1	µm and centered at the origin so that 
the heart centroid lies at the origin in the 𝑥𝑦 plane. A total of 50 values of 𝑡 linearly spaced 
between 0 and 2𝜋 (excluding 0 and 2𝜋) are used to parametrize the curve {(𝑥! , 𝑦!)}, 𝑖 = 1,… , 50. 
For each point (𝑥! , 𝑦!) on the curve, the inward-directed normal vector 𝑛Y! is also computed: 

𝑛Y! =
Z−𝑦+(𝑡!), 𝑥+(𝑡!)[
\𝑥+(𝑡!)" + 𝑦+(𝑡!)"

	 (4) 

The normal vector is used to compute the directional derivative of the field propagation phase 

gradient '(
'*!

: 
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The objective function is the minimum of the squares of the directional derivatives at each point 
on the heart: 

𝐹 = −min ',
𝜕𝜙
𝜕𝑛!
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We minimize 𝐹 during the optimization so that the directional phase derivatives over the 
singularity boundary are maximized. To improve convergence, we use a smooth approximation 
to the minimum function.  

We perform the optimization using gradient descent with the BFGS algorithm. To reduce the risk 
of getting stuck in a local minimum of the objective function, we implement an iterative 
refinement scheme. The optimization is performed at three spatial resolutions, beginning with the 
lowest spatial resolution mesh (largest spatial grid size). Upon convergence, the optimized 
solution 𝜙0(𝑥1, 𝑦1) at the lower spatial resolution is linearly interpolated onto a higher spatial 
resolution mesh as the starting condition, and the optimization is run again using the higher 
spatial resolution mesh. The spatial resolution in 𝑥 and 𝑦 is improved by a factor of 1.3 at each 
iteration and a total of three iterations is performed, including the final iteration with the desired 
highest spatial resolution. The starting point for the lowest spatial resolution mesh is selected by 
randomly sampling 100 configurations where each phase pixel 𝜙0 is drawn from a uniform 
distribution between [−𝜋, 𝜋], and then selecting the configuration with the best objective 
function value.  

In order to realize the optimized phase profile in a metasurface that operates in transmission, we 
discretize each of the 101x101 superpixels (pitch 8 μm) into a 32x32 grid, where the smaller grid 
has a subwavelength pitch of 0.25 μm. Each grid square is associated with the phase of the larger 
8 μm superpixel from which it was formed. Under the locally periodic assumption and the unit 
cell approach, we seek to place a nanostructure (meta-atom) at each grid square to enforce the 
required phase at that position. This nanostructure is chosen from a “library” of meta-atoms with 
pre-computed optical properties, where the numerical simulation was performed under the 
assumption that the meta-atoms are periodic in the transverse plane. Since the heart-shaped phase 
singularity can be realized in a scalar field, the polarization of light is not important, and we 
chose to work with polarization-insensitive cylindrical meta-atoms to build the meta-atom 
library. The nanopillars are made of 600 nm-tall amorphous Titanium dioxide (TiO2, n=2.40 at 
532 nm), spaced 0.25 μm apart in a square lattice, and mounted on a substrate of fused silica 
(n=1.46 at 532 nm). These meta-atoms are exhibited schematically in Supplementary Fig. 13a. 
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For each nanopillar diameter, we simulate a uniform array of identical nanopillars using the 
RETICOLO package for Rigorous Coupled Wave Analysis3 to obtain the zeroth-order 
transmitted phase. The circular cross-sections of the nanopillars are discretized using a staircase 
approximation with 800 points over the circumference, and 81 x 81 Fourier harmonics are used 
in the x and y directions on the plane. The dependence of the phase and transmission efficiency 
as a function of the nanopillar diameter is plotted in Supplementary Fig. 13b. Nanopillars of 
diameter between 60 nm and 215 nm provide 2π phase coverage and are thus used to construct 
the metasurface based on the required phase profile from optimization.  

 

Optimization details for the 2D heart-shaped polarization singularity 

The metasurface at 𝑧 = 0 is parametrized with a grid of 51 x 51 superpixels, each spaced 8.4 nm 
apart in the 𝑥 and 𝑦 directions. We treat the metasurface as a spatially varying wave plate which 
manipulates the local polarization state4,5. This allows us to assign three values for each meta-
element position on the metasurface: 𝜙0 (for the propagation delay for light polarized along the 
fast axis of the meta-element), 𝜙2 (for the propagation delay for light polarized orthogonal to the 
fast axis) and 𝜃345 (for the overall rotation angle of the meta-element fast axis). The spatially 
varying Jones matrix of the meta-surface can then be written as: 

𝐽(𝑥1, 𝑦1) = 𝑅Z−𝜃345(𝑥1, 𝑦1)[ ,
exp 𝑖𝜙0(𝑥1, 𝑦1) 0

0 exp 𝑖𝜙2(𝑥1, 𝑦1)
0 𝑅Z𝜃345(𝑥1, 𝑦1)[	 (7) 

where 𝑅(𝜃545) is the 2 × 2 rotation matrix.  

We then illuminate the phase-controlled surface with a uniform plane wave of unit intensity and 
wavelength 532	nm polarized in the (𝑥Y + 𝑦Y) diagonal direction. This produces a wavefront of 
transverse electric field values at 𝑧 = 0, which we propagate into the domain 𝑧 > 0 using the 
vectorial diffraction integral. We consider all three Cartesian components of the electric field 
after propagation.  

One can calculate the polarization azimuth by determining the direction of maximal oscillation 
exhibited by the transverse electric field. At a position in the transverse plane, the direction of the 
transverse electric field can be written as: 

𝑬 = 𝐸0𝑒6!75	𝑥Y + 𝐸2𝑒6!75𝑦Y	 (8) 

𝐸0 and 𝐸2 are complex phasors encoding the amplitude and phase of the Cartesian electric fields. 
The time-average of each individual Cartesian component is zero over one optical cycle.  
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The polarization azimuth is calculated from the Stokes parameters of the electric field:  

𝑠/ 	= 	 |𝐸0|" 	+ 	 f𝐸2f
" (9) 

𝑠$ 	= 	 |𝐸0|" 	− 	 f𝐸2f
" (10) 

𝑠" 	= 	2	ReZ𝐸0𝐸2∗[ (11) 

𝑠& 	= 	2	ImZ𝐸0𝐸2∗[ (12) 

The normalized Stokes parameters are obtained by dividing through by 𝑠/ , the intensity 
component.  

𝑆$ =
𝑠$
𝑠/
, 𝑆" =

𝑠"
𝑠/
, 𝑆& =

𝑠&
𝑠/

(13) 

The complex σ field is constructed using the normalized Stokes parameters as σ	 = 𝑆$ + 𝑖𝑆" , 
noting that all the Stokes parameters are real numbers. The polarization azimuth is then half the 
complex angle of the σ field. 

𝛹 =
1
2 arg 𝜎	

(14) 

One should recognize the σ field as proportional to the time average of 𝐸0 + 𝑖𝐸2: 

qrZ𝐸0 + 𝑖𝐸2[
"s = q⟨𝐸0"⟩ − v𝐸2"w + 2𝑖v𝐸0𝐸2w	

= x1
2
|𝐸0|" −

1
2 f𝐸2f

" + 𝑖ℜZ𝐸0𝐸2∗[	

= x1
2
(𝑠$ + 𝑖𝑠")		

= q
𝑠/
2 \𝛴$" 

⇒ argqrZ𝐸0 + 𝑖𝐸2[
"s = arg√𝜎 =

1
2 arg 𝜎 = 𝛹 (15) 
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For linear polarization, the polarization azimuth is the direction of polarization relative to the 
transverse 𝑥-axis.  

At the focal distance of f = 10 mm, the heart-shaped singularity boundary is described by a 
parametric curve2: 

𝑥(𝑡) = 16	𝑠 sin& 𝑡 , 𝑦(𝑡) = 𝑠(13 cos 𝑡 − 5 cos 2𝑡 − 2 cos 3𝑡 − cos 4𝑡), 𝑡 ∈ (0,2𝜋) (16) 

The curve positions are scaled by the scale parameter s = 1 μm and centred at the origin so that 
the heart centroid lies at the origin in the 𝑥𝑦 plane. A total of 50 values of 𝑡 linearly spaced 
between 0 and 2𝜋 (excluding 0 and 2𝜋) are used to parametrize the curve (𝑥! , 𝑦!), 𝑖 = 1,… , 50. 
For each point (𝑥! , 𝑦!) on the curve, the inward-directed normal vector 𝑛Y! is also computed: 

𝑛Y! =
Z−𝑦+(𝑡!), 𝑥+(𝑡!)[
\𝑥+(𝑡!)" + 𝑦+(𝑡!)"

(17) 

The normal vector is used to compute the directional derivative of the field polarization azimuth 
'9
'*!

: 

𝜕𝛹
𝜕𝑛!

= ∇,𝛹 ⋅ 𝑛Y! = ,
𝜕𝛹
𝜕𝑥

,
𝜕𝛹
𝜕𝑦
0 ⋅ 𝑛Y! (18) 

The objective function is the minimum of the squares of the directional derivatives at each point 
on the heart: 

𝐹 = −min ',
𝜕𝛹
𝜕𝑛!

0
"

2	
!#$,…,./

	 (19) 

We minimize 𝐹 during the optimization so that the directional phase derivatives over the 
singularity boundary are maximized. To improve convergence, we use a smooth approximation 
to the minimum function. 

To produce a metasurface that is able to achieve the required spatially variant waveplate 
behaviour, we use the locally periodic assumption with the unit cell approach. Each of the 51 x 
51 superpixels (pitch 8.4 μm) is partitioned into a 20 x 20 grid with subwavelength pitch of 420 
nm. We associate the required (φx, φy, θrot) waveplate parameters of the larger pixel with the 
smaller grid positions. For each grid position, we pick the meta-atom from a pre-computed 
library that most closely satisfies the required (φx, φy, θrot) waveplate parameters. The meta-atom 
library was provided by Dr Noah Rubin and was described in a previous publication6. The meta-
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atoms are rectangular nanofins made of 600 nm tall amorphous Titanium dioxide with a pitch of 
420 nm. These meta-atoms are exhibited schematically in Supplementary Fig. 13c and are 
parametrized by the width of the nanofin in the x and y transverse directions. The dependence of 
the phase delay along the x-direction of the meta-atom and the transmission efficiency on each of 
these x and y transverse widths are plotted in Supplementary Fig. 13d and e, respectively.  

 

Characterization of the 2D heart-shaped phase singularity metasurface 

Fig. 4a exhibits scanning electron micrographs of a metasurface processed under identical 
conditions to the metasurface used for optical characterization. The metasurface used for optical 
characterization was not imaged in the SEM because this requires the irreversible deposition of a 
conductive metallic layer. The experimental setup for characterizing the 2D heart-shaped phase 
singularity metasurface is exhibited in Fig. 4b. 532 nm laser light (Ventus 532, 30 GHz spectral 
bandwidth) from a single-mode fibre is collimated by a reflective collimator (Thorlabs 
RC04APC-P01, 4 mm collimated beam diameter), aligned by two mirrors (M1 and M2 in Fig. 
4b) before being incident normally on the non-patterned glass face of the metasurface. The 
transmitted light is imaged with a 100x infinity-corrected objective (Olympus MPLAPON 100x, 
NA 0.95) and tube lens (Thorlabs TTL-180A) before being captured by a monochromatic CMOS 
camera (Thorlabs DCC1545M, 1280 x 1024 pixels, 5.2 μm pixel pitch). The metasurface z-
position is controlled by a motorized translation stage (Thorlabs DRV208). The intensity image 
is captured at 41 z-positions from z=9.6 mm to z=10.4 mm with steps of 0.02 mm, where z=0 
mm corresponds to the patterned surface of the metasurface. At each z-position, the intensity 
image is captured at 6 different exposure times ranging from 5 ms to 984 ms. These multiple 
exposure images are later weighted by their respective exposure times and stacked to remove 
saturated pixels and produce a composite image with a large intensity dynamic range. This step 
is essential in visualizing the low intensity profile of singular regions and compensates for the 
limited dynamic range of a single 8-bit intensity capture, which can only yield brightness values 
at integer values between 0 and 255 inclusive.   

The phase of the optical field at each of the 41 z-positions was obtained by a modified version of 
the single-beam multiple-intensity reconstruction (SBMIR) technique7. This process is depicted 
schematically in Fig. 4c. This method involves repeated application of Gerchberg-Saxton 
forward and backward propagation between pairs of intensity captures at different z-positions. 
We downsample the images by a factor of 10 in both horizontal and vertical directions to speed 
up the calculation process. We use a cycle starting with the image at z=9.6 mm (image 1), 
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forward propagating to z=9.62 mm (image 2), backward propagating back to image 1, forward 
propagating to image 3, back to image 1 and repeating this for each consecutive image until 
image 41. During each propagation step, we use the true intensity profile (captured 
experimentally) and the retrieved phase profile as the initial boundary conditions for the 
propagation. The resultant forward or backward propagated field phase at the target plane then 
becomes the updated retrieved phase at the target plane. The starting retrieved phase estimated 
for all planes is set to zero. We repeat this cycle 50 times. The forward propagation is performed 
using the x-polarization component of a full vectorial propagator. The backward propagation is 
performed by replacing the wavevector k in the forward propagator with -k. The accuracy of the 
phase retrieval is measured by the root-mean-squared (RMS) deviation between the estimated 
intensity (each normalized by their respective maximum intensities) after a propagation step and 
the true intensity map at that plane. We observe that by the second cycle, the maximum RMS 
deviation over all forward and backward propagation steps within the cycle remains between 
6.2% to 6.5% for every cycle from cycle 4 onwards. 

 

Characterization of the 2D heart-shaped polarization singularity metasurface 

Fig. 6a exhibits scanning electron micrographs of a metasurface processed under identical 
conditions to the metasurface used for optical characterization. The metasurface used for optical 
characterization was not imaged in the SEM because this requires the irreversible deposition of a 
conductive metallic layer. Fig. 6b exhibits the experimental setup used for optical 
characterization of the metasurface that produces a 2D heart-shaped polarization singularity. 532 
nm laser light (Ventus 532, 30 GHz spectral bandwidth) from a single-mode fibre is collimated 
by a reflective collimator (Thorlabs RC04APC-P01, 4 mm collimated beam diameter), aligned 
by two mirrors (M1 and M2), polarized to 45°, before being incident normally on the 
unpatterned glass face of the metasurface. The transmitted light is imaged with a 100x infinity-
corrected objective (Olympus MPLAPON 100x, NA 0.95) and tube lens (Thorlabs TTL-180A) 
before being captured by a monochromatic CMOS camera (Thorlabs DCC1545M, 1280 x 1024 
pixels, 5.2 μm pixel pitch). Between the objective and the tube lens, we place a zero-order 
quarterwave plate (Thorlabs WPQ10M-532) and a wire-grid polarizer (axis horizontal to the 
optical table, taken to be the x direction) to act as an analyser. The quarterwave plate is mounted 
on a motorized rotary stage (Thorlabs K10CR1). The objective z-position is controlled by a 
motorized translation stage (Thorlabs Z825B). At each of the 41 z-positions from z=9.6 mm to 
z=10.4 mm (steps of 0.02 mm), where z=0 mm corresponds to the patterned surface of the 
metasurface, we capture 36 intensity images where the quarterwave plate fast axis is rotated from 
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0 degrees (aligned to the x-direction) to 175 degrees, in steps of 5 degrees. At each quarterwave 
plate angle, we capture the intensity image at 3 different exposure times ranging from 100 ms to 
980 ms. These multiple exposure images are later weighted by their respective exposure times 
and stacked to remove saturated pixels and produce a composite image with a large intensity 
dynamic range. 

For each of the 41 z-positions, we measure the four unnormalized Stokes parameters (s0, s1, s2, 
s3) based on the 36 images captured at each of the quarterwave plate rotation angles. We use the 
rotating quarterwave plate method introduced by Schaefer et. al.8 to write the transmitted light 
intensity as a function of the quarterwave plate rotation angle θQWP as: 

𝐼Z𝜃:;<[ =
1
2
Z𝐴 + 𝐵 sin 2𝜃:;< + 𝐶 cos 4𝜃:;< + 𝐷 sin 4𝜃:;<[ (20) 

Where, A = s0 + s1/2, B = s3, C = s1/2, D = s2/2. We thus extract the intensity variation of each 
pixel as the quarterwave plate is rotated and fit the intensity variation-angle relationship to that 
exhibited above, where A, B, C, and D are the fitting parameters. The polarization azimuth can 
then be computed using the four-quadrant arctangent 2Ψ = atan2(s2,s1) and the polarization 
ellipticity angle can be obtained using 2θ = sin-1(-s3/s0). The fitted Stokes parameters at the plane 
z = 10 mm are displayed in Supplementary Fig. 12e-h and are compared to the numerically 
simulated Stokes parameters on the same plane in Supplementary Fig. 12a-d, exhibiting excellent 
agreement.  

 

SUPPLEMENTARY NOTES 

1. Mathematical relationship between phase gradients and singularities 

Here, we elucidate the relationship between phase gradients and complex scalar field zeros 
(singularities). Consider a complex scalar field E(r), which can be written in polar coordinates as 
E(r)=A(r)exp[iϕ(r)], A(r)∈ℝ. The phase gradient is ∇ϕ(r)=Im[∇E(r)/E(r)]. If a field can be 
written as a finite sum of plane waves, then the magnitude of the field and its derivatives are 
bounded, and therefore having an infinite phase gradient ∇ϕ(r0) at a point r0 implies that there is 
vanishing E(r0) at the same location – a singularity. However, the reverse implication is not true 
– vanishing field intensities do not imply infinite phase gradients: if the field gradient ∇E(r) 
converges to zero as r→r0 as a linear function of E(r), the phase gradient ∇ϕ(r) does not diverge 
when r→r0. An example of such a reverse implication can be found in systems with purely real 
E(r), such as a standing wave pattern of two counterpropagating plane waves, where the phase is 
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a constant everywhere by definition, and thus zeros in the field all exhibit a zero phase gradient 
as well. Apart from this special case, however, in most complex wave systems, it is more 
common that there exists some direction of approach r→r0 such that ∇E(r) and E(r) have a 
complex phase difference. E(r) thus exhibits an infinite phase gradient in that direction. In these 
cases, an infinite phase gradient is synonymous with an optical phase singularity.  

2. Why a 3D volumetric optical singularity is not possible 

A 3D optical singularity such as a “ball” of darkness is not physically possible. To see why, let 
us assume that one such singularity exists in a non-trivial field distribution (i.e., the field is not 
zero everywhere). By the definition of a singularity, the field and all its directional derivatives 
must be identically zero inside its non-zero 3D volume. An analytic field, such as an 
electromagnetic field, can be expressed with a series function, such as a Taylor expansion, about 
a point in its occupying space. If that point is within the 3D singularity that the field is zero, the 
field expansion across the space must be equal to zero, which contradicts the initial assumption 
of 3D singularity in a non-trivial field distribution. Thus, a 3D singularity cannot exist 
mathematically. However, it is possible to create optical fields where the field value is very low 
and approaches zero in a finite volume, such as in the case of a “perfect” optical vortex with a 
hollow (dark) center9. Such cases are approximate but not true mathematical 3D singularities.  

 

3. Singularity shaping with the Gerchberg-Saxton algorithm 

We deploy a Gerchberg-Saxton algorithm (GS) to design dark patterns and compare the results 
against that obtained through phase gradient maximization. The GS algorithm follows these 
steps: 

1. Initialize the starting pixelated plane (metasurface) with zero phase and unit field 
intensity.  

2. Initialize the target plane with zero phase and a target pixelated intensity pattern. 
3. Forward propagate the starting plane fields to the target plane (located a distance z>0) 

away using the x-directed component of the fully vectorial Green’s function27. 
4. At the target plane, compute the pixel-by-pixel standard deviation between the 

previous target plane phase pattern and the forward propagated field phase.  
5. Replace the target plane phase pattern with that from the forward propagated field.  
6. Reverse propagate (replacing k with -k) the target plane fields from the target plane 

back to the starting plane using the x-directed component of the fully vectorial 
Green’s function. 
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7. At the starting plane, compute the pixel-by-pixel standard deviation between the 
previous starting plane phase pattern and reverse propagated field phase. 

8. Replace the starting plane phase pattern with that from the reverse propagated field. 
9. Check if the standard deviation values from step (4) and (7) are both smaller than an 

acceptable tolerance. If so, terminate. If not, return to step (3) and iterate. 
10. The final phase profile at the starting plane is the desired phase profile that generates 

the target intensity pattern at the target plane. 

To give the GS algorithm the best conditions to produce dark patterns, we consider two 
approaches. The first approach uses a binary target pattern in which the target field intensity is 
either zero or unity. The results of this study are exhibited in Supplementary Fig. 8. For all these 
GS designs, we keep the starting plane parameters fixed (aperture size 0.8 mm x 0.8 mm, phase 
pixel pitch 8 μm, incident wavelength 532 nm) and also fix the propagation distance to the target 
plane at 10 mm. This matched the geometry used to design the 2D phase singularity sheets. As a 
baseline, we consider using the GS algorithm to design a bright heart outline against a dark 
background, which is close to the standard use cases of the algorithm. We observe that when the 
heart shape and outline line thickness is large, the GS algorithm faithfully replicates the desired 
intensity pattern. However, as the target heart intensity pattern is reduced in size towards the 
scale used in the phase gradient maximization method, the fidelity of this replication becomes 
poorer, and the heart-shaped outline cannot be made as thin as that of the target pattern. In fact, 
the thickness of the GS-optimized heart-shaped outline closely matches the diameter of the first 
Airy disk minimum (1.22l0/NA, or 11.5 μm for the geometry examined) on the target plane, for 
an Airy disk generated by a perfect lens of diameter equal to the square aperture diagonal, 
focusing light onto the target plane. The physical mechanism for this is that the target plane 
intensity profile is generated by a superposition of waves that have a bandlimited transverse 
spatial frequency. To a good approximation, any field pattern on the target plane is generated by 
a complex superposition of plane waves emanating from the aperture. These plane waves have 
different transverse spatial frequencies based on the angle of incidence onto the target plane, 
with a transverse wavenumber k^ that is dependent on the angle of incidence from the normal q , 
k^=k0 sinq. The target plane field pattern is thus a bandlimited superposition of these plane 
waves with different k^, with the bandlimits corresponding to the extremal plane waves with the 
largest angles of incidence and hence the shortest periodicities on the transverse target plane. The 
Airy disk diameter is proportional to the shortest periodicity (specifically, 1.22 times) and thus 
sets an estimate for the minimum feature size on the target plane. The smallest linewidths on the 
target plane as obtained through the GS algorithm appear to be limited by this minimum 
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periodicity. In order to achieve feature sizes that are smaller than the shortest periodicity in a 
bandlimited function, one has to construct superoscillatory functions10, which require specialised 
modifications to the GS algorithm, such as additional custom filters11, or gradient-free high 
dimensional optimization techniques12. 

 

We perform the same GS optimization for a dark heart-shaped outline against a bright 
background as well, and these results are displayed in the lower two rows of Supplementary Fig. 
8. Unlike the case of the bright heart-shaped outline, the dark intensity patterns produced by the 
GS algorithm exhibit much poorer replication fidelity, breaking apart into discontinuous dark 
patches as the target heart-shaped pattern scales down in size. Again, the minimum feature size 
of bright spots in the achieved intensity pattern is similar in scale to the Airy disk diameter. Since 
the bright background occupies the majority of the target intensity pattern, and the GS algorithm 
weights each pixel equally, and the GS algorithm acts to minimize the intensity deviation over a 
transverse area, it prioritises replicating this uniformly bright background at the expense of the 
dark heart-shaped features.  

 

A major issue facing the GS design of a phase mask to attain a binary target pattern is that the 
binary pattern cannot be replicated perfectly since the binary pattern is not a solution to the 
electromagnetic wave equation. We can improve the behaviour of a GS-optimized phase mask 
by specifying a target intensity pattern that is a priori known to be part of a valid wave equation 
solution. This is the second GS design approach that we undertook. Instead of using a binary 
intensity pattern, we use the actual heart-shaped phase singularity sheet intensity pattern of Fig. 
3d on the target plane, which is known to be a valid wave solution since it was designed using 
the phase gradient maximization technique. Performing the same GS algorithm with this non-
uniform intensity mask, we obtain the target plane intensity and phase patterns in Fig. 3f and 3i, 
respectively. Although these target plane patterns more closely replicate the desired heart-shaped 
dark outline as compared to the binary target patterns in Supplementary Fig. 8, they still do not 
achieve the fidelity of the phase gradient maximization technique. Fig. 3f and 3i thus exhibit the 
best performing dark patterns attained through two GS approaches, which still pale in 
comparison to that attainable through phase gradient maximization.   
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Supplementary Figure 1. Closed loop to compute the topological charge of a 2D singularity 
with closed transverse cross-section. Black dots and solid lines represent the loci of 1D and 2D 
singularity cross-sections on the transverse plane, respectively. In order to compute the 
topological charge of the 2D singularity with a closed cross-section without including the 
influence of the 1D singularity it encircles, we define a closed loop C that comprises an 
anticlockwise inner loop and a clockwise outer loop connected by a cut ab. Although the cut 
traverses the singularity cross-section, since it is traversed in both directions, its contribution to 
the line integral is zero. The topological charge s=∮C(∇ϕ/2π)·dr computed along C is the 
conserved charge associated with the 2D singularity.   
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Supplementary Figure 2. Three 0D point singularities in a cylindrically symmetric field with 
radial coordinate r and axial coordinate z. a, Intensity and b, phase profiles of the field. The 
0D singularities are located at z = 0, 1, and 2 μm along the optical axis (r = 0 μm). The blue 
contour is the isoline at which the real part of the field vanishes and the red contour is the isoline 
on which the imaginary part of the field vanishes. The complex scalar field has been multiplied 
by exp(-ikz) to remove the rapidly varying propagation phase. c Radial phase profile of the 
cylindrically symmetric phase mask placed at z = -1 mm that generates the three 0D singularities 
upon illumination with λ0=532 nm light.   
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Supplementary Figure 3. Real and imaginary zero-isosurfaces of the heart-shaped 
singularity sheets. a Real and imaginary zero-isosurfaces of the scalar field of the heart-shaped 
phase singularity sheet and b, the field σ=s1+is2 of the heart-shaped polarization singularity sheet.   
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Supplementary Figure 4. Numerically simulated transverse phase and azimuth gradients for 
heart-shaped singularity sheets, normalized to the incident wavenumber k0. a Plot of the 
magnitude of the transverse phase gradient at the z=10 mm plane for the 2D phase singularity 
sheet, |∇⟂ϕ|=[(∂xϕ)2+(∂yϕ)2]1/2. b Plot of the magnitude of the transverse polarization azimuth 
gradient at the z=10 mm plane for the 2D polarization singularity sheet, 
|∇⟂Ψ|=[(∂xΨ)2+(∂yΨ)2]1/2. Note that the transverse gradient can far exceed the wavenumber in 
both cases, indicating superoscillatory behaviour.  
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Supplementary Figure 5. Longitudinal (z) variation of transverse phase gradients and 
intensity for the heart-shaped optical phase singularity sheet. These plots correspond to the 
longitudinal variation along the 1D cut profile line in Fig. 3d. The dotted lines at z=10 mm 
indicate the position of the target plane at which the phase gradients were optimized. a 
Magnitude of the transverse phase gradient |∇⟂ϕ|=[(∂xϕ)2+(∂yϕ)2]1/2 as a function of transverse 
coordinate x and longitudinal coordinate z. The black contours encircle the superoscillatory 
region where |∇⟂ϕ|≥k0, the incident light wavenumber. The superoscillatory region extends 
approximately 300 wavelengths in front and behind of the target plane. b Intensity as a function 
of x and z. The intensity scale is identical to that of Fig. 3d, which is normalized to the maximum 
intensity over the z=10 mm plane. The low intensity region is coincident with the region of large 
phase gradient magnitudes.  
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Supplementary Figure 6. Additional phase singularity sheets engineered by phase gradient 
maximization. Top row: a flat singularity sheet. Bottom row: a two-walled cylindrical 
singularity. a Real and imaginary field zero-isosurfaces for the flat sheet singularity. b Cross-
sectional intensity and c, phase profiles at the grey z = 10.02 mm plane in a. d Phase mask 
placed at z = 0 mm which generates the flat singularity sheet structure. e Real and imaginary 
field zero-isosurfaces for the two-walled cylindrical sheet singularity. f Cross-sectional intensity 
and g, phase profiles at the grey z = 10 mm plane in e. h Phase mask placed at z = 0 mm which 
generates the two-walled cylindrical singularity sheet structure.  
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Supplementary Figure 7. Contours used to compute the topological charge and mean orbital 
angular momentum (OAM) per photon. a Inner and outer heart-shaped contours (black lines) 
used to compute the 2D heart-shaped phase sheet singularity topological charge by line 
integration. The surface plot shows the phase profile of the field at the z = 10 mm plane. The 
topological charge computed is s = 0. b Phase singularity sheet OAM density distribution and 
cross-sectional area (enclosed by the black lines) used to compute the mean OAM per photon l 
(in units of ħ). The surface plot shows the time-averaged OAM density r×ε0Re[E×B*])/2 at the z 
= 10 mm plane, normalized to the incident power P passing through the metasurface aperture. 
The area integration for the time-averaged OAM and time-averaged energy per unit length is 
performed over the region between the same two heart-shaped contours as in a to yield l = -
0.0011.  
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Supplementary Figure 8. Results of Gerchberg-Saxton (GS) phase retrieval for designing 
bright and dark heart outlines using different line thicknesses. The first two rows exhibit the 
results of using the GS algorithm for designing a bright heart shape against a dark background. 
The lower two rows exhibit the results of the same for designing a dark heart shape against a 
bright background. The geometry is the same as that used for the heart-shaped phase singularity 
sheet (aperture size 0.8 mm x 0.8 mm, 8 μm phase pixel pitch, 532 nm wavelength, 10 mm 
propagation distance). Target pattern linewidths decrease from left to right. The smallest, 
rightmost target heart pattern is identical in size to the heart-shaped singularity patterns studied 
in this paper. First row: the target pattern of a bright heart shape. Second row: achieved intensity 
plots (logarithmically scaled) for each target pattern, normalized to the maximum intensity 
achieved on that plane. The circle on the lower right corner shows the 11.5 μm diameter of the 
Airy disk minimum (for an aperture of diameter √2×0.8 mm) to exhibit the characteristic size of 
features on that plane. As the line thickness becomes much smaller than this characteristic size, 
the resultant intensity patterns become poorer replications of the ideal heart shape. Third row: 
target patterns of a dark heart shape. Fourth row: achieved intensity plots for each dark heart 
pattern, with the same 11.5 μm diameter Airy disk in the lower right corner for comparison. 
Again, pattern replication and contrast become poor as the line thickness is decreased.   
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Supplementary Figure 9. Cross-sections of the 2D heart-shaped phase singularity sheet at 
various transverse planes. The columns are, from left to right, experimental intensity profile, 
simulated intensity profile, experimental retrieved phase profile, and the simulated phase profile. 
The sheet singularity breaks into a collection of 1D singularities away from the target plane of z 
= 10.0 mm.   
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Supplementary Figure 10. Polarization parameters and the Poincaré sphere. a The electric 
field vector of a polarized beam propagating head-on in the z-direction traces out an ellipse in the 
xy-plane. This polarization ellipse can be parametrized by Ψ, the polarization azimuth, and 
θ=tan(b/a), the ellipticity angle. b Relationship between the Stokes parameters on the Poincaré 
sphere and (Ψ,θ). Isolines of Ψ are longitudes and isolines of θ are latitudes. The north and south 
poles of the sphere represent Left Handed Circular Polarization (LHCP) and Right Handed 
Circular Polarization (RHCP), respectively.   
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Supplementary Figure 11. Optimized waveplate parameters for the heart-shaped 2D 
polarization singularity sheet. a Required phase delay along the fast axis of the local waveplate 
φx. b Required phase delay in the transverse axis orthogonal to the fast axis of the local 
waveplate φy. c Required rotation angle of the fast axis of the local waveplate θrot relative to the 
laboratory x-direction.   
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Supplementary Figure 12. Comparison of the simulated (top row) and experimental (bottom 
row) Stokes parameters for the heart-shaped polarization singularity. These are evaluated at 
the transverse plane z=10 mm. a-d, Simulated Stokes parameters s0, s1, s2, and s3 at the z=10 mm 
plane, respectively. s0 is normalized to the maximum intensity on the plane and s1, s2, and s3 are 
normalized to s0. e-h, Experimentally measured Stokes parameters at the z=10 mm plane with 
the same normalization as in the simulated case.  
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Supplementary Figure 13. Meta-atom libraries for the experimental realization of 
metasurfaces that produce sheet singularity structures. a Cylindrical meta-atom geometry 
used in realizing the heart-shaped phase singularity. b Transmission phase and efficiency 
dependence on the nanopillar diameter for the cylindrical meta-atom in a. The circled data points 
are used in the meta-atom library. The diameter range used is 60 nm to 215 nm, which provides 
2π phase coverage. c Nanofin meta-atom geometry used in realizing the heart-shaped 
polarization singularity. d Phase of transmitted x-polarized light and e, efficiency in transmitting 
x-polarized light as a function of the x and y thicknesses of the nanofin.   



27 
 

 

SUPPLEMENTARY REFERENCES 

1. Nocedal, J. & Wright, S. J. Numerical Optimization. (Springer, New York, 2006). 

2. Weisstein, E. W. Heart Curve. MathWorld 
http://mathworld.wolfram.com/HeartCurve.html. 

3. Hugonin, J. P. & Lalanne, P. Reticolo software for grating analysis. (2005). 

4. Devlin, R. C., Khorasaninejad, M., Chen, W. T., Oh, J. & Capasso, F. Broadband high-
efficiency dielectric metasurfaces for the visible spectrum. Proceedings of the National Academy 
of Sciences of the United States of America 113, 10473–10478 (2016). 

5. Khorasaninejad, M. et al. Metalenses at visible wavelengths: Diffraction-limited focusing 
and subwavelength resolution imaging. Science 352, 1190–1194 (2016). 

6. Balthasar Mueller, J. P., Rubin, N. A., Devlin, R. C., Groever, B. & Capasso, F. 
Metasurface Polarization Optics: Independent Phase Control of Arbitrary Orthogonal States of 
Polarization. Physical Review Letters 118, 113901 (2017). 

7. Pedrini, G., Osten, W. & Zhang, Y. Wave-front reconstruction from a sequence of 
interferograms recorded at different planes. Optics Letters 30, 833-835 (2005). 

8. Schaefer, B., Collett, E., Smyth, R., Barrett, D. & Fraher, B. Measuring the Stokes 
polarization parameters. American Journal of Physics 75, 163–168 (2007). 

9. Ostrovsky, A. S., Rickenstorff-Parrao, C. & Arrizón, V. Generation of the “perfect” 
optical vortex using a liquid-crystal spatial light modulator. Optics Letters 38, 534–536 (2013) 

10. Berry, M. Faster than Fourier. in A Half-Century of Physical Asymptotics and Other 
Diversions 483–493 (World Scientific, Singapore, 2017). 

11.    Sanjeev, A et al. Generation and Manipulation of Superoscillatory Hotspots Using Virtual 
Fourier Filtering and CTF Shaping. Scientific Reports 10, 1-13 (2020) 

 12.  Rogers, E.T.F et al. A super-oscillatory lens optical microscope for subwavelength 
imaging. Nature Materials 11, 432-435 (2012).   


